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ABSTRACT

To perform any meaningful optimization task, distribution grid
operators need to know the topology of their grids. Although power
grid topology identification and verification has been recently stud-
ied, discovering instantaneous interplay among subsets of buses, also
known as higher-order interactions in recent literature, has not yet
been addressed. The system operator can benefit from having this
knowledge when re-configuring the grid in real time, to minimize
power losses, balance loads, alleviate faults, or for scheduled main-
tenance. Establishing a connection between the celebrated exact dis-
tribution flow equations and the so-called self-driven graph Volterra
model, this paper puts forth a nonlinear topology identification algo-
rithm, that is able to reveal both the edge connections as well as their
higher-order interactions. Preliminary numerical tests using real data
on a 47-bus distribution grid showcase the merits of the proposed
scheme relative to existing alternatives.

Index Terms— Topology identification, distribution microgrid,
graph, higher-order interaction, Volterra model.

1. INTRODUCTION

Full awareness of the distribution grid topology is required for a sys-
tem operator to perform any tasks related to monitoring, control, op-
timization, and planning [1], [2]. For instance, the increasing pene-
tration of distributed renewable generation in power grids nowadays
can cause sizable and frequent voltage fluctuations, as well as power
line congestion. In this case, the distribution grid can be reconfigured
or planned to alleviate excessive voltage drops, reduce line conges-
tion, or minimize power losses. Nonetheless, taking these measures
entails full knowledge of the topology and the interactions between
groups of nodal buses.

High-voltage power transmission networks are typically oper-
ated under fixed topology (i.e., there is no frequent network recon-
figuration during operation), and their topology capturing how buses
are connected with each other through electric lines is typically avail-
able to system operators [3]. However, in low- and medium-voltage
residential distribution grids, due to the increasing deployment of in-
formation and communication technologies, which retrofit the exist-
ing power infrastructure by installing new devices, real-time topol-
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ogy information is in general not available [3]. In this context, dis-
tribution grid topology identification is a prerequisite for subsequent
monitoring, control, and optimization tasks.

A number of methods have been proposed to identify the con-
nections present in a power network. The grid topology was recon-
structed by means of impedance estimation at the point of connection
of buses in [4]. Nevertheless, since multiple topologies can report
similar impedance, the success of estimating the correct topology
cannot be guaranteed in general. A data-driven topology identifi-
cation algorithm was advocated by using the signs of the elements
in the inverse sample covariance matrix of nodal voltage magni-
tudes in [3]. Even though these methods improve with respect to
the impedance-based methods, they do not account for the intrinsic
nonlinear dependencies between nodal voltage measurements, yield-
ing sub-optimal performance. Finally, leveraging the DC power flow
model, a blind topology identification algorithm based on power in-
jections was developed for transmission networks in [5].

To capture the nonlinear connectivity and dynamics in the data,
topology identification methods combining partial correlations and
kernels have recently been investigated [6], [7], [8]. While it is possi-
ble to adopt these methods to identify the distribution grid topology,
they face two challenges in practice: First, selecting proper kernels
requires cross-validations, or solving computationally involved op-
timization tasks. Second, kernels used to model the nonlinear inter-
actions between the data do not allow interpreting the interplay that
different buses in children branches exhibit. Although such nonlin-
ear topology identification methods can learn meaningful connec-
tions, they lack the ability to unravel interactions occurring among
a group of buses, namely higher-order interactions. This limitation
is mostly due to their reliance on the celebrated structural equation
models (SEMs) [9], [10]. Indeed, SEMs have been successfully
used to identify network topology in diverse applications [7]. How-
ever, since they build on pair-wise interactions, they cannot capture
higher-order interactions among a group of buses.

Building on recent advances in understanding higher-order
nodal interactions over graphs [11], we put forward a principled
approach to unveiling, not only the edge connectivity but also the
higher-order interactions in a distribution grid. Our approach is mo-
tivated by the nonlinear distribution grid flow model as well as the
recent self-driven graph Volterra models [10]. Specifically, focusing
on nodal voltage magnitude time-series, we establish a nonlinear
model for voltage measurements that explores higher-order interac-
tions inherited by parent-children bus relations. Drawing a connec-
tion with the self-driven graph Volterra models, offers a framework
for simultaneous topology and higher-order interaction identifica-
tion. Preliminary tests are provided to showcase the practical merits
of our proposed approach.
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Fig. 1. Bus n is connected to its unique parent πn via line (πn, n).

2. DISTRIBUTION GRID MODELLING

Consider a radial distribution grid represented by a graph G :=
(N0, E), where the vertex set N0 collects the indices of the nodal
buses, and the edge set E the power distribution lines. Here, one
can write N0 := {0,N} with index 0 denoting the root bus (i.e.,
substation), and all non-root buses collected in N . It is evident for
a tree network that the number of non-root buses and power lines is
the same, i.e., |N | = |E| = N .

Considering the radial nature of distribution grids, that is G ex-
hibits a tree structure, every non-root bus n ∈ N has a unique par-
ent bus, which is denoted by πn. The n-th power line (πn, n) ∈
E , which connects bus n and its parent bus πn, is modeled by its
impedance zn = rn + jxn. Moreover, the squared current magni-
tude of line n is denoted by `n, and the complex power flowing from
bus πn to bus n is denoted by Sn = Pn + jQn. See Fig. 1 for an
illustration.

To make explicit the connectivity of the network G, let us de-
fine the so-called bus-branch incidence matrix B ∈ RN×(N+1) with
elements

Bi,j =

 −1, if i ∈ Cj
1, if j ∈ Ci
0, otherwise

where Cj ⊆ N denotes the set of children nodes for bus j. Partition-
ing B into the first and the rest of its columns gives rise to

B :=
[
b0 B̃

]
where B̃ ∈ {−1, 0, 1}N×N is the so-called reduced branch-bus in-
cidence matrix [12]. Evidently, B̃ is a square matrix due to the radial
configuration of the network.

Using the branch flow model [13], the power flow over lines can
be modeled by the following equations

sn =
∑
i∈Cn

Si − Sn + `nzn, ∀n ∈ N (1a)

vn = vπn − 2Re [z?nSn] + `n |zn|2 , ∀n ∈ N (1b)

|Sn|2 = vπn`n, ∀n ∈ N (1c)

where vn denotes the squared voltage magnitude of bus n ∈ N0,
and sn = pn + jqn the complex power injected into bus n. As
we focus on a grid-connected distribution feeder, the measurements
at the substation (n = 0) are assumed to be constant. For future
reference, we collect all non-root buses and line quantities into N -
dimensional column vectors v, p, q, s, S, r, x, z, and `̀̀. Although
these quantities can be time-varying in practice, their dependence on
time is omitted here for simplicity.

As {rn, xn}n∈N have relatively small entries, the last terms in
both (1a) and (1b) are usually ignored, yielding a set of simplified

Fig. 2. Graphical model for triads interactions

relations, also known as linear distribution flow equations [13]

sn =
∑
i∈Cn

Si − Sn (2a)

vn = vπn − 2Re [z?nSn] . (2b)

Using the incidence matrix B, equations (2) can be rewritten in a
compact form as follows

s = B̃>S (3a)

B̃v = 2Re [Z?S]− b0v0 (3b)

where Z := diag(z)1, and v0 is the squared voltage magnitude at
the substation. Following [12, 14], we set B̃−1b0 = −1N to be the
nodal nominal voltages, hence yielding

v = 2Rp + 2Xq + v01N (4)

where R := B̃−1 diag(r)(B̃−1)
>

and X := B̃ diag(x)(B̃−1)
>

.
Although the voltage magnitude vn of bus n in the linearized flow
model [cf. (3)-(4)] is expressed as a linear function of the voltage
magnitude of its parent node vπn (plus the line flow −2Re[z?nSn]),
this ignores the nonlinear interactions between vn and the voltage
magnitudes of its children buses {vi}i∈Cn that are present in the
nonlinear (exact) branch flow model [cf. (1)]. Indeed, most exist-
ing contributions, e.g., [6, 15], have relied on this linear approxima-
tion model (4) to develop methods for identifying the grid topology,
hence yielding suboptimal performance. This motivates us to use the
nonlinear distribution flow model to develop a nonlinear grid topol-
ogy identification algorithm in this next section.

3. VOLTAGE INTERACTION ANALYSIS

Let us elaborate on the dependency of the voltage magnitude vn of
bus n on those of its parent and children buses. Notice from (1c) that
Sn is a nonlinear function of vπn , so we can write Sn = fn(vπn) for
some nonlinear function fn. Thus, using (2a), (2b) can be rewritten
as follows

vn =vπn−2Re

[
z?n

( ∑
i:i∈Cn

( ∑
j:j∈Ci

fj(vi)− si + `izi
)
− sn

+ `nzn

)]
+ `n |zn|2

=vπn−2Re

[
z?n

( ∑
i:i∈Cn

f ′i(vi)− sn+ `nzn

)]
+`n |zn|2 (5)

1diag(·) denotes a diagonal matrix whose nonzero entries are given by
its argument.
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where we have defined f ′i(vi) :=
∑
j:j∈Ci fj(vi)−si+`izi. There-

fore, we can express (5) in a compact form as

vn = vπn + gn({vi}i∈Cn) (6)

where gn(·) is a nonlinear function that lumps the second term in (5)
and highlights the dependency on the children buses of bus n.

Though there are several ways to model the functional gn(·),
e.g., using kernels in [6], we are interested in discovering interac-
tions that arise between subsets of buses. Hence, a representation
for this function, allowing for interpretability of these higher-order
interactions is preferred. In the following, we make use of the re-
cently proposed self-driven graph Volterra models in [10], to build
an explainable model for gn that elucidates higher-order interactions
while capturing the nonlinearity of function gn.

First, let S(n)
p,l denote a set consisting of p children nodes of bus

n, with subscript l referring to the l-th combination of size p, in a
lexicographic order, of the children of n. For instance, assuming i <
j < k in Fig. 2, we have S(n)

1,1 = {i}, and S(n)
2,2 = {i, k}. Therefore,

the l-th green dashed square and the l′-th red dashed ellipse refer to
S(n)
1,l and S(n)

2,l′ , respectively. Each of these sets represents possible
higher-order interactions among subsets of buses in a distribution
network, where only the first-order (i.e., pair-wise) interactions are
depicted for illustration purposes.

Now, let us consider the following model, of order P , for ap-
proximating the nonlinear function gn which maps the children volt-
ages to its parent’s voltage

gn(VCn) ≈
P∑
p=1

Lp∑
l=1

ρ
(n)
p,l h

(
VS(n)

p,l

)
(7)

where VS := {vi}i∈S ; Lp is the total number of combinations of
elements in Cn with size p; ρ(n)p,l captures the contribution of the set

S(n)
p,l to vn; and h(·) is a nonlinear combining rule for the voltages

in its argument. In this work, we consider a multiplicative rule for
h(·) for modeling the nonlinear dependency.

Using the expansion (7), we can rewrite the model for bus volt-
ages in (6) as follows

vn = vπn +

P∑
p=1

Lp∑
l=1

ρ
(n)
p,l h

(
VS̃(n)

p,l

)
+ εn, ∀n ∈ N (8)

where S̃(n)
p,l is defined similarly to S(n)

p,l , but with combinations now
taken over the superset C̃n := πn∪Cn instead of Cn. These new sets
allow us to include possible nonlinear dependencies of vn on vπn

too. Here, εn captures the modeling error as well as the measurement
noise at bus n.

The model in (8) is akin to the recently proposed self-driven
graph Volterra model [10], where higher-order interactions over
graphs have been used to predict closure events in social networks.
Inspired by these results, we found it natural to restrict the sets used
in expansion (7) to capture only interactions between two buses
and among two buses connected through a central bus. Specifi-
cally, we focus on sets defining edges and sets defining 2-length
paths. That is, for bus n, we focus on sets {vi : i ∈ Cn} and
sets {(vj , vi) : i, j ∈ C̃n}. As a consequence, we consider only
interactions up to the second order in this paper. Nevertheless, it is
worth pointing out that extensions to higher-order interactions, e.g.,
k-length paths, are straightforward.

Since the topology of a distribution grid is unknown a priori,
the aforementioned sets cannot be constructed beforehand. There-
fore, similar to other network models [16], we propose to fit a sparse
model first, enumerating all possible combinations of one and two
buses in the network, and subsequently identify such sets (interac-
tions) by their nonzero expansion coefficients. In this regard, the
second-order voltage expansion, considering all relevant groups of
bus n ∈ N , is given by

vn =
∑
i∈N0

ρ
(n)
i vi +

∑
i∈N0

∑
j∈{k:k∈N0,k≥i}

ρ
(n)
i,j vivj + εn (9)

where ρ(n)i and ρ(n)i,j are the first- and second-order expansion coeffi-
cients relating bus n with the sets {i} and {i, j}, respectively. In (9),
we have considered the upper triangular definition of the expansion
because functional h(·) is postulated invariant to any permutation
of its arguments. The expansion (9) can be further expressed in a
compact manner as follows

vn = ρρρ>n,1v + ρρρ>n,2(v � v) (10)

where we have defined v � v := [v21 v1v2 · · · vN−1vN v2N ]>

to be the reduced Kronecker product, while vectors ρρρn,1 and ρρρn,2
stack up the first- and second-order coefficients ρ(n)i and ρ(n)i,j , in a
lexicographic order, respectively. The model in (10) holds for any
time slot t.

Now, let us consider a voltage magnitude time-series mea-
surements, collected in {v(t)}Tt=1, at time t = 1, . . . , T . Denote
m(t) :=

[
v(t)> (v(t)�v(t))>

]>, and θn :=
[
ρρρ>n,1 ρρρ

>
n,2

]>. Here,
θn concatenates the graph Volterra kernels for the n-th variable. By
stacking up different voltage measurements by bus and time into a
matrix, that is having elements given by Vn,t = vn(t), the model for
a time-series of voltage magnitude measurements can be represented
as follows

V(1) : = [θ1 θ2 · · · θN ]>M + E

= Θ>M + E (11)

where M := [m(1), . . . ,m(T )] and E collect the corresponding
modeling and measurement errors, respectively. For interpretability
of (11), one can rewrite it as

V(1) = R(1)V(1) + R(2)V(2) + E (12)

where the t-th columns of V(1) and V(2) are v(t) and v(t)� v(t),
respectively; and, the n-th rows of R(1) and R(2) are ρρρ>n,1 and ρρρ>n,2,
respectively.

It is worth remarking that, the model (12) inherits certain de-
sirable characteristics from both SEMs as well as Volterra models.
Clearly, it shares the self-driven nature with SEM models, through
the first term on the right-hand-side of (12). It also captures the non-
linear effects as a Volterra series while unveiling the higher-order
interactions present in the data. This is the reason why this kind of
model is known as the self-driven graph Volterra models. Notice
that when the graph Volterra coefficients R(2) are set to zero, the
model (12) particularizes to the classical SEM.

4. IDENTIFICATION OF HIGHER-ORDER GRID
INTERACTIONS

In this section, we start with several assumptions for identifying the
graph Volterra coefficients, and formally introduce the optimization
problem for finding their values.
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For identifying the coefficients of the model (12), we make the
following assumptions.

A. 1 The matrix R(1) is a hollow matrix, i.e., ρ(n)n = 0, ∀n ∈ N .

A. 2 The coefficients for the second-order interactions satisfy
ρ
(n)
j,k = 0, if n = j, or j = k, or n = k holds.

A. 3 The graph Volterra coefficients obey ρ(n)j,k = 0, if there exists

ρ
(n)
l = 0, ∀ l ∈ {j, k}.

While Assumptions A. 1 and A. 2 can be easily included in an
optimization problem, because both involve linear constraints; the
last one is a conditional constraint. To avoid calling for an alternat-
ing minimization, or a mixed-integer program solver, we introduce
an auxiliary matrix to enforce Assumption A. 3 below when fitting
the graph Volterra coefficients.

Let us consider the following matrix

Rn :=


ρ
(n)
1 ρ

(n)
1,1 · · · ρ

(n)
1,N

ρ
(n)
2 ρ

(n)
2,1 · · · ρ

(n)
2,N

...
...

. . .
...

ρ
(n)
N ρ

(n)
N,1 · · · ρ

(n)
N,N

 (13)

whose first column corresponds to all first-order Volterra kernels of
bus n, i.e, ρρρn,1. By enforcing row sparsity in Rn, ∀n ∈ N , we can
guarantee that if ρn,1(i) = 0, then ρn,2(i, j) = 0, ∀j ∈ N . This
condition can be effected by using `2,1-regularization on R>n .

With relations (11) and (13), we consider the following sparsity-
aware `2,1-regularized least-squares for estimating the expansion co-
efficients

min
{θn}Nn=1

∑
n∈N

‖vn −M>θn‖22 + λ‖θn‖1 + µ‖R>n ‖2,1 (14a)

s. to Θ ∈ Xρ. (14b)

where the dependence of θn and Rn on ρn,1(i) and ρn,2(i, j) was
omitted for brevity, and the convex set Xρ signifies the constraints
collectively characterized by Assumptions A. 1 and A. 2. The op-
timization problem (14) is convex, and it can be solved by any off-
the-shelf convex programming method. In the following, we exam-
ine the performance of our method for identifying the interactions
on real datasets.

5. NUMERICAL TESTS

For our numerical test, we called for real consumption and solar gen-
eration data from the Smart∗ project [17] using the SCE 47-bus dis-
tribution grid [18], [19]. Using this data, voltage squared magnitude
measurements {v(t)}Tt=1 across T = 240 time slots were obtained
by solving the AC power flow equations. The voltage magnitudes of
the substation bus, v0(t) ∀ t ∈ {1, . . . , T}, were set to one. After
excluding the substation bus as well as the buses connected to their
parent buses with zero-impedance lines, we arrived at a radial grid
of 41 buses from which their interactions have to be inferred.

To find the grid topology, we first estimate the graph Volterra
kernels in (11) with the voltage time-series {v(t)}Tt=1, by solv-
ing (14) and construct R(1) and R(2) [cf. (12)]. The grid topology
is inferred from the support of R(1) after a point-wise thresholding
operation removing non-significant entries. Similarly, higher-order
interactions can be directly retrieved from the support of R(2).
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Fig. 3. ROC curves for topology inference of the SCE 47-bus distri-
bution grid from voltage magnitude data.

The proposed method was compared with three existing meth-
ods, including the multi-kernel based partial correlations (MKPC)-
[6], linear PC- [3], and concentration matrix-based [20] schemes, in
terms of edge connectivity recovery performance. This metric has
been chosen, since none of the baselines provides information about
the higher-order interactions in the grid.

The empirical receiver operating characteristic (ROC) curves for
all methods are shown in Fig. 3. In addition, their area under the
curve (AUC) values are also provided in Table 1. These results show-
case the merits of exploiting the nonlinear relationships through the
exact distribution flow model (1), relative to the linear approximation
model (3)-(4) that is used in the simulated baselines. Although the
MKPC-based scheme captures nonlinearities, these are derived from
PCs using the linear approximation model. Finally, the proposed
method avoids the computational burden of selecting the proper ker-
nels to capture nonlinearities in the data, while providing insights on
the interactions among groups of buses.

Table 1. AUC values for different methods

This paper MKPC Linear PC Concentration matrix

0.9483 0.9008 0.8836 0.8052

6. CONCLUSIONS

In this work, the problem of unveiling jointly the connectivity and
higher-order interactions in a distribution grid was studied. Based
on the exact distribution flow model, an expansion relating the volt-
age magnitude of a set of children buses with their parent’s voltage
was introduced. This expansion was shown akin to the recently pro-
posed self-driven graph Volterra models devised for higher-order in-
teraction prediction. Through this formalism, a topology and higher-
order interaction identification method was developed. The merits
of considering both the exact grid model as well as the higher-order
interactions relative to existing methods were corroborated through
numerical tests using real data. This work also opens up interesting
directions for future research, including generalizations to (unbal-
anced) multi-phase distribution grids.
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