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ABSTRACT

Diffusion-based semi-supervised learning on graphs consists of
diffusing labeled information of a few nodes to infer the labels on
the remaining ones. The performance of these methods heavily re-
lies on the initial labeled set, which is either generated randomly or
using heuristics. The first sometimes leads to unsatisfactory results
because random labeling has no guarantees to label all classes while
heuristic methods only yield a good performance when multiple re-
cursive training stages are possible. In this paper, we put forth a new
paradigm for one-shot active semi-supervised learning for graph dif-
fusions. We rephrase active learning as the problem of selecting the
output labels from a label propagation model. Subsequently, we de-
velop two methods to solve this problem and label the nodes. The
first method assumes there are only a few starting labels and relies
on projected compressive sensing to build the label set. The second
method drops the assumption of a few starting labels and builds on
sparse sensing techniques to label a few nodes. Both methods have
solid mathematical grounds in signal processing and require a single
training phase. Numerical results on three scenarios corroborate our
findings and showcase the improved performance compared with the
state of the art.

Index Terms— Active learning; compressed sensing; diffusion
on graphs; random walks; semi-supervised learning; sparse sensing.

1. INTRODUCTION

Learning representations for graph data is ubiquitous in social, bi-
ological, and technological networks [1]. In a social network, for
instance, where users are represented by nodes and relationships by
edges, a central task is to sense the network orientation on a specific
topic (e.g., a new product or political orientation). Learning these
representations becomes crucial in a semi-supervised setting, where
acquiring labels from all nodes can be costly, time-consuming or
even infeasible [2]. Label propagation —diffusing the available la-
bels through the graph to classify the unlabeled nodes— is a method
of large popularity for semi-supervised learning on graphs [3, 4, 5].
Label propagation has been recently parameterized with graph filters
in [6, 7] —an approach similar to page rank and heat kernel classi-
fiers [8, 9]— and has been further generalized with improved accu-
racy to class-adaptive diffusions [10]; i.e., to a classifier that learns a
different graph filter for each class.

A critical aspect of diffusion-based semi-supervised classifiers
is their dependence on the initial label (or training) set. This de-
pendency gets emphasized when the number of labeled nodes is low
(e.g., running a survey only on a few users in a social network),
calling therefore for active semi-supervised learning methods; meth-
ods that carefully build the label set to improve the overall per-
formance [11]. Active semi-supervised learning on graphs can be

grouped in two main categories: multi-batch and single-batch train-
ing. Multi-batch methods train the classifier repeatedly to label the
nodes [12, 13, 14, 15]; they start with a label set, train a classifier, la-
bel additional points, and repeat the process until a predefined metric
is satisfied. Single-batch methods, as is the focus in this paper, in-
stead avoid repetitive training and get all labels at once. Techniques
within this category are proposed in [16] for Gaussian field classi-
fiers, in [17] for graph Laplacian-based classifiers, and in [18] for
graph-bandlimited data representations.

Despite the fact that diffusion methods have shown promise
for semi-supervised learning on graphs, active methods for graph-
diffusion learning have been little investigated. Current works
in this direction treat active labeling and classification separately
[15, 13, 19], i.e., the active labeling is done heuristically and these
labels are then used for semi-supervised learning. In our view,
this framework is more useful in a multi-batch rather than in a
single-batch setting. Making active learning an integral part of the
semi-supervised classifier can improve the quality of labelled nodes;
hence, classification accuracy. This is especially true for the class-
adaptive semi-supervised learning [10] for which framing an active
learning problem is challenging.

To fill this gap, we rephrase diffusion-based active semi-
supervised learning as a model output selection on graphs. Our
formulation relates directly to graph diffusions and allows also to
formulate and solve the active semi-supervised learning problem
for class-adaptive diffusions. More concretely, our contribution is
twofold: i) we postulate the problem of one-shot active diffusion-
based learning on graphs —an active semi-supervised learning
problem for (class-adaptive) graph diffusions— as a model output
selection problem; ii) we propose two such active learning meth-
ods: one based on projected compressive sensing [20] and one based
on sparse sensing [21]. Both methods pose different priors on the
labeled nodes and rely on solid mathematical grounds. Numerical
results on three scenarios corroborate our findings and showcase
their potential for active semi-supervised learning on graphs.

The remainder of this paper proceeds as follows. Section 2 for-
mulates the active learning problem for diffusion classifiers. Section
3 contains the proposed methods, while Section 4 the numerical re-
sults. Section 5 concludes the paper.

2. PROBLEM FORMULATION

Consider an undirected graph G = (V, E) with node set V =
{1, . . . , N} and edge set E representing the connectivity between
nodes. The graph structure is represented through the graph shift
operator matrix S; anN ×N symmetric matrix in which the (i, j)th
entry [S]ij is nonzero only if (i, j) ∈ E or if i = j. Typical exam-
ples for S are the graph adjacency matrix A, the graph Laplacian
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matrix L = D − A with D the degree matrix or any of their nor-
malized or translated forms. One such form is S = AD−1 used to
model a random walk on graphs. A random walk of length one (or
one hop) can be regraded as a discrete-time Markov chain with each
node being a state and in which the transition probability of landing
at node j from node i is Pr{j|i} = [S]ji; a random walk of length
K is a sequence of K random hops.

Random walks are used for semi-supervised learning on graphs
through label propagation [10, 8, 22, 23] . The goal is to classify
nodes among C candidate classes by having labeled only a few of
them. Specifically, let Vc ⊂ V be the subset of nodes labeled to
class c = 1, . . . , C. A random walk starts from these nodes with
starting probability p

(0)
c = [p

(0)
1c , . . . , p

(0)
Nc]
> ∈ RN in which the ith

entry for class c

p
(0)
ic =

{
1
|Vc| if i ∈ Vc,
0 otherwise

(1)

denotes the probability of starting the walk at node i. The starting
probabilities are uniform within each class c and |Vc| is the number
of nodes labeled in class c. Since the shift operator matrix S respects
the structure of the graph, the one-hop landing probability vector for
class c can be written as p

(1)
c = Sp

(0)
c , where the ith entry p(1)

ic is
the probability of landing at node i having started from p

(0)
c . Like-

wise, the landing probability vector for class c for a walk of lengthK
is p(K)

c = Sp
(K−1)
c = SKp

(0)
c . A graph-based diffusion classifier

combines the probabilities p(0)
c ,p

(1)
c , . . . ,p

(K)
c with a class-specific

vector of coefficients hc = [hc0, . . . , hcK ]> to obtain the final dif-
fusion probabilities

qc(hc) =

K∑
k=0

hckp
(k)
c =

K∑
k=0

hckS
kp(0)

c (2)

for class c. For future reference, let us define the diffusion filter for
class c as

Hc(S) =

K∑
k=0

hckS
k (3)

and write (2) as qc(hc) = Hc(S)p
(0)
c .

The parameters hc are estimated to match a target probability
vector q̄c with ith entry

q̄ic =


1∣∣V̄∣∣ if i ∈ Vc,

0 otherwise
(4)

where V̄ = ∪Cc=1Vc is the set of all labeled nodes with |V̄| = M .
Put simply, the diffusion parameters of class c, hc, are obtained by
equating the ith entry of (2) to (4) yet only for the labeled nodes in V̄ .
To avoid overfitting, the estimation of these parameters is regularized
with graph-priors on the diffused probabilities qc(hc) in (2), e.g.,
smoothness. This boils down to solving the optimization problem

minimize
hc

L(q̄c,qc(hc)) + γR(qc(hc),S)

subject to hc � 0, hTc 1 = 1.
(5)

where L(q̄c,qc(hc)) is a distance measure between the target value
q̄c and the diffused probabilities qc(hc) calculated only over the
labeled nodes V̄ while R(qc(hc),S) is the graph-based regularizer
for the diffused probabilities. The two constraints ensure that the

estimated parameters hc yield an output in (2) that is a probability
mass function for class c.

Given then q1(h1), . . . ,qC(hC), the unlabeled nodes i ∈ V\V̄
are assigned to the class that yields

argmax
c∈{1,...,C}

qic(hc) for i = 1, . . . , |V\V̄| (6)

where qic(hc) is the ith entry of qc(hc) [10].
While (2) regards class-adaptive parameters hc, two other pop-

ular approaches consider the same parameters hc = h ∀c: the per-
sonalized page rank classifier fixes h = (1 − h)[h0, h1, . . . , hK ]>

with scalar 0 ≤ h ≤ 1 [8]; the heat kernel classifier fixes h =

e−h[1, h, h
2

2
, . . . , h

K

K!
]> with scalar h ≥ 0 [9]. In this work, we

will leverage both the class-adaptive and non-adaptive scenarios.
As it follows from (2), the set of labeled nodes V̄ (i.e., p(0)

c in (1)
and q̄c in (4)) plays an important role in diffused semi-supervised
learning. In specific, the location of these nodes w.r.t. the graph
topology influences the diffusion output qc(hc) in (2), and hence,
the estimated parameters in (5) as well as the classifier output in (6);
all these quantities depend on the starting nodes of the walk, i.e.,
p

(0)
c . Random labeling does not account for the graph structure and

the diffusion process on top of it, leading to unrepresentative nodes
and low classification accuracy. This is particularly true for one-shot
or single batch active learning. In this work, we tackle this issue un-
der the aforementioned one-shot scenario and build the labeled set
V̄ with solid mathematical tools to improve the classification accu-
racy for adaptive graph-based diffusion classifiers. This problem,
which we label as active diffusion learning on graphs is formalized
as follows.

Problem statement. Given a graph G = (V, E) whose nodes
can be classified intoC classes with the diffusion process in (2) from
the labeled nodes V̄ ⊂ V; the task is to build the label set V̄ from
scratch in a one-shot setting as the diffusion starting nodes with per-
class probabilities given by (1).

3. ACTIVE LEARNING

We formulate the active learning problem as designing an M × N
sampling matrix C to select the M < N entries of qc(hc) in (2)
that carry the most information about the starting probabilities p(0)

c .
Formally, matrix C belongs to the combinatorial set

CM,N = {C ∈ {0, 1}M×N : C1N = 1M ,C
>1N � 1N} (7)

that selects M out of N different nodes and satisfies CC> = IM
and C>C = diag(c), where 1M is theM×1 vector of all ones, IM
is the M ×M identity matrix, and c ∈ {0, 1}N is an N × 1 vector
with ci = 1 if and only if node i is labeled, i.e., belongs to V̄ .

With this in place, we write the diffusion classifier output for
class c on the selected nodes as

q̃c(hc) = Cqc(hc) = CHc(S)p(0)
c . (8)

Remark that during active learning we do not know the labeled set
V̄; hence, the target probability vector q̄c (4), which further implies
that we cannot estimate a class-specific parameter vector hc as per
(5). To tackle this issue, we follow a two-step approach. First, we
consider a known and fixed parameter vector h = hc ∀c (e.g., the
personalized page rank parameters) to build the label set V̄ during ac-
tive learning. Then, we follow the class-adaptive approach in (1)-(6)
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with the set V̄ previously built to label the remaining nodes. Thus,
during active learning, equation (8) becomes

q̃c(h) = Cqc(h) = CH(S)p(0)
c . (9)

That is, the role of C is now that of selecting the M rows of the
known and fixed diffusion filter H(S) that best describes the diffu-
sion of p(0)

c over the graph.
We develop two methods for building C (i.e., V̄). The first

method interprets p
(0)
c as a sparse vector and relies on compressed

sensing to select M rows of H(S) that are closer to an equiangular
frame [24]. The second method drops the sparsity assumption and
leverages sparse sensing to select the M rows of H(S) that lead to
the minimum volume of the confidence ellipsoid [21].

3.1. Compressed sensing active learning

Problems of the form in (8) with a sparse p
(0)
c have been widely

studied in compressed sensing literature and fall under the category
of optimized projections for sparse recovery [20, 24, 25, 26]. These
works design a general (not binary)M×N projection matrix C such
that the resulting matrix CH(S) is close to an equiangular frame
[27]; that is, close to an M × N dictionary matrix E in which the
inner products of any two columns are equal in absolute value. The
inner products of all columns of E can be obtained through the Gram
matrix Ge = E>E, which has entries [Ge]ij of absolute value

∣∣[Ge]ij
∣∣ =

{√
N−M
M(N−1)

i 6= j

1 i = j
. (10)

Our goal is, therefore, to design a sampling matrix C such that
the resulting Gram matrix

Gc = H>(S)C>CH(S) = H>(S)diag(c)H(S) (11)

has entries [Gc]ij with absolute value close to (10). But since the
(i, j)th entry of H(S) satisfies [H(S)]ij ≥ 0 by construction —
recall qc(h) should be a probability vector; see also (5)— the entries
of Gc are all nonnegative. It is thus sufficient to show that [Gc]ij
itself (without absolute value) is close to (10). The identity matrix
IN is another example of Ge and can also be used to design pro-
jection matrices [25]. We now pose the design of C as solving the
optimization problem

minimize
c

||H>(S)diag
(
c
)
H(S)−Ge||2F

subject to ‖c‖0 = M, c ∈ {0, 1}N
(12)

where the cost function measures with the Frobenius norm ‖ · ‖F
the distance between the sampled Gram matrix Gc in (11) and the
equiangular frame Gram matrix Ge in (10). The optimization con-
straints ensure the resulting matrix C is a selection matrix. Problem
(12) is a combinatorial NP-hard problem. We can solve it efficiently
by substituting the l0 pseudo-norm ‖c‖0 = M with the l1 norm sur-
rogate ‖c‖1 = M and the Boolean constraint c ∈ {0, 1}N with the
box one c ∈ [0, 1]N ; the latter transform (12) into a convex problem.
Relaxing the problem leads often to solutions that are far from the
optimal one. We have found instead that solving (12) with greedy
methods, i.e., starting with the set V̄ = V and removing one node at
a time that decreases the cost the least until |V̄| = M , leads often
to better results. As far as we know, it has not been proven to be
sub-modular.

A few remarks are now in order. First, an equiangular frame is
not guaranteed to exist for any tuple (M,N) [27]; in general,M has
to be larger than a specific value that depends on N . In these cases,
even solving the original problem (12) may not give rise to a good
label set V̄ . Second, differently from [20, 24], we avoid the repeated
projections since H(S) is known in our case and also the projection
matrix C has a well-defined binary structure. Third, if we resort
to the convex approach, we can also regularize the solution of (12)
with a term R(H(S), c,S) on how the selected labels diffuse over
the graph; e.g., R(H(S), c,S) = c>H>(S)LH(S)c imposes that
the diffused labels on the nodes in c are smooth over the graph. We
have seen that this improves the performance of the convex approach
but still is slightly worse than greedy.

3.2. Sparse sensing active learning

The compressed sensing active learning (CS-AL) relies on the fact
that p(0)

c is sparse. However, we can also construct the labeled set
V̄ without this assumption by relying on a sparse sensing framework
[21]. In sparse sensing active learning (SS-AL), we drop the sparsity
assumption and assume the true labels qtrue

c for class c can be written
as the final diffused probabilities up to some uncertainty

qtrue
c = qc(h) + n = H(S)p(0)

c + n (13)

where qc(h) is the model landing probability vector for class c and
n ∼ N (0, σ2IM ). Since estimating p

(0)
c is linked to qtrue

c through
the pseudo-inverse of CH(S), SS-AL selects the M rows of H(S)
that yield the minimum estimation error.

Denoting with hi(S) ∈ RN the ith row of H(S) we can write
the ith entry of qtrue

c in (13) as

qtrue
ic = h>i (S)p(0)

c + ni. (14)

where ni is the ith entry of n. Selecting the M nodes to label im-
plies selecting the M rows of H(S) that lead to the minimum es-
timation error on the starting probability vector p

(0)
c . Among the

different choices to measure the estimation error, we consider the
log-determinant of the error covariance matrix. This metric relates to
the volume of the confidence ellipsoid and captures the uncertainty
about the estimate of p(0)

c [21]. Selecting the M nodes to label then
implies solving the combinatorial problem

minimize
c

logdet
(
H>(S)diag(c)H(S) + εIN )

subject to ‖c‖0 = M, c ∈ {0, 1}N
(15)

where εIN ensures the existence of the log-determinant. The benefit
of the log-determinant over alternative cost functions is that it is is
sub-modular. As such, it allows to avoid relaxation techniques and
build V̄ with greedy methods. Algorithm 1 provides the greedy solu-
tion for (15). Since the term

(
H>(S)diag(c)H(S)) is always rank

deficient, we should select those nodes that increase the condition
number of the non-singular part the most; hence, the term εIN . It
should be noted that the two proposed approaches do not take the
classification accuracy into consideration while building V̄ .

4. NUMERICAL RESULTS
We considered three node classification scenarios, namely a stochas-
tic block model (SBM), a random sensor network (RSN), and a Face-
book subnetwork [28]. During active learning, we considered the
parameter vector h to be that of the personalized page rank with
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Fig. 1. Classification error versus percentage of labeled nodes for the proposed CS-AL and SS-AL and for the random and degree-based active
learning. The results are shown for two filter orders K in (3): K being the graph diameter and K being half of the graph diameter. Both
proposed methods improve w.r.t random and degree-based labeling, where the SS-AL reaches also zero classification error in well-clustered
scenarios (e.g., SBM graph and Facebook subnetwork). For CS-AL in the RSN and SBM the target matrix is Ge (10), while for the Facebook
subnetwork the target matrix is the identity matrix.

Class 1 Class 2

CS-AL SS-AL Random Degree CS-AL SS-AL Random Degree

Class 1 214 214 208.6 213 0 0 5 4
Class 2 0 0 7.5 11 14 14 6.9 0

Table 1. Confusion matrix for the proposed CS-AL and SS-AL, random labeling, and degree-based labeling on the Facebook subnetwork for
|V̄| = 6 and filter order K = 4. Each row shows how the different algorithms classify the nodes belonging to that class.

Algorithm 1 Greedy solution for problem (15)

1: Set the cardinality of labeled set |V̄| = M ; the global parameters
h for all classes in (3); V̄ = ∅; m = 0

2: while m ≤M do
3: Select the node j that
4: j = argmax

j∈V\V̄
logdet

(∑
i∈V̄

1
σ2
i

hihTi + 1
σ2
j

hjh>j
)

5: V̄ = V̄ ∪ j
6: m = m+ 1
7: end while

h = 0.9 [8]. We analyzed the diffusion filters in (3) with two differ-
ent ordersK: first,K is the graph diameter and second the half of it.
The proposed CS-AL (Section 3.1) and SS-AL (Section 3.2) meth-
ods are compared with random labeling whose results are averaged
over 100 realizations and with degree-based heuristic labeling (i.e.,
label the M nodes with the largest degree).

The SBM and the RSN have both N = 200 nodes to be classi-
fied into C = 4 classes. The SBM has 4 blocks, average diameter
4, and intra- and inter-block probabilities of 0.8 and 0.01, respec-
tively. The RSN is constructed with the default settings in the GSP
toolbox [29] and has average diameter 15. All results for SBM and
RSN are averaged over ten different graph realizations. The Face-
book subnetwork has N = 234 nodes clustered in two connected
and non-balanced communities of 219 and 15 nodes and diameter 8.
The goal is to label the most relevant users for classifying through
adaptive diffusions to which of the C = 2 communities the remain-
ing users belong to.

Fig. 1 shows the classification error for different cardinalities of
the labeled set V̄ expressed as percentages w.r.t. the total number
of nodes. Overall, the proposed methods improve the classification
accuracy of random labeling: for scenarios with a more distinctive
clustering behavior (i.e., SBM and Facebook subgraph) the SS-AL

achieves zero classification error. The CS-AL falls back in perfor-
mance for low values ofM (i.e., |V̄|); this is because the equiangular
frame conditions are violated. But when these conditions hold (i.e.,
larger M ) the CS-AL reaches also optimal performance. We also
see that increasing K from half to the full graph diameter does not
lead to any improvement and it might also degrade the performance
(see Facebook subnetwork). This is because a larger K accumu-
lates at each node labeled information also from the nodes in the
other classes; hence, degrading the overall performance. Therefore,
as it is good practice in diffusion semi-supervised learning, also for
active semi-supervised learning it is beneficial to account only for
label propagation in the vicinity of a node (e.g., low K).

Table 3.2 shows the confusion matrix for the Facebook subnet-
work. The cell (i, j) denotes the number of nodes belonging to class
i and classified to class j. These results confirm those in Fig. 1, i.e.,
the proposed methods outperform the other alternatives. As such,
we conclude that model-driven active learning has a large potential
to improve semi-supervised learning on graphs since it accounts for
both the network topology and the diffusion process on top of it.

5. CONCLUSION
We proposed a one-shot active semi-supervised learning on graphs
for diffusion-based classifiers. The proposed solution rephrased the
active learning problem as the problem of output label selection in
a label propagation model. We then developed two active learning
methods: the first method relies on compressed sensing; the sec-
ond method leverages sparse sensing methods. Numerical tests on
three scenarios showed the proposed approaches improve over ran-
dom and heuristic degree-based labeling. In the near future, we will
investigate the connection between the selected nodes and the graph
spectral representation of the diffusion filter.
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