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ABSTRACT
While regularization on graphs has been successful for signal recon-
struction, strategies for controlling the bias-variance trade-off of such
methods have not been completely explored. In this work, we put
forth a node varying regularizer for graph signal reconstruction and
develop a minmax approach to design the vector of regularization
parameters. The proposed design only requires as prior information
an upper bound on the underlying signal energy; a reasonable as-
sumption in practice. With such formulation, an iterative method
is introduced to obtain a solution meeting global equilibrium. The
approach is numerically efficient and has convergence guarantees.
Numerical simulations using real data support the proposed design
scheme.

Index Terms— graph signal processing, bias-variance trade-off,
graph regularization, graph signal denoising, minmax problems

1. INTRODUCTION

In this work, we focus on solving the following problem

ω∗ := arg min
ω∈W

fω(y;µ), (1)

where ω ∈ Rd is a regularization parameter for the loss function
fω(·; ·) w.r.t the data y ∈ Rn and an underlying unknown parameter
µ ∈ Rq . The regularization parameter ω is within a convex setW .

Problems of the form in (1) arise naturally in applications in-
cluding, hyper-parameter tuning [1], biased estimators [2], image
denoising [3], and signal reconstruction [4], to name a few. Though
this formulation is simple, the dependency of fω on the underlying
unknown parameter µ impedes a straightforward solution. For the
common and simple case with a scalar regularization parameter ω,
this dependency problem also happens and is well-studied in the
literature, for instance, the author in [5] used SURE method to esti-
mate the term involved with the unknown parameter µ, while in [6]
based on subspace information criterion. In the context of Tikhonov
regularization, methods based on like, the discrepancy principle [7,8],
the L-curve criterion [9] and the generalized cross-validation [10],
are used to select the regularization parameter.

However, these methods are designed for scalar regularization
parameter selection. Instead of solving (1), we consider a worst case
scenario and focus on its minmax formulation

ω∗ := arg min
ω∈W

max
µ∈M

fω(y;µ). (2)
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Here, setM defines the restrictions on the unknown parameter µ that
are often easy to get. For mathematical tractability,M is considered
convex and compact. The study of (2) requires in general assumptions
that could be violated in practice. Thus, it is always advisable to
restrict this study to loss functions derived from particular problem
instances. In our case, we analyze (2) for the problem of graph signal
reconstruction [11–13]. The goal of this task is simple: given a set
of noisy observations taken over nodes of a graph, to reconstruct the
graph signal using the underlying graph structure as prior knowledge.

Different works have leveraged this problem for graph signal
denoising [14–16], interpolation [17] and semi-supervised learning
over graphs [18], where the most common regularizer is the so-called
Tikhonov regularizer. The common assumption in all these works is
that the regularization parameter is scalar. This, in turn, translates
into a common factor applied by all nodes of the graph and fails to
capture the signal detail in the neighborhood of a node. The specific
local information of certain nodes cannot be taken into consideration.

To tackle this issue and improve the reconstruction performance,
we consider ω to be a vector of regularization parameters where each
entry is associated to a node of the graph. We call it node varying reg-
ularization since each node is regularized differently. The proposed
generalization matches naturally the form in (2) by particularizing
the loss function to the mean squared error. We provide a gradient
descent-based algorithm to find the optimal node varying regulariza-
tion parameters and show its superior performance compared to the
scalar regularization.

In the following, we formalize the problem of graph signal re-
construction in Section 2. In Section 3, we develop the node varying
regularization problem, while in Section 4 we focus on the minmax
design of the regularization parameter. Numerical results with syn-
thetic and real data corroborate our theory in Section 5 and the paper
conclusions are drawn in Section 6.

2. GRAPH SIGNAL RECONSTRUCTION

Let y ∈ Rn be a vector of measurements taken over an undirected
graph of n nodes, where entry yi := [y]i is the measurement col-
lected on the ith node. The node measurements are of the form

yi = µi + εi, (3)

where µi is the mean of the ith measurement and εi is an i.i.d. random
Gaussian variable distributed asN (0, σi). That is, the measurement
vector follows the distributionN (µ,Σ) with covariance matrix Σ :=
diag(σ1, . . . , σn). Further, let L ∈ Rn×n be the graph Laplacian
capturing the connectivity between nodes, defined asD −A, where
D is the degree matrix andA is the adjacency matrix. The Laplacian
is symmetric for undirected graphs .

The problem of graph signal reconstruction consists of estimating
the noise-free signal µ from the noisy measurements y. A common
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approach to solve this problem is to explore the prior information
about the signal behavior over the graph [14,15]. If we assume the sig-
nal changes slowly over, we can consider the Tikhonov regularization
problem

µ̂ω := arg min
x∈Rn

‖y − x‖22 + ω · x>Lx, (4)

where scalar ω > 0 is the regularization parameter that controls the
signal’s smooth variation over the network topology [15]. Problem (4)
is convex and has the closed-form solution

µ̂ω = (I + ωL)−1y := Hωy (5)

where we definedHω := (I + ωL)−1 to ease notation. The mean
square error (MSE) of the estimate in (5) is

MSE(µ̂ω) = tr
(
(I −Hω)2µµ>

)
+ tr

(
H2

ωΣ
)
. (6)

By minimizing the MSE over ω, we can find the optimal regulariza-
tion parameter ω by solving

ω∗ := arg min
ω

MSE(µ̂ω). (7)

Expression (7) is in the form (1) with f(y;µ) := MSE(µ̂ω), where
now µ is the unknown noise-free measurement to be estimated. To
deal with the dependency on the unknown parameter µ of the MSE,
the work in [14] substituted the MSE cost in (7) with an upper bound.
Although this approach can serve to design the regularization param-
eter ω through order-matching, it falls short (i) in instances where
each node is weighted differently, since in (4) all nodes are weighted
with a common ω; and (ii) to provide a method without spectral
knowledge as its optimal design requires full eigendecomposition
of the Laplacian matrix. Therefore, in the following, we propose a
generalized graph-based penalizer able to capture node heterogeneity
while allowing for a computationally efficient design.

3. NODE VARYING GRAPH SIGNAL RECONSTRUCTION

To address the problem of node heterogeneity, we consider a parame-
ter vector ω ∈ Rn, where entry ωi is associated to node i. The node
varying equivalent to (4) can be written as

µ̂ω := arg min
x∈Rn

‖y − x‖22 + x>diag(ω)Ldiag(ω)x. (8)

The term x′ = diag(ω)x can be seen as each node weighting accord-
ingly its own signal before computing the signal variation x′>Lx′.
Further, note that by setting ω = ω1, problem (8) specializes to (4).

Define Sω := diag(ω)Ldiag(ω) = ωω> � L as an edge de-
pendent matrix [19], which is positive semidefinite by Schur product
theorem [20, p. 14, Thm. VII] and shares the same support with
L. Problem (8) is convex by construction since diag(ω)Ldiag(ω)
is positive semidefinite. By setting the gradient of (8) to zero, the
optimal closed-form solution for (8) is

µ̂ω := (I + Sω)−1y. (9)

The MSE of the estimate in (9) is now given by

MSE(µ̂ω) := tr
(
(I − (I + Sω)−1)2µµ>

)
+ tr

(
(I + Sω)−2Σ

)
.

(10)
It consists of the squared norm of the bias as the first term and the
variance as the second term. Likewise the scalar counter part (6),
the MSE(µ̂ω) depends on the unknown parameter µ. To tackle this
dependency and design the regularization parameter ω, we depart
from approaches of the form (7) and consider a minmax formulation
as in (2). Beside tackling the dependency on the underlying parameter
µ, the minmax formulation also avoids working with upper bounds.

4. MINMAX PARAMETER DESIGN

The minmax formulation for the optimal regularization parameter
design is

ω̂ := arg min
ω∈W

max
µ∈M

fω(y;µ), (11)

where fω(y;µ) := MSE(µ̂ω) and whereW andM are two sets to
be specified in the sequel. In a practical setting, no much information
is available about the unknown parameter µ; however its energy
(norm) is typically bounded. For instance, an energy bound on the
measurements y will simply impose a (may not tight) bound on
µ; or if the signal-to-noise ratio (SNR) is available, through the
knowledge of the noise power, we can obtain a bound on the signal
power. Hence, it is reasonable to consider that µ lies within an `2-
norm ball with radius µ∗, i.e., M := {µ : ‖µ‖2 ≤ µ∗}. SetM
meets all assumptions required by minmax problems, i.e., it is convex
and compact. In addition, to preserve the convexity of problem (8),
we only require the regularizer parameters to be within the real set,
W = Rn, so that diag(ω)Ldiag(ω) is positive semi-definite.

Before studying the details of (11), let us first analyze the
MSE(µ̂ω) expression in (10). We observe that only the first term
depends on µ. This term captures the squared norm of the bias of the
estimator, ‖bias(µ̂ω)‖2 and can be written in the quadratic form

‖bias(µ̂ω)‖2 = tr(S̃ωµµ>) = µ>S̃ωµ, (12)

where S̃ω = (I − (I + Sω)−1)2 is a positive definite matrix that
depends on ω. For a fixed ω, the bias term accepts a simple maxi-
mization when µ is restricted to setM. That is, it suffices to find the
eigenvector µ∗ corresponding to the largest eigenvalue of S̃ω , more
specifically

µ∗ := arg max
µ∈M

µ>S̃ωµ = µ∗λmax(S̃ω), (13)

where λmax(S̃ω) denotes the largest eigenvalue of S̃ω and µ∗ is the
energy upper bound. The following result ensures that the solution
of (13) can be obtained efficiently.

Proposition 1. Let S̃ω be given as above, then the maximizer of (13)
is the eigenvector of Sω related with λmax(Sω).

Proof. From their definition, both S̃ω and Sω are positive semidef-
inite, thus Sω + I � I . As the ith eigenvalue of S̃ω is given as
λi(S̃ω) := (1−(1+λi(Sω))−1)2, we conclude that maxi λi(S̃ω) =
maxi λi(Sω).

Hence, the solution of (13) can be computed efficiently through
power iteration using the matrix Sω which enjoys the sparsity of the
graph Laplacian, instead of S̃ω .

Since the inner maximization step can be solved exactly, the
outer minimization can be performed with an iterative first-order
method [21]. A first-order based method for solving the minmax
problem (11) has the update

ωt+1 = ωt − ηt∇ωfωt(y;µ∗t ), (14)

where ηt is the step size at iteration t and ∇ωfωt is the gradient
of f w.r.t ω evaluated at ωt. Here, µ∗t := µ∗vt with vt being
the normalized eigenvector related with the largest eigenvalue of
Sωt = diag(ωt)Ldiag(ωt). With derivations in appendix1, the
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closed-form expression of the gradient∇ωfωt(y;µ∗t ) is

∇ωfωt(y;µ∗t ) = diag−1

(
[−4(I + Sωt)

−2(µ∗tµ
∗>
t + Σ)

+ 4(I + Sωt)
−1µ∗tµ

∗>
t ](I + Sωt)

−1diag(ωt)L

)
. (15)

Although it seems that evaluating (15) requires the inversion of some
matrices, these operations can be implemented efficiently as the
solution to symmetric diagonal dominant (SDD) systems [22, 23].
Algorithm 1 summarizes the minmax procedure for solving (11).

To study the theoretical guarantees of this Algorithm, we intro-
duce the following definition.

Definition 1 (FNE). A point (ω∗;µ∗) is a first-order Nash equilib-
rium (FNE) of the game (11) if

〈∇ωf(ω∗;µ∗),ω − ω∗〉 ≥ 0, ∀ ω ∈ W (16)

and

〈∇µf(ω∗;µ∗),µ− µ∗〉 ≤ 0, ∀ µ ∈M (17)

where 〈·, ·〉 denotes the inner product.

This definition guarantees first-order necessary optimality con-
ditions for the objective function (for each player). Hence, they
are necessary conditions to guarantee the so-called first-order Nash
equilibrium [24], i.e.,

f(ω∗;µ) ≤ f(ω∗;µ∗) ≤ f(ω;µ∗), ∀ ω ∈ W, ∀µ ∈M. (18)

As Algorithm 1 is an iterative method and in a practical setting it
always has a numerical tolerance, in the following, the notion of
approximate-FNE is introduced.

Definition 2 (Approximate FNE). A point (ω∗;µ∗) is an ε-first-
order Nash equilibrium (ε-FNE) of the game (11) if

X (ω∗;µ∗) ≤ ε and Y(ω∗;µ∗) ≤ ε, (19)

where

X (ω∗;µ∗) := −min
ω
〈∇ωf(ω∗;µ∗),ω − ω∗〉

s.t. ω ∈ W, ‖ω − ω∗‖ ≤ 1,
(20)

and

Y(ω∗;µ∗) := max
µ
〈∇µf(ω∗;µ∗),µ− µ∗〉

s.t. µ ∈M, ‖µ− µ∗‖ ≤ 1.
(21)

This definition is based on the first-order optimality measure of
the objective of each variable. Such a condition guarantees that each
variable cannot improve their objective function by using first-order
information, providing a both theoretical and numerically meaningful
stopping criteria i.e., convergence criterion. Now, we are ready to
state the following result regarding the convergence of Algorithm 1.

Proposition 2 (Convergence). Let the problem (13) have a unique
solution for each ωt. Then, Algorithm 1 is guaranteed to converge to
an ε-FNE of the game (11) for T,K →∞.

Algorithm 1 Iterative First-Order Method for MinMax Game (11)

Input: µ∗: signal energy bound; T : number of gradient descent
iterations; K: number of power iterations; η: step size; Σ: noise
covariance matrix; L: graph Laplacian matrix;

Output: optimized regularization parameter ω
1: Initialization : ω0 = ω01, µ0 = 1
2: for t = 0 to T − 1 do
3: Sωt = diag(ωt)Ldiag(ωt)
4: for k = 0 to K − 1 do
5: zk = Sωtµk

6: µk+1 = µ∗zk/‖zk‖2
7: end for
8: µ∗t = µK , the largest eigenvector of Sωt

9: Compute∇ωfωt as (15) by substituting Σ and µ∗t
10: ωt+1 = ωt − η∇ωfωt(y;µ∗t )
11: end for
12: return ω = ωT

Proof. (Sketch.) When the stated condition holds, then Danskin’s
theorem [25] holds, i.e.,

∇ω max
µ∈M

fω(y;µ) = ∇ωfω(y;µ∗) (22)

with µ∗ = arg max fω(y;µ) and for K →∞, the power method
finds the exact solution to (13). The rest of the proof specializes the
result in [21, Thm. 3.4]

Although the uniqueness condition for problem (13) might seem
restrictive, this behaviour is typically observed in practice. Further-
more, even when this is not the case, we can consider a proximal term
‖µ− µ̄‖2 in (13) to guarantee the convergence to an ε-FNE; see [21]
for further technical details. Next, we use the proposed method to
design a robust worst-case regularizer for node varying graph signal
reconstruction.

5. NUMERICAL EXPERIMENTS

In this section, we corroborate the proposed method with synthetic
data on Erdős–Rényi graphs and with real data from the Molene
weather dataset2. We first obtained an optimal regularization parame-
ter ω∗ by solving the minmax problem (11) with Algorithm 1. Then,
we used the found regularization parameter to reconstruct the signal
as in (9). We compared our method with two other state-of-the-art
approaches:

i) the standard Tikhonov based denoising (4). Based on the bias-
variance trade-off study and scaling law in [14], we optimally
set the regularization parameter ω = O(

√
θ/(λ2λn)), where

θ =
√

1/SNR, and λ2 and λn are the smallest and the largest
non-trivial eigenvalues of the graph Laplacian, respectively.

ii) Diffusion kernel-based ridge regression with parameter
σ2
KRR = 1 (diffusion kernel parameter) and regularization

parameter c = 10−4, which is studied well in kernel-based
graph signal reconstruction [13].

We measured the performance through the normalized mean squared
error (NMSE), which is defined as NMSE = ‖µ − µ̂‖2/‖µ‖2. In
our experiments, we analyzed under different signal-to-noise ratios
(SNRs). The true signal is corrupted with white Gaussian noise to

2https://donneespubliques.meteofrance.fr/
donneeslibres/Hackathon/RADOMEH.tar.gz
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Fig. 1: Normalize mean squared error comparison of different methods as a function of the signal-to-noise ratio.

yield an SNR given by SNR = 10 log10(‖µ‖2/(nσ2)) with n being
the number of graph nodes and σ2 the noise variance.

Synthetic data. We built an Erdős–Rényi graph of n = 50 nodes
with a connection probability of 0.5. We generated a deterministic
smooth graph signal which has an ideal low-pass graph frequency
content with bandwidth 20 [15]. We observed the `2-norm ‖µ‖2 =
4.47. For the gradient descent based method in Algorithm 1, we
set the number of iterations T = 100, K = 30, and the step size
η = 0.002. We then initialized ω = ω01 with ω0 being the optimal
Tikhonov regularization parameter, and µ = 1. To evaluate the
recovery performance in different noisy situations, we considered an
SNR in the range [−30, 30] dB. To evaluate the effect of the energy
bound on the reconstruction performance, we considered the energy
bound µ∗ to have three values {5, 10, 15}, which are all above the
true energy. Our results are averaged over 100 noise realizations and
50 graph realizations for a total of 5000 Monte-Carlo runs.

From Fig. 1a, the performance of our minmax formulation stands
out. Specifically, with any energy bound –whether a stricter one
(µ∗ = 5) or a looser one (µ∗ = 15)– the proposed method gives better
results compared with the other contenders in the low-SNR regimes.
In the medium-SNR range, our method with a loose energy bound will
behave worse than Tikhonov, but this difference becomes negligible
when the energy bound gets tighter. Finally, at high-SNR regime all
methods reach a similar performance except for the diffusion kernel-
based method that may have a bias. This trend shows that our method
generalizes the Tikhonov regularization and indicates that local node
detail is more important in low SNR settings.

Molene weather data. This dataset consists of 744 hourly tem-
perature recordings collected in January 2014 over 32 cities in the
region of Brest, France. We built the graph from the coordinates
of the stations by connecting all the neighbours in a given radius
with a weight WG(i, j) = exp{−kd2(i, j)}, where d(i, j) is the
Euclidean distance between stations i and j, and parameter k is five.
We removed the average value of weather data over time and space.
For this experiment, we artificially added noise and considered an
SNR in the interval −15 to 3 dB. We set the energy bound to the
true one plus a trivial deviation, which is a reasonable assumption
based on historical same-day recordings. For the diffusion kernel

method, we here modified the parameter σ2
KRR to be 5 for a better

performance. The other parameters remain the same as in the former
experiment.

Fig. 1b shows the performance of the three different methods.
This result shows that the proposed node varying approach should be
considered in harsher settings. When the SNR improves (i.e., the data
matches better the true one) regularization is less needed as it biases
the results. However, likewise in the synthetic dataset, our method
yields a superior performance in low SNR regimes.

6. CONCLUSIONS

In this paper, we proposed a node varying regularizer for reconstruct-
ing graph signals. The method considers a vector of regularizer
parameters where each entry is associated to a specific node. As
such, it generalizes state-of-the-art regularizers which consider the
same scalar parameter for all nodes. To design the regularization
that minimizes the MSE, we develop a minmax approach that tack-
les the dependency issue on the unknown parameter. By levering
results from the first-order Nash equilibrium, we provide a gradient-
descent algorithm to obtain the optimal regularization parameter
vector with convergence guarantees. Numerical results with syn-
thetic and real data corroborate our findings and show the proposed
method outperforms the state-of-the-art methods, especially when the
signal-to-noise ratio is low.
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