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Abstract—We consider direction of arrival (DOA) estimation
from long-term observations in a noisy environment. In such an
environment the noise source might evolve, causing the stationary
models to fail. Therefore a heteroscedastic Gaussian noise model
is introduced where the variance can vary across observations
and sensors. The source amplitudes are assumed independent
zero-mean complex Gaussian distributed with unknown variances
(i.e., source powers), leading to stochastic maximum likelihood
(ML) DOA estimation. The DOAs are estimated from multi-
snapshot array data using sparse Bayesian learning (SBL) where
the noise is estimated across both sensors and snapshots.

Index Terms—Heteroscedastic noise, sparse reconstruction

I. INTRODUCTION

With long observation times, parameters of weak signals can
be estimated in a noisy environment. Most analytic treatments
analyze these cases assuming Gaussian noise with constant
variance. For long observation times the noise process is likely
to change with time leading to an evolving noise variance. This
is called a heteroscedastic Gaussian process. While the noise
variance is a nuisance parameter, it still needs to be estimated
or included in the processing in order to obtain an accurate
estimate of the parameters of the weak signals.

We resolve closely spaced weak sources when the noise
power is varying in space and time. Specifically, we derive
noise variance estimates and demonstrate this for compressive
beamforming [1]–[3] using multiple measurement vectors
(MMV or multiple snapshots). We solve the MMV problem
using sparse Bayesian learning (SBL) [2], [4], [5]. Further
details is in the paper [6] and demonstrated on real data [7].

We base our development on our fast SBL method [4],
[5] which simultaneously estimates noise variances as well as
source powers. For the heteroscedastic noise considered here,
there could potentially be as many unknown variances as the
number of observations. We estimate the unknown variances
using approximate stochastic ML [8], [9] modified to obtain
noise estimates even for a single observation.

Let X = [x1, . . . ,xL] 2 CM⇥L be the complex source
amplitudes, xml = [X]m,l = [xl]m with m 2 {1, · · · ,M} and
l 2 {1, · · · , L}, at M DOAs (e.g., ✓m = �90� + m�1

M
180�)

and L snapshots for a frequency !. We observe narrowband
waves on N sensors for L snapshots Y = [y1, . . . ,yL] 2

CN⇥L. A linear regression model relates the array data Y to
the source amplitudes X as:

Y = AX+N. (1)

The dictionary A=[a1,...,aM ]2CN⇥M contains the array
steering vectors for all hypothetical DOAs as columns, Further,
nl 2 CN is additive zero-mean circularly symmetric complex
Gaussian noise, which is generated from a heteroscedastic
Gaussian process nl ⇠ CN (nl;0,⌃nl). We assume that the
covariance matrix is diagonal and parameterized as:

⌃nl =
NX

n=1

�2
n,l

Jn = diag(�2
1,l, . . . , �

2
N,l

), (2)

where Jn = diag(en) = eneTn with en the nth standard basis
vector. Note that the covariance matrices ⌃nl are varying over
the snapshot index l = 1, . . . , L. The set of all covariance
matrices are ⌃N = {⌃n1 , . . . ,⌃nL}. We consider three cases
for the a priori knowledge on the noise covariance model (2):
I: We assume wide-sense stationarity of the noise in space and
time: �2

n,l
= �2 = const. The model is homoscedastic.

II: We assume wide-sense stationarity of the noise in space
only, i.e., the noise variance for all sensor elements is equal
across the array, �2

n,l
= �2

0,l and it varies over snapshots. The
noise variance is heteroscedastic in time (across snapshots).
III: No additional constraints other than (2). The noise vari-
ance is heteroscedastic across both time and space (sensors
and snapshots.)

We assume M>N and thus (1) is underdetermined. In the
presence of only few stationary sources, the source vector xl

is K-sparse with K⌧M . We define the lth active set Ml =
{m 2 N|xml 6= 0}, and assume Ml=M={m1,...,mK} is
constant across all snapshots l. Also, we define AM2CN⇥K

which contains only the K “active” columns of A.
We assume that the complex source amplitudes xml are in-

dependent both across snapshots and across DOAs and follow
a zero-mean circularly symmetric complex Gaussian distribu-
tion with DOA-dependent variance �m, m = 1, . . . ,M ,

p(xml; �m) =

(
�(xml), for �m = 0

1
⇡�m

e�|xml|2/�m , for �m > 0
, (3)

p(X; �����) =
LY

l=1

MY

m=1

p(xml; �m) =
LY

l=1

CN (xl;0,�), (4)

978-1-7335096-0-2 ©2020 ACES

Authorized licensed use limited to: TU Delft Library. Downloaded on January 04,2021 at 10:02:35 UTC from IEEE Xplore.  Restrictions apply. 



(a) True Noise5
10
15
20

0

0.5

1

1.5

2

2.5

(b) Avg. Noise5
10
15
20

Se
ns

or
 #

(c) Example Noise

10 20 30 40 50
Snapshot #

5
10
15
20

0 5 10 15 20
Sensor #

0  

0.5

1  

1.5

st
d.

 d
ev

.

(d)
True Estimated

Fig. 1. Single source at DOA �3�, array SNR = 0 dB, noise standard
deviation statistics: (a) true noise parameters, (b) average estimated noise
parameters from SBL (100 simulations), (c) a typical SBL estimate, and (d)
average across simulations and snapshots.

i.e., the source vector xl at each snapshot l2{1,···,L} is mul-
tivariate Gaussian with potentially singular covariance matrix,

� = diag(�����) = E[xlx
H

l
; �����], (5)

as rank(�)=card(M)=KM (typically K ⌧ M ). Note that
the diagonal elements of �, i.e., ������0, represent source powers.
When the variance �m=0, then xml=0 with probability 1.
This likelihood function is identical to the Type II likelihood
function (evidence) in standard SBL [2], [4] which is obtained
by treating ����� as a hyperparameter. The estimates �̂���� and b⌃N

are obtained by maximizing the likelihood,

(�̂����, ⌃̂N) = argmax
��0, ⌃N

log p(Y; �����, ⌃N). (6)

The goal is thus to solve (6) and the active DOAs M is where
�̂����> 0. The SBL algorithm solves (6) by iterating between
the source power estimates �̂���� derived in this section and the
noise variance estimates ⌃̂N. Assuming �old

m
and ⌃yl given

(from previous iterations) we obtain the following fixed point
iteration for the �m [4] (b = 0.5 ):

�new
m

= �old
m

 P
L

l=1 |yH

l
⌃�1

yl
a
m
|2

P
L

l=1 a
H
m
⌃�1

yl am

!b

. (7)

II. EXAMPLE

An example statistic of the heteroscedastic noise standard
deviation is shown in Fig. 1 for a 20 element array with a
single source. The standard deviation for each sensor is either
0 or

p
2 (Fig. 1a). The estimates of the standard deviation

are in Figs. 1b, 1c). Average of estimated noise (Fig. 1b)
resembles well the true noise (Fig. 1a) whereas the sample
standard deviation estimate (Fig. 1c) has high variability—
each estimate is based on just one observation. Given many
simulations and snapshots, however, the mean of the estimated
standard deviation is close to the true noise (Fig. 1d). Three
noise cases are simulated: (a) Noise Case I: constant noise
standard deviation over snapshots and sensors, (b) Noise Case
II: standard deviation changes across snapshots with log10�l⇠
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Fig. 2. RMSE vs. SNR with the three sources at {�3�, 2�, 50�} and power
{10, 22, 20} dB.

U(�1,1), and (c) Noise Case III: standard deviation changes
across both snapshots and sensors with log10�n,l⇠U(�1,1).

In Fig. 2, we consider three sources located at [�3, 2, 50]�

with power [10, 22, 20] dB. The complex source amplitude
is stochastic and there is additive heteroscedastic Gaussian
noise with SNR variation from �35 to 10 dB. The N=20
elements sensor array with half-wavelength spacing observe
L=50 snapshots. The angle space grid [�90 : 0.5 : 90]�

(M=360). The single-snapshot array signal-to-noise ratio
(SNR) is SNR=10log10[E

�
kAxlk22

 
/E
�
knlk22

 
]. The root

mean squared error (RMSE) of the DOA estimates over 100
noise realizations is used for evaluating the algorithms.

The simulation shows that for Noise Case III (Fig. 2c) best
results are obtained when estimating the full noise covariance
matrix (green line, SBL3). Thus, the simulation demonstrates
that estimating the noise carefully gives improved DOA esti-
mation at low SNR.
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