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Convolutional Neural Network Architectures for
Signals Supported on Graphs

Fernando Gama , Antonio G. Marques , Geert Leus , and Alejandro Ribeiro

Abstract—Two architectures that generalize convolutional neu-
ral networks (CNNs) for the processing of signals supported on
graphs are introduced. We start with the selection graph neural
network (GNN), which replaces linear time invariant filters with
linear shift invariant graph filters to generate convolutional fea-
tures and reinterprets pooling as a possibly nonlinear subsampling
stage where nearby nodes pool their information in a set of pre-
selected sample nodes. A key component of the architecture is to
remember the position of sampled nodes to permit computation of
convolutional features at deeper layers. The second architecture,
dubbed aggregation GNN, diffuses the signal through the graph
and stores the sequence of diffused components observed by a des-
ignated node. This procedure effectively aggregates all components
into a stream of information having temporal structure to which
the convolution and pooling stages of regular CNNs can be applied.
A multinode version of aggregation GNNs is further introduced for
operation in large-scale graphs. An important property of selec-
tion and aggregation GNNs is that they reduce to conventional
CNNs when particularized to time signals reinterpreted as graph
signals in a circulant graph. Comparative numerical analyses are
performed in a source localization application over synthetic and
real-world networks. Performance is also evaluated for an author-
ship attribution problem and text category classification. Multin-
ode aggregation GNNs are consistently the best-performing GNN
architecture.

Index Terms—Deep learning, convolutional neural networks,
graph signal processing, graph filters, pooling.

I. INTRODUCTION

W E CONSIDER signals with irregular structure and de-
scribe their underlying topology with a graph whose

edge weights capture a notion of expected similarity or proxim-
ity between signal components expressed at nodes [1]–[4]. Of
particular importance in this paper is the interpretation of matrix
representations of the graph as shift operators that can be applied
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to graph signals. Shift operators represent local (one-hop neigh-
borhood) operations on the graph, and allow for different gen-
eralizations of convolution, sampling and reconstruction. These
generalizations stem either from representations of graph filters
as polynomials in the shift operator [1], [5], [6] or from the
aggregation of sequences generated through successive applica-
tion of the shift operator [7]. They not only capture the intuitive
idea of convolution, sampling and reconstruction as local opera-
tions but also share some other interesting theoretical properties
[1], [2], [5]. Our goal here is to build on these definitions to
generalize Convolutional (C) neural networks (NNs) to graph
signals.

CNNs consist of layers that are sequentially composed,
each of which is itself the composition of convolution and
pooling operations (Section II and Fig. 1). The input to a
layer is a multichannel signal composed of features extracted
from the previous layer, or the input signal itself at the first
layer. The main step in the convolution stage is the process-
ing of each feature with a bank of linear time invariant filters
(Section II-A). To keep complexity under control and avoid
the number of intermediate features growing exponentially,
the outputs of some filters are merged via simple pointwise
summations. In the pooling stage we begin by computing lo-
cal summaries in which feature components are replaced with
a summary of their values at nearby points (Section II-B). These
summaries can be linear, e.g., a weighted average of adjacent
components, or nonlinear, e.g., the maximum value among ad-
jacent components. Pooling also involves a subsampling of the
summarized outputs. This subsampling reduces dimensional-
ity with a (small) loss of information because the summarizing
function is a low-pass operation. The output of the layer is fi-
nally obtained by application of a pointwise nonlinear activation
function to produce features that become an input to the next
layer. This is an architecture that is both simple to implement
[8], and simple to train [9]. Most importantly, their performance
in regression and classification is remarkable to the extent that
CNNs have become the standard tool in machine learning to
handle such inference tasks [10]–[12].

As it follows from the above description, a CNN layer in-
volves five operations: (i) Convolution with linear time invariant
filters. (ii) Summation of different features. (iii) Computation of
local summaries. (iv) Subsampling. (v) Activation with a point-
wise nonlinearity. A graph (G)NN is an architecture adapted to
graph signals that generalizes these five operations. Operations
(ii) and (v) are pointwise, therefore independent of the underly-
ing topology, so that they can be applied without modification to
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Fig. 1. Convolutional neural networks. (a) Consider the input to be a discrete time signal, represented by a succession of signal values. (b) Convolve this signal
with a filter to obtain corresponding features [cf. (2)]. The color disks centered at each node symbolize the convolution operation. (c) Apply pooling [cf. (4)]. The
color disks symbolize the reach of the pooling operation (the number of samples that are pooled together). (d) Downsample to obtain a discrete time signal of
smaller size [cf. (5)]. (e)–(i) Repeat the application of convolution and pooling, trading off the temporal dimension for more features.

graph signals. Generalizing (iii) is ready because the notion of
adjacent components is well defined by graph neighborhoods.
Generalization of operation (i) is not difficult in the context of
graph signal processing advances whereby linear time invariant
filters are particular cases of linear shift invariant graph filters.
This has motivated the definition of graph (G) NNs with con-
volutional features computed from shift invariant graph filters,
an idea that was first introduced in [13] and further explored
in [14]–[19]. Architectures based on receptive fields, which are
different but conceptually similar to graph filters, have also been
proposed [20]–[22]. However, generalization of operation (iv)
has proven more challenging because once the signal is down-
sampled, it is not easy to identify a coarsened graph to connect
the components of the subsampled signal. The use of multiscale
hierarchical clustering has been proposed to produce a collec-
tion of smaller graphs [13], [14], [16] but it is not clear which
clustering or coarsening criteria is appropriate for GNN archi-
tectures. The difficulty of designing and implementing proper
pooling is highlighted by the fact that several works exclude the
pooling stage altogether [17], [20], [21], [23].

In this paper we propose two different GNN architectures, se-
lection GNNs and aggregation GNNs, that include convolutional
and pooling stages but bypass the need to create a coarsened
graph. In selection GNNs (Section III and Fig. 2) we replace
convolutions with linear shift invariant filters and replace reg-
ular sampling with graph selection sampling. In the first layer
of the selection GNN, linear shift invariant filters are well de-
fined as polynomials on the given graph. At the first pooling
stage, however, we sample a smaller number of signal compo-
nents and face the challenge of computing a graph to describe
the topology of the subsampled signal. Our proposed strategy is
to bypass the computation of a coarsened graph by using zero
padding (Section III-A). This simple technique permits compu-
tation of features that are convolutional on the input graph. The
pooling stage is modified to aggregate information in multihop
neighborhoods as determined by the structure of the original
graph and the sparsity of the subsampled signal (Section III-B).

In aggregation GNNs we borrow ideas from aggregation sam-
pling [7] to create a signal with temporal structure that incor-
porates the topology of the graph (Section IV and Fig. 3). This
can be accomplished by focusing on a designated node and
considering the local sequence that is generated by subsequent
applications of the graph shift operator. This is a signal with a
temporal structure because it reflects the propagation of a dif-
fusion process. Yet, it also captures the topology of the graph
because subsequent components correspond to the aggregation

of information in nested neighborhoods of increasing reach.
Aggregation GNNs apply a regular CNN to the diffusion signal
observed at the designated node.

We finally introduce a multinode version of aggregation
GNNs, where several regular CNNs are run at several desig-
nated nodes (Section IV-A and Fig. 4). The resulting CNN out-
puts are diffused in the input graph to generate another sequence
with temporal structure at a smaller subset of nodes to which
regular CNNs are applied in turn. We can think of multinode
aggregation GNNs as composed of inner and outer layers. Inner
layers are regular CNN layers. Output layers stack CNNs joined
together by a linear diffusion process. Multinode aggregation
GNNs are consistently the best performing GNN architecture
(Section V). We remark that aggregation GNNs, as well as se-
lection GNNs are proper generalizations of conventional CNNs
because they both reduce to a CNN architecture when particu-
larized to a cyclic graph.

The proposed architectures are applied to the problems of
localizing the source of a diffusion process on synthetic net-
works (Section V-A) as well as on real-world social networks
(Section V-B). Performance is additionally evaluated on prob-
lems of authorship attribution (Section V-C) and classification
of articles of the 20NEWS dataset (Section V-D), involving real
datasets. Results are compared to those obtained from a graph
coarsening architecture using a multiscale hierarchical cluster-
ing scheme [16]. The results are encouraging and show that the
multinode approach consistently outperforms the other archi-
tectures.

Notation: The n-th component of a vector x is denoted as
[x]n . The (m,n) entry of a matrix X is [X]mn . The vector x :=
[x1 ; . . . ;xn ] is a column vector stacking the column vectors
xn . When n denotes a set of subindices, |n| is the number of
elements in n and [x]n denotes the column vector formed by
the elements of x whose subindices are in n. The vector 1 is the
all-ones vector.

II. CONVOLUTIONAL NEURAL NETWORKS

Given a training set T := {(x,y)} formed by inputs x and
their associated outputs y, a learning algorithm produces a
representation (mapping) that can estimate the output ŷ that
should be assigned to an input x̂ /∈ T . NNs produce a represen-
tation using a stacked layered architecture in which each layer
composes a linear transformation with a pointwise nonlinearity
[24]. Formally, the first layer of the architecture begins with
a linear transformation to produce the intermediate output
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Fig. 2. Selection graph neural networks. Consider the input to be a signal supported by a known N -node graph. First, convolutional features are obtained by
means of graph filtering in the original graph [cf. (8)]. The color disks in the second column illustrate the convolution operation on each node. Then, a subset of N1
nodes is selected, and summarizing function ρ1 and pointwise nonlinearity σ1 are applied to the neighborhood n1 for each of these nodes, obtaining the output
xf

1 for the first layer. The color disks in the third column show the reach of the pooling operation, the size of the neighborhood being pooled (in the first row,
the disks include only the one-hop neighborhood; also, only a few disks are shown so as not to clutter the illustration). In order to obtain convolutional features
for following layers, we zero pad the signal to fit the original graph [cf. (9)] so as to apply a graph filter and then resample the output at the same set of nodes
[cf. (11)–(13)]. Then, a new smaller subset of nodes is selected, and the summarizing function and pointwise nonlinearity are applied to a neighborhood of these
nodes [cf. (15)]. This process is repeated while selecting fewer and fewer nodes.

u1 := A1x0 = A1 x̂ followed by a pointwise nonlinearity to
produce the first layer output x1 := σ1(u1) = σ1(A1x0). This
procedure is applied recursively so that at the �th layer we
compute the transformation

x� := σ�(u�) := σ�(A�x�−1). (1)

In an architecture with L layers, the input x̂ = x0 is fed to the
first layer and the output ŷ = xL is read from the last layer
[25]. Elements of the training set T are used to find matrices A�

that optimize a training cost of the form
∑

(x,y)∈T f(y,xL ),
where f(y,xL ) is a fitting metric that assess the difference
between the NN’s output xL produced by input x and the
desired output y stored in the training set. Computation of
the optimal NN coefficients A� is typically carried out by
stochastic gradient descent, which can be efficiently computed
using the backpropagation algorithm [9].

The NN architecture in (1) is a multilayer perceptron com-
posed of fully connected layers [25]. If we denote as M� the
number of entries of the output of layer �, the matrix A� contains
M� × M�−1 components. This, likely extremely, large number
of parameters not only makes training challenging but empir-
ical evidence suggests that it leads to overfitting [26]. CNNs
resolve this problem with the introduction of two operations:
Convolution and pooling.

A. Convolutional Features

To describe the creation of convolutional features write the
output of the (� − 1)st layer as x�−1 := [x1

�−1 ; . . . ;x
F�−1
�−1 ]. This

decomposes the M�−1-dimensional output of the (� − 1)st layer
as a stacking of F�−1 features of dimension N�−1 . This col-
lection of features is the input to the �th layer. Likewise, the
intermediate output u� can be written as a collection of F� fea-
tures u� := [u1

� ; . . . ;u
F�

� ] where uf
� is of length N�−1 and is
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Fig. 3. Aggregation graph neural networks. Select a node p ∈ V and perform successive local exchanges with its neighbors. For each k-hop neighborhood
(illustrated by the increasing disks in the first row), record Sk xg at node p and build signal zg

p which exhibits a regular structure [cf. (19)]. Once a regular
time-structure signal is obtained, we proceed to apply regular convolution and pooling to process the data [cf. (2)–(5)].

obtained through convolution and linear aggregation of features
xg

�−1 of the previous layer, g = 1, . . . , F�−1 . Specifically, let

hf g
� := [[hf g

� ]0 ; . . . ; [h
f g
� ]K� −1 ] be the coefficients of a K�-tap

linear time invariant filter that is used to process the gth fea-
ture of the (� − 1)st layer to produce the intermediate feature
uf g

� at layer �. Since the filter is defined by a convolution, the
components of uf g

� are explicitly given by

[
uf g

�

]

n
:=

[
hf g

� ∗ xg
�−1

]

n
=

K� −1∑

k=0

[
hf g

�

]

k

[
xg

�−1

]
n−k

, (2)

where we consider that: i) the output has the same size than
the input and ii) the convolution (2) is circular to account for
border effects. After evaluating the convolutions in (2), the �th
layer features uf

� are computed by aggregating the intermediate
features uf g

� associated with each of the previous layer features
xg

�−1 using a simple summation,

uf
� :=

F�−1∑

g=1

uf g
� =

F�−1∑

g=1

hf g
� ∗ xg

�−1 . (3)

The vector u� := [u1
� ; . . . ;u

F�

� ] obtained from (2) and (3) rep-
resents the output of the linear operation of the �th layer of
the CNN [cf. (1)]. Although not explicitly required, the num-
ber of features F� and the number of filter taps K� are typically
much smaller than the dimensionality M�−1 of the features x�−1
that are processed by the �th layer. This reduces the number of

learnable parameters from M� × M�−1 in (1) to K� × F� ×
F�−1 simplifying training and reducing overfitting.

B. Pooling

The features uf g
� in (2) and their consolidated counterparts

uf
� in (3) have N�−1 components. This number of components is

reduced to N� at the pooling stage in which the values of a group
of neighboring elements are aggregated to a single scalar using
a possibly nonlinear summarization function ρ� . To codify the
locality of ρ� , we define, with a slight abuse of notation, n� as
a vector containing the indexes associated with index n – e.g.,
use n� = [n − 1;n;n + 1] to group adjacent components – and
define the signal vf

� with components

[
vf

�

]

n
= ρ�

([
uf

�

]

n�

)

. (4)

The summarization function ρ� in (4) acts as a low-pass
operation and the most common choices are the maximum
ρ�([u

f
� ]n�

) = max([uf
� ]n�

) and the average ρ�([u
f
� ]n�

) = 1T

[uf
� ]n�

/|n� | [27].
To complete the pooling stage we follow (4) with a downsam-

pling operation. For that matter, we define the sampling matrix
C� as a fat binary matrix with N�−1 columns and N� rows,
which are selected from the rows of the identity matrix. When
the sampling matrix C� is regular, the nonzero entries follow
the pattern [C� ]mn = 1 if n can be written as n = (N�−1/N�)m
and zero otherwise; hence, the product C�v

f
� selects one out of
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Fig. 4. Multinode aggregation graph neural networks. Start by selecting a subset P1 ⊂ V of P1 nodes of the graph (row 1, diagram 1). Then, proceed to perform
Q1 local exchanges with neighbors (row 1, diagrams 2, 3, and 4) in order to build P1 regular time-structure signals, one at each node (row 2), see (22). We note that
in row 1, the color disks illustrate the reach of the Q1 local exchanges of each of the selected nodes P1 . Once the regular structured signals have been constructed
on each of the P1 nodes, proceed with a regular CNN, applying regular convolution (row 3), and regular pooling (row 4), until FL 1 features are obtained at each
node (row 5), see (2)–(5), (23). Now, we view each feature as a graph signal being supported on the selected nodes, see (24), zero-padded to fit the graph (row
6, diagram 1), see (25). We then select a smaller subset P2 ⊆ P1 of P2 ≤ P1 nodes (row 2, diagram 2) and carry out Q2 local exchanges with the neighbors,
(row 2, diagrams 2, 3 and 4), illustrated with color disks in the last row. These neighbor exchanges create new regular structured signals at each of the P2 nodes,
see cf. (26). Then, we continue by computing FL 2 regional features at each node by means of regular CNNs and so on.

every (N�−1/N�) components of vf
� . Downsampling is com-

posed with a pointwise nonlinearity to produce the �th layer
features

xf
� = σ�

(
C�v

f
�

)
. (5)

The compression or downsampling factor (N�−1/N�) is often
matched to the local summarization function ρ� so that the set
n� contains (N�−1/N�) adjacent indexes. We further note that
although we defined (4) for all n, in practice, we only compute
the components of vf

� that are to be selected by the sampling
matrix C� . In fact, it is customary to combine (4) and (5) to
simply write [xf

� ]n = σl(ρ�([u
f
� ]n�

) for n in the selection set.
Separating the nonlinearity in (4) from the downsampling op-
eration in (5) is convenient to elucidate pooling strategies for
signals on graphs.

Equations (2)–(5) complete the specification of the CNN
architecture. We begin at each layer with the input x�−1 :=
[x1

�−1 ; . . . ;x
F�−1
�−1 ]. Features are fed to parallel convolutional

channels to produce the features uf g
� in (2) and consolidated

into the features uf
� in (3). These features are fed to the

local summarization function ρ� to produce features vf
� [cf. (4)]

which are then downsampled and processed by the pointwise
activation nonlinearity σ� to produce the features xf

� [cf. (5)].
The output of the �th layer is the vector x� := [x1

� ; . . . ;x
F�

� ] that
groups the features in (5). We point out for completeness that
the Lth layer is often a fully connected layer in the mold of (1)
that does not abide to the convolutional and pooling paradigm
of (2)–(5). Thus, the Lth layer produces an arbitrary (non con-
volutional) linear combination of FL−1 features to produce the
final FL scalar features xL . The output of this readout layer
provides the estimate ŷ = xL that is associated with the input
x̂ = x0 fed to the first layer.

C. Signals on Graphs

There is overwhelming empirical evidence that CNNs are
superb representations of signals defined in regular domains
such as time series and images [10]. Our goal in this paper is
to contribute to the extension of these architectures to signals
supported in irregular domains described by arbitrary graphs.
Consider then a weighted graph with N nodes, edge set E and
weight function W : E → R. We endow the graph with a shift
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operator S, which is an N × N square matrix having the same
sparsity pattern of the graph; i.e., we can have [S]mn �= 0 if and
only if (n,m) ∈ E or m = n. The shift operator is a stand in for
one of the matrix representations of the graph. Commonly used
shift operators include the adjacency matrix A with nonzero
elements [A]mn = W(n,m) for all (n,m) ∈ E , the Laplacian
L := diag(A1) − A and their normalized counterparts Ā and
L̄ [3].

Consider the signal x = [x1 ; . . . ;xF ] formed by F feature
vectors xf with N components each. The feature vector xf is
said to be a graph signal when each of its N components is
assigned to a different vertex of the graph. The graph describes
the underlying support of the data xf (hence, of x) by using the
weights W to encode arbitrary pairwise relationships between
data elements. The graph shift enables processing of the graph
signal xf because it defines a local linear operation that can
be applied to graph signals. Indeed, if we consider the signal
yf := Sxf it follows from the sparsity of S that the nth element
of yf depends on the elements of xf associated with neighbors
of the node n,

[
yf

]
n

=
∑

m :(m,n)∈E
[S]nm [xf ]m . (6)

It is instructive to consider the cyclic graph adjacency matrix
Adc, with nonzero elements [Adc]1+n mod N,n = 1. Since the
cyclic graph describes the structure of discrete (periodic) time,
we can say that a discrete time signal x is a graph signal defined
on the cyclic graph. When particularized to S = Adc, (6) yields
yf

1+n mod N = xf
n implying that yf is a circularly time shifted

copy of xf . This motivates interpretation of S as the general-
ization of time shifts to signals supported in the corresponding
graph [1].

Enabling CNNs to process data modeled as graph signals
entails extending the operations of convolution and pooling to
handle the irregular nature of the underlying support. Convolu-
tion [cf. (2)] can be readily replaced by the use of linear, shift in-
variant graph filters [cf. (7)]. The summarizing function [cf. (4)]
can also be readily extended by using the notion of neighbor-
hood defined by the underlying graph support. The pointwise
nonlinearity can be kept unmodified [cf. (5)], but there are two
general downsampling strategies for graph signals: selection
sampling [28] and aggregation sampling [7]. Inspired by these,
we propose two architectures: selection GNNs (Section III) and
aggregation (Section IV) GNNs.

Remark 1: Although our current theoretical understanding
of CNNs is limited, empirical evidence suggests that convolu-
tion and pooling work in tandem to act as feature extractors
at different levels of resolution. At each layer, the convolution
operation linearly relates up to K� nearby values of each input
feature. Since the same filter taps are used to process the whole
signal, the convolution finds patterns that, albeit local, are irre-
spective of the specific location of the pattern in the signal. The
use of several features allows collection of different patterns
through learning of different filters thus yielding a more ex-
pressive operation. The pooling stage summarizes information
into a feature of lower dimensionality. It follows that subse-
quent convolutions operate on summaries of different regions.

As we move into deeper layers we pool summaries of sum-
maries that are progressively growing the region of the signal
that affects a certain feature. The conjectured value of compos-
ing local convolutions with pooling summaries is adopted prima
facie as we seek graph neural architectures that exploit the lo-
cality of the shift operator to generalize convolution and pooling
operations.

III. SELECTION GRAPH NEURAL NETWORKS

Generalizing the first layer of a CNN to signals supported
on graphs is straightforward as it follows directly from the def-
inition of a linear shift invariant filter [5]. Going back to the
definition of convolutional features in (2) we reinterpret the fil-
ters hf g

1 as graph filters that process the features xg
0 through

a graph convolution. This results in intermediate features uf g
1

having components

[
uf g

1

]

n
:=

[
hf g

1 ∗S xg
0

]

n
:=

K 1 −1∑

k=0

[
hf g

1

]

k

[
Skxf

0

]

n
, (7)

where we have used ∗S to denote the graph convolution opera-
tion on S. The summations in equations (2) and (7) are analo-
gous except for the different interpretations of what it means to
shift the input signal xf

0 . In (2), a k-unit shift at index n means
considering [xf

0 ]n−k , the value of the signal xf
0 at time n − k.

In (7), graph shifting at node n entails the operation [Skxf
0 ]n

which composes a multiplication by Sk with the selection of
the resulting value at n. In fact, particularizing (7) to the cyclic
graph by making S = Adc renders (2) and (7) equivalent. From
the perspective of utilizing (7) as an extractor of local (graph)
convolutional features it is important to note that graph convolu-
tions aggregate information through successive local operations
[cf. (6)]. A filter with K1 taps incorporates information at node
n that comes from nodes in its (K1 − 1)-hop neighborhood.

Although we wrote (7) componentwise to emphasize its sim-
ilarity with (2) we can drop the n subindices to write a vector
relationship. For future reference we further define the linear
shift invariant filter Hf g

1 :=
∑K 1 −1

k=0 [hf g
1 ]kSk to write

uf g
1 =

K 1 −1∑

k=0

[
hf g

1

]

k
Skxf

0 := Hf g
1 xf

0 . (8)

The graph filter (8) is a generalization of the Chebyshev filter
in [16]. More precisely, if G is an undirected graph, and we
adopt the normalized Laplacian as the graph shift operator S,
then (8) boils down to a Chebyshev filter. The convolutional
stage in [18] is a Chebyshev filter of K = 2, and thus is also
a special case of (8). We also note that the use of polynomials
on arbitrary graph shift operators for the convolutional stage
has been also proposed in [17], [23]. Asides from replacing the
linear time invariant filter in (2) with the graph shift invariant
filter in (8), the remaining components of the conventional CNN
architecture can remain more or less unchanged. The feature
aggregation in (3) to obtain uf

1 needs no modification as it is
a simple summation independent of the graph structure. The
summarization operator in (4) requires a redefinition of locality.
This is not difficult because it follows from (8) that uf

1 is another
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N -node graph signal that is defined over the same graph S. We
can then use n1 to represent a graph neighborhood of node n and
apply the same summary operator. We point out that n1 need not
be the 1-hop neighborhood of n. The sampling and activation
operation in (5) requires a matrix C1 to sample over the irregular
graph domain. Apart from the challenge of selecting sampling
matrices for graphs–see (16) and [7], [28]–[30] –, this does not
require any further modification to (5). The first row of Fig. 2
shows the operations carried out in this first layer.

The challenge in generalizing CNNs to GNNs arises beyond
the first layer. After implementing the sampling operation in
(5) the signal xf

1 is of lower dimensionality than uf
1 and can

no longer be interpreted as a signal supported on S. In regular
domains this is not a problem because we use the extraneous
geometrical information of the underlying domain to define
convolutions in the space of lower dimensionality. To see this in
terms of graph signals, let us interpret the signal xg

0 defined on
a regular domain as one defined on a cyclic graph with N0 = N
nodes, which is also the same graph that describes uf

1 . Then, if
we consider a downsampling factor of (N1/N0), another cyclic
graph with N1 nodes describes the signal xf

1 . However, when
graph signals are defined in a generic irregular domain, there is
no extraneous information to elucidate the form of the graph that
describes signals beyond the first layer. Resolving mismatched
supports is a well-known problem in signal processing whose
simplest and most widely-used solution is zero padding. The
following sections illustrate how zero padding can be leveraged
to resolve one of the critical challenges in the implementation
of GNNs.

A. Selection Sampling on Graph Convolutional Features

Sampling is an operation that selects components of a signal.
To explain the construction of convolutional features on graphs,
it is more convenient to think of sampling as the selection of
nodes of a graph which we call active nodes. This implies that at
each layer � we place the input features xf

�−1 of dimension N�−1
on top of the active nodes of the graph S. Selection schemes are
further discussed in Section III-C. Doing so requires that we
keep track of the location of the samples. Thus, at each layer �
we consider input features xg

�−1 each with N�−1 components,
and zero padded features x̃g

�−1 each with size N but only N�−1
nonzero components which replicate the values of xg

�−1 . The
indexes of the nonzero components of x̃g

�−1 correspond to the
location of the elements of xg

�−1 in the original graph. It is clear
that we can move from the unpadded to the padded represen-
tation by multiplying with an N × N�−1 tall binary sampling
matrix DT

�−1 . Indeed, if we let [D�−1 ]mn = 1 represent the mth
component of the unpadded feature, [xg

�−1 ]m , is located in the
nth node of the graph, we can write the padded feature as

x̃g
�−1 = DT

�−1x
g
�−1 . (9)

The advantage of keeping track of the padded signal is that
convolutional features can be readily obtained by operating in
the original graph. Given the notion of graph convolution in (8)
and (re-)defining hf g

� to be the graph filter coefficients at layer

� we can define intermediate features as [cf. (2)]

ũf g
� :=

K� −1∑

k=0

[
hf g

�

]

k
Sk x̃g

�−1 . (10)

Although a technical solution to the construction of con-
volutional features, (10) does not exploit the computational
advantages of sampling. These can be recovered by selecting
components of ũf g

� at the same set of nodes that support xg
�−1 .

We then define uf g
� := D�−1 ũ

f g
� . If we further use (9) to sub-

stitute x̃g
�−1 into the definition of the convolutional features in

(10), we can write

uf g
� := D�−1 ũ

f g
� = D�−1

K� −1∑

k=0

[
hf g

�

]

k
Sk DT

�−1 xg
�−1 . (11)

If we further define reduced dimensionality k-shift matrices

S(k)
� := D�−1 Sk DT

�−1 , (12)

and reorder and regroup terms in (11) we can reduce the defini-
tion of convolutional features to

uf g
� =

K� −1∑

k=0

[
hf g

�

]

k
S(k)

� xg
�−1 = Hf g

� xg
�−1 , (13)

where we have also defined the subsampled linear shift invari-
ant filter Hf g

� :=
∑K� −1

k=0 [hf g
� ]kS

(k)
� . Implementing (11) entails

repeated application of the shift operator to the padded signal,
which can be carried out with low cost if the original input
graph is sparse. In (13), the filter Hf g

� takes advantage of sam-
pling to operate directly on a space of lower dimension N�−1 .
The matrices S(k)

� can be computed beforehand because they
depend on the graph shift operator and the sampling matrices
only. We emphasize that, save for subsampling, (13) and (11) are
equivalent and that, therefore, the features uf g

� generated by the
subsampled filter Hf g

� are convolutional relative to the original
graph (shift) S. The middle image in Fig. 2 shows zero pad of
input signal, convolution in the original graph, and resampling
of the filter output.

Features uf
� can be obtained from features uf g

� using the
same linear aggregation operation in (3) which does not require
adaptation to the structure of the graph,

uf
� =

F�−1∑

g=1

Hf g
� xg

�−1 . (14)

This completes the construction of convolutional features and
leads to the pooling stage we describe next.

B. Selection Sampling and Pooling

The pooling stage requires that we redefine the summary and
sampling operations in (4) and (5). Generalizing the summary
operation requires redefining the aggregation neighborhood. In
the first layer, this can be readily accomplished by selecting
the α1-hop neighborhood of each node for some given α1 that
defines the reach of the summary operation. This information is
actually contained in the powers of the shift operator. The 1-hop
neighborhood of n is the set of nodes m such that [S]nm �= 0, the
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2-hop neighborhood is the union of this set with those nodes m
with [S2 ]nm �= 0 and so on. In the case of the sampled features
the graph neighborhoods need to be intersected with the set of
active nodes. This intersection is already captured by the k-shift
matrices S(k)

� [cf. (12)]. Thus, at layer � we introduce an integer
α� to specify the reach of the summary operator and define the
α�-hop neighborhood of n as

n� =
[
m :

[
S(k)

�

]

nm
�= 0, for some k ≤ α�

]
. (15)

Summary features [vf
� ]n at node n are computed from (4) using

the graph neighborhoods in (15). These neighborhoods follow
the node proximity encoded by S, see third column of Fig. 2.

To formally explain the downsampling operation in (5) in the
context of graph signals, begin by defining sampling matrices
adapted to irregular domains. This can be easily defined at the
�th layer if we let the sampling matrix C� be a fat matrix with
N� rows and N�−1 columns with the properties

[C� ]mn ∈ {0, 1}, C�1 = 1, CT
� 1 ≤ 1. (16)

When [C� ]mn = 1 it means that the nth component of vf
� is se-

lected in the product C�v
f
� and stored as the mth component of

the output. The properties in (16) ensure that exactly N� compo-
nents of vf

� are selected and that no component is selected more
than once. They do not, however, enforce a regular sampling
pattern. We further define the nested sampling matrix D� as the
product of all sampling matrices applied up until layer �

D� = C�C�−1 . . .C1 =
�∏

� ′=1

C� ′ . (17)

Matrix D� keeps track of the location of the selected nodes in
the original graph, for each layer �, and is thus used for the zero
padding operation in (11).

Each layer of the selection GNN architecture is determined by
(13)–(14) for the convolution operation and (4)–(5) for pooling
and nonlinearity. To summarize, the input to layer � is x�−1
comprised of F�−1 features xf

�−1 located at a subset of nodes
given by D�−1 . Then, we use the reduced dimensionality k-shift
matrices (12) to process xf

�−1 using a graph filter as in (13), and

obtain aggregated features uf
� (14). A neighborhood n� for each

element of uf is determined by (15) for some α� and the output
vf

� of the summarizing function ρ� is computed as in (4). Finally,
following (5), a smaller subset of nodes is selected by means
of C� and the pointwise nonlinearity σ� is applied to obtain the
�th output features xf

� , for f = 1, . . . , F� . See Algorithm 1 for
details.

Remark 2: The selection GNN architecture recovers a con-
ventional CNN when particularized to graph signals described
by a cyclic graph (conventional discrete time signals). To see
this, let S = Adc for a graph of size N , and let C�−1 be the
sampling matrix that takes N�−1 equally spaced samples out of
the previous N�−2 samples, for every �. Then, the nested sam-
pling matrix D�−1 becomes a sampling matrix that takes N�−1
equally spaced samples out of the N original ones. This implies
that S(k)

� = D�−1Ak
dcD

T
�−1 becomes either the kth power of the

adjacency matrix of a cyclic graph with N�−1 nodes for k a mul-
tiple of N/N�−1 , or the all-zero matrix otherwise. This results

Algorithm 1: Selection Graph Neural Network.

Input: {x̂}: testing dataset, T : training dataset
S: graph shift operator, L: Number of layers,
{F�}: number of features, {K�}: degree of filters
{ρ�}: neighborhood summarizing function
selection: selection sampling method
{N�}: number of nodes on each layer
{σ�}: pointwise nonlinearity

Output: {ŷ}: estimates of {x̂}
1: procedure SELECTION_GNN({x̂}, T , S, L,

{F�}, {K�}, {ρ�}, selection, {N�}, {σ�})
� Create architecture:

2: for � = 1 : L − 1 do
3: Compute D�−1 = C�−1D�−2 �See (17)
4: Compute S(k)

� for k = 0, . . . ,K� − 1 �See (12)
5: Create [hf g

� ]k , f = 1, . . . , F� , g = 1, . . . , F�−1

6: Compute filters Hf g
� =

∑K�−1
k=0 [hf g

� ]kS
(k)
�

7: Aggregate filtered features
∑F�−1

g=1 (Hf g
� ·)

8: Apply summarizing function ρ�(·)
9: Select N� nodes following method selection

C� = selection(N�,C�−1)

10: Downsample output of summarizing function
C�ρ�

11: Apply pointwise nonlinearity σ�(·)
12: end for
13: Create fully connected layer AL ·

� Train:
14: Learn {[hf g

� ]k} and AL from T
� Evaluate:

15: Obtain ŷ applying GNN on x̂ with learned
coefficients

16: end procedure

in convolutional features obtained by (13) being equivalent to
those obtained by (2). Likewise, making α� = N�−1/N� for all
� leads to regular pooling and downsampling. This shows that
the selection GNN does indeed boil down to the conventional
CNN for discrete time signals.

Remark 3: The dimension N� is being effectively reduced
without the need to use a complex multiscale hierarchical clus-
tering algorithm. More specifically, in each layer, only a new
set of nodes is used, but there is no need to recompute edges
between these nodes or new weight functions, since the under-
lying graph on which the operations are actually carried out is
the same graph support as the initial input data x. This, not
only avoids the computational cost of obtaining multiscale hi-
erarchical clusters, but also avoids the need to assess when such
clustering scheme is adequate.

C. Practical Considerations

Selection of nodes: There is a vast GSP literature on sam-
pling by selecting nodes, see, e.g., [28]–[32]. In this paper, we
consider that any one of these methods is adopted throughout
the Selection GNN, and at each layer � matrix C� is determined
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by following the chosen method. On each layer � the subset
of nodes selected by C� is always a subset of the nodes cho-
sen in the previous layer. This implies that N� ≤ N�−1 and that
C�C�−1 never yields the zero matrix. In particular, in Section V,
we adopt the methods proposed in [29] and [32] to study their
impact on the overall performance of the Selection GNN.

Locality of filtering: The graph convolution remains a local
operation with respect to the original input graph. Since each
convolutional feature is zero padded to fit the graph, the imple-
mentation of the graph filter at each layer can be carried out
by means of local exchanges in the original support. This can
be a good computational option if the original input graph is
sparse, and therefore repeatedly applying the graph shift opera-
tor exploits this sparsity. This turns out to be particularly useful
when such a support represents a physical network with physical
connections.

Centralized computing: When regarding the selection pool-
ing architecture as a whole, being executed from a single cen-
tralized unit (i.e., when local connectivity is not important for
computation purposes, for example, in the training phase), it
is observed that the computational cost of carrying out convo-
lutions (13) is reduced to matrix multiplication in the smaller
N�-dimensional space. It is noted that the reduced dimension-
ality k-shift matrices (12) can be obtained before the training
phase, and also, that the statistical properties of learning the
filter taps are not affected by it. This observation, coupled with
the previous one, shows that the selection pooling architecture
adequately addresses the global vs. local duality by efficiently
computing convolutions in both settings.

Computation of nonlinearities: From an implementation
perspective, it is observed that, while the local summarizing
function ρ� involves the neighborhood of the N�−1 nodes (which
are more than the N� nodes that are kept in layer �), this function
only has to be computed for those N� nodes that are left after
downsampling. That is, it is not needed to compute ρ� at each
one of the N�−1 nodes, but only at the N� nodes that are actually
kept after downsampling. In this sense, this nonlinear operation
can be subsumed with the pointwise nonlinearity σ� that is ap-
plied to the N� nodes. To further illustrate this point, suppose
that max-pooling is used and that the corresponding pointwise
nonlinearity is a ReLU, σ�(x) = max{0, x}. Then, both op-
erations can be performed simultaneously at node n by doing
max{0, {xm : (m,n) ∈ n�}}, where n� denotes the paths in
the neighborhood, and where this operation is computed only
for nodes n that are part of the N� ≤ N�−1 selected nodes.

Regularization of filter taps: As the Selection GNN grows in
depth (more layers), the number of filter taps in the convolution
stage might increase, in order to access information located at
further away neighbors (this happens if the few selected nodes at
some deeper layer are far away from each other, as measured by
the number of neighborhood exchanges). It is a good idea, then,
to structure the filter coefficients hf g

� in these deeper layers.
More specifically, filtering with N taps might be necessary, so
it makes sense to choose [hf g

� ]k constant for a range of k, since
no new substantial information is going to be included for a
wide range of those k. This reduces the number of trainable
parameters and consequently overfitting.

Definition of neighborhoods: Information from the weight
function W of the graph can be included in the pooling stage
(15). More precisely, instead of defining the neighborhood only
looking at the edge set E , that is [S(k)

� ]nm �= 0, we can make

[S(k)
� ]nm ≥ δ so that we summarize only across edges stronger

than δ.
Frequency interpretation of convolutional features: One

advantage of having convolutional features defined always on
the same graph G at every layer � is that these can be easily
analyzed from a frequency perspective. Since the graph Fourier
transform of a signal depends on the eigenvectors V of the
graph shift operator [2], and since the same S = VΛV−1 is
used to define all convolutional features [cf. (11)], then they all
share the same frequency basis, allowing for a comprehensive
frequency analysis at all layers. In particular, if we focus on
normal matrix GSOs, i.e., V−1 = VH, the zero-padding aliasing
effect is evidenced in the fact that VHDTDV need not be the
identity matrix for arbitrary eigenvectors V and downsampling
matrices D, altering the frequency content of the input signal to
a filter. However, the filter taps are learned from the training set,
taking into account this aliasing effect, and therefore are able to
cope with it, extracting useful features.

Computational cost: The number of computations at each
layer is given by the cost of the convolution operation, which is
O(|E|K�F�F�−1) if (11) is used, or O(N 2

�−1K�F�F�−1) if (13)
is used, since pooling and downsampling incur in negligible
cost. We observe that in (13) the cost tends to be dominated by
N 2

�−1 making dimensionality reduction (i.e., pooling) a critical
step for scalability.

Number of parameters: The number of parameters to be
learned at each layer are determined by the length of the filters,
and the number of input and output features and is given by
O(K�F�F�−1) independent of N�−1 .

IV. AGGREGATION GRAPH NEURAL NETWORKS

The selection GNNs of Section III create convolutional fea-
tures adapted to the structure of the graph with linear shift
invariant graph filters. The aggregation GNNs that we describe
here apply the conventional CNN architecture of Section II to
a signal with temporal (regular) structure that is generated to
incorporate the topology of the graph. To create such a tem-
poral arrangement we consider successive applications of the
graph shift operator S to the input graph signal xg (see first row
of Fig. 3). This creates a sequence of N graph shifted signals
yg

0 , . . . ,yg
N −1 . The first signal of the sequence is yg

0 = xg , the
second signal is yg

1 = Sxg , and subsequent members of the se-
quence are recursively obtained as yg

k = Syg
k−1 = Skxg . We

observe that each vector yg
k incorporates the underlying support

by means of multiplication by the graph shift operator S. We ar-
range the sequence of signals yg

k into the matrix representation
of the graph signal xg that we define as

Xg := [yg
0 ,yg

1 , . . . ,yg
N −1 ] := [xg ,Sxg , . . . ,SN −1xg ]. (18)

The matrix Xg is a redundant representation of xg . In fact, for
any connected graph any row of Xg is sufficient to recover xg

as each row contains N linear combinations of xg [7]. We thus
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note that any such row has successfully incorporated the graph
structure included in the powers of the graph shift operator
S, without any loss of information. Our goal here is to work
at a designated node p with the signal zg

p that contains the
components of the diffusion sequence yg

k that are observed at
node p (see second row of Fig. 3). This is simply the pth row of
Xg and leads to the definition

zg
p := [Xg ]Tp =

[
[xg ]p ; [Sxg ]p ; . . . ;

[
SN −1xg

]
p

]
. (19)

The signal zg
p is a local representation at node p that accounts

for the topology of the graph in a temporally structured manner.
Indeed, since the diffusion sequence yg

k is generated from a
temporal diffusion process the components of the sequence zg

p

are elements of a time sequence. Yet, the components of this
time sequence depend on the topology of the graph. The first
element of zg

p is the value of the input signal xg at node p,
which is independent of the graph topology, but the second
element of zg

p aggregates information from values of the input
xg within the neighborhood of p as defined by the nodes that
are connected to node p. The third element of zg

p is an aggregate
of aggregates which results in the aggregation of information
from the 2-hop neighborhood of p. As we move forward in
the sequence zg

p we incorporate information from nodes that are
farther from p as determined by the topology of the graph. In this
way, we have successfully generated a regular structured signal
that effectively incorporates the underlying structure. We note
that two consecutive elements of zg

p indeed relate neighboring
values according to the topology of the graph.

If the signal zg
p is a signal in time, it can be processed with

a regular CNN architecture and this is indeed our definition
of aggregation GNNs. At the first layer � = 1 we take the lo-
cally aggregated signal zg

p as input and produce features uf g
p1 by

convolving with the Kp1-tap filter hf g
p1 [cf. (2)],

[
uf g

p1

]

n
:=

[
hf g

p1 ∗ zg
p

]

n
=

Kp 1 −1∑

k=0

[
hf g

p1

]

k

[
zg

p

]
n−k

, (20)

where we use zero padding to account for border effects and
assume the size of the output is the same as the input. The con-
volution in (20) is the regular time convolution. In fact, except
for minor notational differences to identify the aggregation node
p, (20) is the same as (2) with � = 1. The topology of the graph is
incorporated in (20) not because of the convolution but because
of the way in which we construct zg

p . To emphasize the effect of
the topology of the graph we use (19) to rewrite (20) as

[
uf g

p1

]

n
=

Kp 1 −1∑

k=0

[
hf g

p1

]

k

[
Sn−k−1xg

]
p

(21)

Since the convolution in (21) considers consecutive values of
the signal zg

p , the features uf g
p1 have a structure that is convolu-

tional on the graph S. Each feature element [uf g
p1 ]n is a linear

combination of consecutive Kp1 neighboring values of the input
xg starting with shift Sn−1xg and ending at Sn−Kp 1 −1xg . Al-
ternatively, note that the regular convolution operation linearly
relates consecutive elements of a vector; and since consecutive
elements in vector zg

p reflect nearby neighborhoods according

to the graph, we have effectively related neighboring values
of the graph signal by means of a regular convolution. Thus,
coefficients hf g

p1 encoding low-pass filters further aggregate in-
formation across neighborhoods, while high-pass filters output
features quantifying differences between consecutive neighbor-
hood resolutions. Thus, low-pass time filters applied to zg

p detect
features that are smooth on the graph S, while high-pass time fil-
ters applied to zg

p detect sharp transitions between signal values
between nearby nodes.

Once the features uf g
p1 in (20), or their equivalents in (21), are

computed, we sum features uf g
p1 as per (3) obtaining uf

p1 , com-

pute local summaries as per (4) yielding vf
p1 , and subsample

according to (5) resulting in features xf
p1 . Since in this case the

indexes of the feature vector represent (neighborhood) resolu-
tion, some applications may benefit from non-equally spaced
sampling schemes that put more emphasis on sampling the
high-resolution (low-resolution) part of the feature vector. Sub-
sequent layers repeat the computation of convolutional features
and pooling steps in (2)–(5). Formally, all of the variables in
(2)–(5) need to be marked with a subindex p to identify the
aggregation node.

Remark 4: The aggregation GNN architecture reduces triv-
ially to conventional CNNs when particularized to graph
signals defined over a cyclic graph. Since [Ak

dcx
g ]p =

[xg ]1+(p+k) mod N is a cyclic shift of the input signal xg , then
zg

p = xg in (19) for all p and a regular CNN follows.
Remark 5: The aggregation GNN architecture rests on trans-

forming the data on the graph in such a way that it becomes sup-
ported on a regular structure, and thus regular CNN techniques
can be applied. Transforming graph data is the main concern of
graph embeddings [33]. Unlike the methods surveyed in [33], we
consider the underlying graph support G as given (not learned),
we do not attempt to compress the graph data as construction
of aggregated vector zg

p does not entail any loss of information
(if all eigenvalues of S are distinct), and the focus is on data
defined on top of the graph (the graph signal), rather than the
graph itself (given by S).

A. Multinode Aggregation Graph Neural Networks

Selecting a single node p ∈ V to aggregate all the informa-
tion generally entails N − 1 local exchanges with neighbors [cf.
(18)]. For large networks, carrying out all these exchanges might
be infeasible, either due to the associated communication over-
head or due to numerical instabilities. This can be overcome by
selecting a subset of nodes to aggregate local information, i.e.,
selecting a submatrix of (18) with a few rows and columns in
lieu of a single row with all the columns; see Fig. 4. The selected
nodes will first process their own samples using an aggregation
GNN and then exchange the obtained outputs with the other
selected nodes. This process is repeated until the information
has been propagated through the entire graph.

To explain such a two-level hierarchical architecture, let us
denote as � the layer index for the aggregation stage and as r the
layer index for the exchange stage. The total number of exchange
(outer) layers is R and, for each outer layer r, a total number
of Lr aggregation (inner) layers is run. We start by describing
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the procedure for r = 1, where P1 ⊂ V denotes the subset of
selected nodes and let Q1 denotes the number of times the
shift is applied (Sq , for q = 0, . . . , Q1 − 1). It is observed that
this amounts to selecting P1 = |P1 | rows and Q1 consecutive
columns of (18). Setting � = 0, the signal aggregating the (Q1 −
1)-hop neighborhood information at each node p ∈ P1 can be
constructed as [cf. (19)]

zg
p0(1, Q1) :=

[
[xg ]p ; [Sxg ]p ; . . . ;

[
SQ 1 −1xg

]
p

]
. (22)

Since zg
p0 exhibits a time structure, the regular CNN steps

(2)–(5) can be applied individually at each node (see Fig. 4).
More specifically, since L1 denotes the number of layers for the
aggregation stage when r = 1, a set of FL1 descriptive features
of the (Q1 − 1)-hop neighborhood of node p is constructed by
concatenating � = 0, . . . , L1 − 1 layers of the form (2)–(5) as
is done in the aggregation GNN. Setting � = L1 , the output of
the last layer of the aggregation stage is

zpL1 (1, Q1) =
[
z0
pL1

; . . . ; zFL 1
pL1

]
. (23)

Different feature vectors zpL1 of dimension FL1 are obtained
at each of the p selected nodes, describing the corresponding
(Q1 − 1)-hop neighborhood.

In order to further aggregate these local features (describing
local neighborhoods) into more global information, we need
to collect each feature g at every selected node p ∈ P1 . More
precisely, let P1 = |P1 | be the number of selected nodes, then

xg
1 =

[
zg
p1 L1

; . . . ; zg
pP 1 L1

]
(24)

where each pk ∈ P1 . We now set r = 2 and select a subset
of nodes P2 ⊆ P1 to aggregate features xg

1 by means of local
neighborhood exchanges. However, signal xg

1 has dimension
P1 < N , so it cannot be directly exchanged through the original
graph G. We therefore use zero padding to make xg

1 fit the graph

x̃g
1 = PT

1x
g
1 (25)

with P1 being the P1 × N fat binary matrix that selects the
subset P1 of rows of (18). Then, we apply Q2 times the original
shift S to the signals x̃g

1 , collecting information at nodes p ∈ P2 ,

zg
p0(2, Q2) :=

[
[x̃g

1 ]p , [Sx̃g
1 ]p , . . . ,

[
SQ 2 −1 x̃g

1

]
p

]T
. (26)

Once zg
p0 is collected at each node p ∈ P2 the time-structure of

the signal is exploited to deploy another regular CNN (2)–(5)
(aggregation GNN stage) in order to obtain FL2 features that
describe the region.

In general, consider the output of outer layer r − 1 is xg
r−1 ,

consisting of feature g at a subset Pr−1 of Pr−1 nodes [cf. (24)],
for g = 1, . . . , FLr −1 . Then, this signal is zero padded to fit the
original graph x̃g

r−1 = PT
r−1x

g
r−1 [cf. (25)] and the graph shift

S is applied Qr times, collecting the shifted versions at a subset
of nodes Pr to construct time-structure signal zg

p0(r,Qr ) [cf.
(26)]. Each node p ∈ Pr runs a regular CNN (2)–(5) with Lr

inner layers to produce FLr
features zpLr

(r,Qr ) [cf. (23)] that
are then collected at each of the nodes p ∈ Pr to produce xf

r

[cf. (24)], for f = 1, . . . , FLr
. See Fig. 4 for an illustration of

the architecture.

B. Practical Considerations

Local architecture: The single node aggregation GNN ar-
chitecture is entirely local. Only one node p ∈ V is selected, and
that node gathers all the relevant information about the data by
means of local exchanges only. Furthermore, the output at the
last layer is also obtained at a single node, so there is no need to
have actual physical access to every node in the network.

Regular CNN design: Since signal zg
p gathered at node p

exhibits a regular time structure, the state-of-the-art expertise in
designing conventional CNNs can be immediately leveraged to
inform the design of convolutional layers of aggregation GNNs.

Numerical normalization: For big networks, some of the
entries of Sk (as well as the components of zg

p associated with
those powers) can grow too large, leading to numerical insta-
bility. To avoid this, aggregation schemes typically work with a
normalized version of the graph shift operator that guarantees
that the spectral radius of S is one.

Choice of aggregating node: The choice of nodes that aggre-
gate all the information has an impact on the overall performance
of the algorithm. This decision can be informed by several cri-
teria such as the degree, the frequency content of the signals of
interest [7] or be determined by different measures of centrality
in the network [34]. In particular, in the experiments carried out
in Section V, we select nodes based on the leverage scores ob-
tained by the two sampling schemes described in [29] and [32].

Filter taps: For a generic (inner) layer 1 < � < Lr the gen-
eration of the feature vectors uf g

� ∈ RN�−1 and uf
� ∈ RN�−1

is as in (2) and (3), so that we have that uf
� =

∑F�−1
g=1 uf g

� =
∑F�−1

g=1 hf g
� ∗ zg

p(�−1) . The main difference in this case is on the

type and length of the filter coefficients hf g
� ∈ RK� . While in

classical CNNs the filter coefficients are critical to aggregate the
information at different resolutions, here part of that aggregation
has been already taken care of in the first layer when transform-
ing xg into zg

p . As a result, the filter taps in the aggregation GNN
architecture can have a shorter length and place more emphasis
in high frequency features.

Pooling: Something similar applies to the pooling schemes.
The summarization and downsampled vectors for the aggre-
gation architecture are obtained as [vf

� ]n = ρ�([u
f
� ]n�

) and
xf

� = σ�(C�v
f
� ), which coincide with their counterparts for

classical CNNs in (4) and (5). The difference is therefore not
in the expressions, but on how n� and C� are selected. While
in traditional CNNs the signal xg is global in that all the sam-
ples have the same resolution, in the aggregation architecture
the signal zg

p is local and different samples correspond to differ-
ent levels of resolution. More specifically, aggregation pooling
schemes for n� and C� that preserve the top samples of the fea-
ture vectors uf

� to keep finer resolutions combined with a few
bottom samples to account for coarser information are reason-
able, while in traditional CNNs regular schemes for n� and C�

that extract information and sample the signal support regularly
can be more adequate.

Design flexibility: The multinode aggregation GNN acts as a
decentralized method for constructing regional features. We note
that, for ease of exposition, the number of shifts Qr at each outer
layer is the same for all nodes as well as the number of features
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FLr
that are obtained at each node. However, this architecture

can be adapted to different node-dependent parameters in a
straightforward manner.

Computational cost: The computational cost of the multin-
ode aggregation GNN at each outer layer r is that of pro-
cessing the regular CNN for each node, O(

∑Pr

p=1
∑Lr

�=1
N�−1K�F�−1F�) which can be easily distributed among the Pr

involved nodes.
Number of parameters: The number of parameters of the

multinode aggregation GNN is O(
∑Pr

p=1
∑Lr

�=1 K�F�F�−1). We
observe, though, that the regular CNNs employed tend to be very
small, since the initial Qr regular CNN at each node) as well
as the length of the filters K� are very small as well (typically,
K� � Qr , cf. Section II).

V. NUMERICAL EXPERIMENTS

We test the proposed GNN architectures and compare their
performance with the graph coarsening (multiscale hierarchical
clustering) approach of [16]. In the first scenario (Section V-
A), we address the problem of source localization on synthetic
stochastic block model (SBM) networks. Then, we move the
source localization problem to a more realistic setting of a Face-
book network of 234 users (Section V-B). As a third experiment,
we address the problem of authorship attribution (Section V-C).
And finally, we test the proposed architectures in the problem
of text categorization on the 20NEWS dataset (Section V-D).

We test the proposed Selection (Section III), Aggregation
(Section IV) and Multinode (Section IV-A) GNN architectures.
For the selection of nodes involved in each of the architectures,
we test three different strategies. First, we choose nodes based
on their degree; second, we select them following the leverage
scores proposed by the experimentally designed sampling (EDS)
in [32]; and third, we determine the appropriate nodes by using
the spectral-proxies approach (SP) in [29]. In all architectures,
the last layer is a fully-connected readout layer, followed by a
softmax, to perform classification.

Unless otherwise specified, all GNNs were trained using the
ADAM optimizer [35] with learning rate 0.001 and forgetting
factors β1 = 0.9 and β2 = 0.999. The training phase is carried
out for 40 epochs with batches of 100 training samples. The loss
function considered in all cases is the cross-entropy loss between
one-hot target vectors and the output from the last layer of each
architecture, interpreted as probabilities of belonging to each
class. Also, in all cases, we consider max-pooling summarizing
functions and ReLU activation functions for the corresponding
GNN layers.

A. Source Localization

Consider a connected stochastic block model (SBM) network
with N = 100 nodes and C = 5 communities of 20 nodes each
[36]. In SBM graphs, edges are randomly drawn between nodes
within the same community, independently, with probability
0.8; while edges are randomly drawn between nodes of different
communities, independently, with probability 0.2. Denote by A
the adjacency matrix of such graph.

In the problem of source localization, we observe a signal that
has been diffused over the graph and estimate the spatial origin

of such diffused process. More precisely, consider δc a graph
signal that has a 1 at node c and 0 at every other node. Define
x = Atδc as the diffused graph signal, for some unknown t ≥ 0.
The objective is to estimate the origin c of the diffusion. In
this situation in particular, we are interested in estimating the
community c (rather than the node) that originated the observed
signal x. We can thus model this scenario as a classification
problem in which we observe graph signal x and have to assign
it to one of the C = 5 communities.

In the simulations, we generate the training and test set by
randomly selecting the origin c from a pool of C = 5 nodes (the
largest-degree node of each community; recall that all nodes
have, on average, the same degree) and randomly selecting the
diffusion time t < 25, as well. We generate a training set of
10,000 signals and a test set of 200 signals. The training set
is further split in 2,000 signals for validation, and the rest for
training. We simulate 10 graphs, and for each graph, we simulate
10 realizations of training and test sets. For numerical reasons,
the adopted graph shift operator is S = A/λmax where λmax is
the maximum eigenvalue of A.

The architectures tested are as follows. For the selection GNN
we consider two layers selecting 10 nodes in each. The number
of output features in each layer are F1 = F2 = 32 and the filters
consists of K1 = K2 = 5 taps [cf. (13)]. For the summarizing
functions, we consider neighborhoods of size α1 = 6 and α2 =
8, respectively [cf. (15)]. In the aggregation GNN, we select
the single node with highest: a) degree, b) EDS leverage score,
or c) spectral-proxies (SP) norm, depending on the strategy
chosen. Then, we construct the regular-structured signal [cf.
(19)] and apply the aggregation GNN with two layers. The
number of features on each layer is F1 = 16 and F2 = 32, with
filters of size K1 = 4 and K2 = 8 [cf. (21)]. Max-pooling is
applied to reduce the size of the regular signal by half on each
layer, and the nonlinearity used is the ReLU. Finally, for the
multinode GNN, we consider two outer layers selecting P1 = 10
and P2 = 5 nodes and shifting the signal Q1 = 7 and Q2 = 5
times to build the regular signal on each node [cf. (22)]. Then,
for each outer layer, we apply two inner layers. In the first one,
we obtain 16 features at each inner layer; and in the second outer
layer, we get 16 and 32 for each inner layer. In all inner layers,
the filters are of size 3, with max-pooling by 2, and a ReLU
nonlinearity. We recall that the selection of nodes depends on
the sampling strategy selected (degree, EDS or SP). We compare
against a two-layer architecture using graph coarsening [16],
reducing the number of nodes to a half on each layer, computing
F1 = F2 = 32 features with filters consisting of K1 = K2 = 5
filter taps. In contrast with the previous cases where S was
set to the rescaled adjancency matrix, in the graph coarsening
architecture we set S to normalized Laplacian, since that was
the specification in [16] and, more importantly, yields a better
performance.

The plots in Fig. 5 show the value of the loss function on the
training and validation sets as the training stage progresses. We
observe that both drop with training, showing that the model is
effectively learning from data. We see that it takes some time
for the models to start learning (reaching half of the training
stage in the case of aggregation), but then effectively lower the
training loss. We also see that the Multinode GNN achieves a
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Fig. 5. Validation and training loss during training stage. We observe that the validation loss and the training loss are essentially equal throughout the training
stage for all three architectures. This shows that the proposed models are not overfitting the data, since the validation loss keeps decreasing with the training steps.
The best performing selection method of each architecture is represented.

TABLE I
CONSIDERING THAT SBM GRAPHS ARE RANDOM, WE GENERATE 10

DIFFERENT INSTANCES OF SBM GRAPHS WITH N = 100 NODES AND

C = 5 COMMUNITIES OF 20 NODES EACH. FOR EACH OF THESE 10 GRAPHS,
WE RANDOMLY GENERATE 10 DIFFERENT DATASETS (TRAINING, VALIDATION

AND TEST SET). WE COMPUTE THE CLASSIFICATION ACCURACY OF EACH

REALIZATION, AND AVERAGE ACROSS ALL 10 REALIZATIONS FOR EACH

GRAPH, OBTAINING 10 AVERAGE CLASSIFICATION ACCURACIES. IN THE

TABLE, WE SHOW THE CLASSIFICATION ACCURACY, AVERAGED ACROSS

THE 10 GRAPH INSTANCES. THE STANDARD DEVIATION FROM THESE 10
GRAPHS IS ALSO SHOWN

lower loss value, which translates in better performance on the
test set, and that it also takes the least number of training steps
before starting to lower the loss function. Finally, we note that
the validation loss and the training loss are essentially the same,
showing that there is no overfit in the models.

Accuracy results on the test set are presented in Table I. The
accuracy results for all 10 realizations of each graph are aver-
aged, and then all 10 graph mean accuracies are averaged to
obtain the values shown in Table I. The error values in the table
are the square root of the variance computed across the means
obtained for each of the 10 graphs. We observe that the best
performance is achieved by Multinode GNN with nodes cho-
sen following the spectral proxies method. We observe that all
multinode and aggregation GNNs outperform the graph coars-
ening approach, and so do selection GNNs following EDS and
spectral proxies sampling.

B. Facebook Network

For this second experiment, we also consider the source local-
ization problem, but in this case, we test it on top of a real-world
network. In particular, we built a 234-user Facebook network as
the largest connected network within the larger dataset provided
in [37]. We observe that the resulting network exhibits two

communities of quite different size. The source localization
problem formulation is the same than the one described in the
previous section, where the objective is to identify which of the
two communities originated the diffusion process. This is analo-
gous to finding the start of a rumor. Again, we set S = A/λmax .
The datasets are generated in the same fashion as described in
the previous section.

The three architectures used are as follows. For the selec-
tion GNN we use two layers, choosing 10 nodes after the
first one, and use filters with K1 = K2 = 5 taps that gener-
ate F1 = F2 = 32 features on each layer. For the pooling stage,
we use a max{·} summarization with α1 = 2 and α2 = 4. In the
aggregation GNN we select the best node based on one of the
three sampling strategies (degree, EDS and SP) and the gather
the regular-structure data at that node. We then process it with
a two-layer CNN that generates F1 = 32 and F2 = 64 features,
using K1 = K2 = 4. Max-pooling of size 2 is used on each
layer (i.e., half of the samples gathered at the node are kept after
each layer). In the case of the multinode GNN we use two-outer
layers, selecting P1 = 30 and P2 = 10 nodes on each, and gath-
ering Q1 = Q2 = 5 shifted versions of the signal at each node.
Then, for the inner layers, we use two-layer architectures that
generate 16 features on each layer in the first outer layer, and
16 and 32 features on each layer in the second outer layer. In
all cases, we use filters of size 3 and max-pooling by a factor
of 2. Finally, for the graph coarsening architecture, we adopt
the normalized Laplacian as GSO, as described in [16], and use
two-layers computing F1 = F2 = 32 features using graph fil-
ters with K1 = K2 = 5 filter taps. After each layer, the number
of nodes is reduced by half.

For training we use 80 epochs. We also generate 10 differ-
ent random realizations of the dataset to account for random
variabilities in the setting. Results for all ten architectures are
shown in Table II. We observe that all architectures achieve a
very high classification accuracy. We note that selection GNN
tends to outperform aggregation GNN. The best result is ob-
tained for multinode GNN using spectral proxies and is 99.0%
classification accuracy.

C. Authorship Attribution

As a third experiment, we study the problem of authorship
attribution, as detailed in [38]. We consider excerpts of works
written by a myriad of contemporary authors from the 19th
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TABLE II
CLASSIFICATION ACCURACY AVERAGED ACROSS 10 DIFFERENT REALIZATIONS

OF THE TRAINING AND TEST SETS FOR THE SAME UNDERLYING GRAPH. IN

PARENTHESIS, WE SHOW THE STANDARD DEVIATION

OF THE CLASSIFICATION ACCURACY

century. We then build a word adjacency network (WAN) using
functional words in these excerpts, and obtain a graph profile
for each author, i.e., a graph that represents an author’s writing
style by the way functional words (who act as nodes) are linked
(weighted edges) in the excerpts written; see [38] for a full
detail on the authors considered and the specific construction of
WANs. Then, we take a new excerpt, of unknown authorship,
and by looking at the frequency of the functional words, we want
to determine who the author is. In the framework presented in
this paper, the signature word adjacency network constitutes the
underlying graph support, and the frequency count of functional
words becomes the graph signal.

In particular, we focus on texts authored by Emily Brontë. We
consider a corpus of 682 excerpts of around 1000 words, au-
thored by her; and take into consideration 211 functional words.
Then, we take 546 of these excerpts as a training set, in order
to both, build the signature WAN, and also as training samples.
The constructed graph consists of N = 211 nodes, one for each
functional word, the edges and their weights are determined by
the precedence relationship between each word, as described in
[38]; and each training sample consist of a graph signal, where
the value associated to each node is the frequency count of that
specific functional word. The remaining 136 excerpts are used
as test samples. Once the signature WAN for Brontë is built, we
construct a training set of 1092 text excerpts, 546 correspond-
ing to the author, and 546 corresponding to other contemporary
authors; and a test set of 272 excerpts, 136 belonging to Brontë,
and 136 written by other authors. The excerpts corresponding
to the training and test set, written by either Brontë or other
contemporary authors, are chosen uniformly at random. The
objective is to decide if the excerpts in the test set were written
by Brontë.

Again, we consider the three GNN architectures proposed
in this paper, as well as the graph coarsening GNN of [16].
For the selection GNN, we consider a two-layer architecture,
where we choose 100 nodes (functional words) as determined
by each of the three sampling strategies (degree, EDS and SP).
For each layer we set F1 = F2 = 32, K1 = K2 = 5 and α1 = 2
and α2 = 4. In the aggregation GNN we consider three layers,
after aggregating all the information at the chosen node (the
choice depends on each sampling strategy). In the first layer
we compute F1 = 32 features with a filter of size K1 = 6, and

TABLE III
CLASSIFICATION ACCURACY AVERAGED ACROSS 10 DIFFERENT REALIZATIONS

OF THE TRAINING AND TEST SETS (RECALL THAT THE TRAINING AND TEST

SETS ARE CHOSEN AT RANDOM FROM THE AVAILABLE CORPUS, AND THE

CHOICE OF TRAINING SET AFFECTS THE CONSTRUCTED UNDERLYING GRAPH).
IN PARENTHESIS, WE SHOW THE STANDARD DEVIATION OF THE

CLASSIFICATION ACCURACY

do max-pooling, reducing the number of samples by 4. The
second and third layers use filters of size K2 = K3 = 4 to obtain
F2 = 64 and F3 = 128 features respectively. Pooling is applied,
reducing the size of the vector by a factor of 2 in each of the last
two aggregation GNN layers. The multinode GNN employed
consists of two outer layers, choosing P1 = 30 and P2 = 10
nodes, respectively, and aggregating information up to the Q1 =
Q2 = 5 hop-neighborhood. For each outer layer, we have two
inner layers, having 16 features on each of those for the first
outer layer, and 16 and 32 features for the second outer layer.
All filters are of size 3 and pooling reduces the size of the
vectors by half. Finally, the graph coarsening GNN consists of
two layers obtaining F1 = F2 = 32 features in each, with graph
filters of size K1 = K2 = 5, and pooling reducing the size of
the graph by half on each layer.

The graph shift operator S is set to the adjacency matrix
after normalizing the weights of each row (to add up to 1)
and symmetrizing it, except for the case of graph coarsening
GNNs, where the GSO is the normalized Laplacian obtained
from the aforementioned adjacency matrix. For training we use
80 epochs. And we run the experiment 10 times, to account
for the randomness in the selection of training and test sets (and
thus, for the randomness in the creation of the underlying WAN).

Results can be found in Table III, where we show the classi-
fication accuracy averaged over 10 different realizations of the
training and test sets, as well as the estimated standard deviation.
We first observe that, in this case, all proposed GNN architec-
tures outperform the graph coarsening GNN. We note that the
multinode GNN is the best performing architecture. We also ob-
serve that selecting nodes via the EDS sampling method works
best for aggregation and multinode GNNs, but spectral prox-
ies yield better results in the case of selection GNN. The best
classification accuracy obtained is 80.5%, on average across all
realizations, and achieved by the multinode GNN whose nodes
are selected by means of EDS sampling.

D. 20NEWS Dataset

Finally, we consider the classification of articles in the
20NEWS dataset which consists of 16,617 texts (9,922 of which
are used for training and 6,695 for testing) [39]. The graph



1048 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 4, FEBRUARY, 15 2019

TABLE IV
20NEWS DATASET ON A word2vec GRAPH EMBEDDING OF N = 1, 000

NODES. CLASSIFICATION ACCURACY AVERAGED ACROSS 10 DIFFERENT

RUNS. IN PARENTHESIS, WE SHOW THE STANDARD DEVIATION OF THE

CLASSIFICATION ACCURACY

signals are constructed as in [16]: each document x is repre-
sented using a normalized bag-of-words model and the under-
lying graph support is constructed using a 16-NN graph on the
word2vec embedding [40] considering the 1,000 most com-
mon words. The GSO adopted is the normalized Laplacian as
in [16].

The selection GNN architecture consists of 2 convolutional
layers, selecting P1 = 250 and P2 = 100 nodes, according
to each of the three different sampling strategies. Each layer
uses graph filters of K1 = K2 = 5 taps to build F1 = 32 and
F2 = 64 features. The pooling neighborhoods correspond to
α1 = 7 and α2 = 12. For the aggregation GNN we also con-
sider 2 layers, and use filters of length K1 = K2 = 11 to build
F1 = F2 = 32 features on each layer. Pooling size is 4, and the
data is aggregated at a single node chosen by each of the sam-
pling strategies. The multinode GNN consists of 2 outer layers
that select P1 = 70 and P2 = 30 nodes, respectively. The num-
ber of local exchanges to create a temporally-structured signal
are Q1 = 10 and Q2 = 25. Each outer layer employs a regular
CNN with 2 inner layers. Each inner layer of the first outer layer
creates 16 features, while each inner layer of the second outer
layer uses 16 and 32 features, respectively. All filters involved
are of length 5 and the pooling size is 4. Finally, for the graph
coarsening architecture, we consider 2 layers, reducing the num-
ber of nodes by half on each layer, and computing F1 = 32 and
F2 = 64 features, using filters of length K1 = K2 = 5.

Training is done for 80 epochs. Classification accuracy re-
sults, averaged out of 10 runs, are listed in Table IV. We note
that the multinode GNN is the best performing architecture,
followed by graph coarsening. The comparatively poor perfor-
mance of the aggregation GNN is most likely due to the numer-
ical instabilities that arise from performing a large number of
neighborhood exchanges.

VI. CONCLUSION

In this paper we proposed two architectures for extending
convolutional neural networks to process graph signals. The
selection graph neural network replaces the convolution opera-
tion with graph filtering by means of linear shift invariant graph
filters. Pooling is reinterpreted as a neighborhood summarizing
function that gathers the relevant regional information at a
subset of nodes, followed by a downsampling. By keeping track

of the location of these subsets of nodes in the original graph,
convolutional layers can be further computed at deeper layers
through the use of zero padding. In this way, the selection GNN
respects the original topology that describes the data, while
reducing the computational complexity at each layer. Further-
more, the resultant features at each layer can be appropriately
analyzed in terms of the original graph (frequency analysis,
local filtering).

The aggregation GNN collects, at a single node, diffused ver-
sions of the original signal. The resulting signal simultaneously
possesses a regular temporal structure and includes all relevant
information of the topology of the graph. Since the signal col-
lected at this single node has a temporal structure, a regular CNN
can be applied to it. In large scale networks, however, gathering
all the information of the graph signal at a single node might be
infeasible. In order to overcome this, we proposed a multinode
variation of the aggregation GNN in which we use a subset of
nodes to subsequently create meaningful features of increasing
neighborhoods.

We have tested the proposed architectures in a source local-
ization problem on both synthetic and real datasets, as well as
for authorship attribution and the classification of articles of the
20NEWS dataset. We considered three different ways of choos-
ing nodes in each architecture, based on three existing sampling
techniques (namely, by degree, and by leverage scores computed
from experimentally designed sampling and spectral proxies).
We compared the results with an existing graph coarsening GNN
that employs multiscale hierarchical clustering for the pooling
stage. We observe that the multinode aggregation GNN exhibits
the best performance.

All in all, the proposed GNN architectures exploit the ad-
vances in graph signal processing to present novel constructions
of deep learning that are able to handle network data represented
as signals supported on graphs.
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