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Abstract—Orthogonal signal-division multiplexing (OSDM) is a
generalized modulation scheme to bridge the gap between orthog-
onal frequency-division multiplexing (OFDM) and single-carrier
frequency-domain equalization. It allows significantly more flex-
ibility in system design; however, over doubly-selective channels,
it suffers from a special signal distortion structure, namely
inter-vector interference, which is analogous to inter-carrier
interference in conventional OFDM. To analyze its effect, in this
paper, the complex exponential basis expansion model (CE-BEM)
is used to approximate the doubly-selective channel. We show
that the composite channel matrix of OSDM systems is cyclically
block banded in this case, and the blocks in its main band can be
further diagonalized. By exploiting this unique matrix structure,
low-complexity block and serial OSDM equalization algorithms
are then proposed. These two equalization algorithms are based on
block LDLH factorization and block iterative matrix inversion, re-
spectively, both of which are implemented in a transformed domain
to avoid direct inversion of large matrices. In addition, a CE-BEM
channel estimation method is designed for OSDM systems,
which uses frequency-shifted Chu sequences as pilots to ease the
computation. Numerical simulations are finally provided to justify
the validity of our channel equalization and estimation algorithms.

Index Terms—OSDM, BEM, doubly-selective channels, channel
equalization, channel estimation, underwater acoustic communi-
cations.

I. INTRODUCTION

CURRENTLY, multicarrier modulation with orthogonal
frequency-division multiplexing (OFDM) and single-

carrier modulation with frequency-domain equalization (SC-
FDE) are two popular techniques widely used for high-rate wire-
less communications. OFDM is attractive because it can convert
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a frequency-selective channel into a set of parallel frequency-
flat channels [1], and thus allowing for eliminating inter-symbol
interference (ISI) efficiently by simple one-tap equalization on
each subcarrier. However, it is well known that OFDM suffers
from a large peak-to-average power ratio (PAPR) [2]. In compar-
ison, by performing both the discrete Fourier transform (DFT)
and inverse DFT (IDFT) operations at the receiver, SC-FDE has
the capability to achieve a lower PAPR [3]. However, its band-
width and energy management is much more cumbersome than
OFDM [4].

As another alternative, orthogonal signal-division multiplex-
ing (OSDM), which was originally proposed in [5], [6], is
promising to offer a tradeoff to this dilemma. It is a general-
ized modulation scheme which connects OFDM and SC-FDE
in a unified framework. More specifically, given a transmitted
data block of K = MN symbols, OSDM splits the data block
into N segments (termed as vectors herein) of length M , and
its modulation is implemented by M component-wise N -point
IDFTs. In this sense, conventional OFDM and SC-FDE can be
considered as two extreme cases of OSDM with M = 1 and
M = K, respectively. Moreover, since M and N can be con-
figured otherwise, OSDM has more degrees of freedom in bal-
ancing the conflicting system design requirements. It is worth
noting that OSDM shares a similar signal structure as vector
OFDM, which was independently developed in [7]. They differ
only in the cyclic prefix (CP) section [8]. While vector OFDM
configures its CP size to be a multiple of the vector length M ,
OSDM does not have this restriction.1

Since the emergence of these modulation schemes is rela-
tively new, so far most existing research has focused on their
performance over frequency-selective channels [8]–[14]. Under
this scenario, orthogonality can be perfectly maintained among
symbol vectors, thus allowing for independent vector-by-vector
detection at the receiver. By recognizing this fact, maximum
likelihood (ML) vector estimation was applied in [9], [10] and
its performance gain was analytically derived in [8], [12]. Al-
though robust to channel fading, the ML receiver incurs a com-
plexity growing exponentially with the vector length M . To ease

1That is why we choose the term OSDM in this paper, since here the CP can
be of any size longer than the channel delay spread. Another reason for this is
that the term OSDM has been adopted in the context of underwater acoustic
communications, such as [20], which directly motivates our work.
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the computation, linear cancellation and equalization methods
were then investigated in [11], [13], respectively, to recover
data symbols from ISI. Furthermore, two multiple-antenna ex-
tensions with linear equalization were proposed in [14] to collect
diversity in the spatial domain.

On the other hand, when the channel is doubly-selective (i.e.,
both frequency- and time-selective), the Doppler spread destroys
the orthogonality of the vectors and thus leads to inter-vector
interference (IVI) [15], [16]. It is analogous to inter-carrier inter-
ference (ICI) in OFDM, and degrades the system performance
significantly. To counteract this effect, an effort was devoted to
compensating for carrier phase noise caused by imperfect oscil-
lators [16], [17]. In addition, OSDM has recently also been con-
sidered for underwater acoustic (UWA) communications [15],
[18]–[20], where due to the severe Doppler effects of UWA
channels [21], [22], more emphasis has been placed on IVI
mitigation in the receiver design. Meanwhile, several doubly-
selective channel models have been adopted to trade off the
system performance with the computational complexity.

Specifically, it was assumed in [19] that the time variation over
all channel paths can be modeled by a common Doppler scaling
factor, under which the Doppler distortion after receiver front-
end resampling reduces approximately to a carrier frequency
offset (CFO) [23]. As such, null symbols were simply inserted
for CFO estimation and compensation. Moreover, to accommo-
date more general time variation effects in UWA channels, the
post-resampling Doppler distortion was modeled as a determin-
istic time-varying phase in [15] (instead of a single frequency in
the CFO case). Accordingly, the OSDM receiver was equipped
with iterative per-vector equalization for IVI mitigation. Finally,
the complex exponential basis expansion model (CE-BEM) was
considered in [20] to take Doppler spreads explicitly into ac-
count. It is a more accurate representation of doubly-selective
channels, and the proposed OSDM receiver can thus have bet-
ter Doppler resilience. However, the equalization algorithm in
[20] requires direct inversion of channel matrices, which incurs
a cubic complexity and may be computationally expensive for
practical use.

The aim of this paper is to reduce the computational burden
of CE-BEM channel equalization in OSDM systems. Inspired
by previous works on OFDM systems [24], [25], we here ex-
plore the CE-BEM channel matrix structure and then design
low-complexity OSDM equalization algorithms. The main con-
tributions are summarized as follows.

1) OSDM Signal Model: With doubly-selective channels ap-
proximated by the CE-BEM, it is derived that the com-
posite channel matrix of OSDM systems has a cyclically
block-banded structure. Moreover, the blocks in its main
band can be further diagonalized by matrix factorization.

2) OSDM Channel Equalization: By exploiting the spe-
cial structure of the composite channel matrix, low-
complexity block and serial OSDM equalization algo-
rithms are proposed based on block LDLH factorization
and block iterative matrix inversion, respectively. Both
algorithms are implemented in a transformed domain, by
which the equalization complexity on each length-M vec-
tor can be reduced to the order O(M log2M).

3) OSDM Channel Estimation: A pilot-assisted method is
proposed for CE-BEM channel estimation in OSDM sys-
tems. It relies on a specifically designed OSDM block
structure, where equi-spaced pilot vectors are chosen as
frequency-shifted Chu sequences to avoid direct matrix
inversion, and surrounded by zeros to eliminate IVI from
neighboring data vectors.

The remainder of this paper is organized as follows. Some
necessary background of OSDM, as well as its received signal
models over frequency- and doubly-selective channels are dis-
cussed in Section II. Low-complexity block and serial OSDM
equalization algorithms based on the CE-BEM are presented in
Section III, and their complexities are provided in Section IV.
Doubly-selective channel estimation in OSDM systems is ad-
dressed in Section V. The OSDM system performance is then
evaluated by numerical simulations in Section VI. Finally, con-
clusions are drawn in Section VII.

The notation used in this paper is summarized as follows.
Bold upper (lower) letters denote matrices (column vectors);
(·)∗, (·)T , (·)H and (·)† stand for conjugate, transpose, Her-
mitian transpose and Moore-Penrose pseudoinverse, respec-
tively. We define [x]n as the nth entry of the vector x, and
[X]m,n as the (m,n)th entry of the matrix X, where all in-
dices are starting from 0. Also, [x]m :n indicates the subvector
of x from entry m to n, and [X]m :n,p :q indicates the subma-
trix of X from row m to n and from column p to q, where
only the colon is kept when all rows or columns are included.
We use diag {x} to represent a diagonal matrix with x on
its diagonal, and Diag {A0 , . . . ,AN −1} to represent a block-
diagonal matrix created with the submatrices {An}N −1

n=0 . More-
over, 0M ×N (1M ×N ) denotes the M × N all-zero (all-one)
matrix; FN stands for the N × N unitary DFT matrix, i.e.,
[FN ]p,q = N−1/2e−j2πpq/N ; IN and eN (n) refer to the N × N
identity matrix and its nth column, respectively. Besides, JN

denotes the N × N cyclic shift matrix, which is defined as the
circulant matrix with its first column eN (1). As such, Jq

N x is
the circularly shifted vector of x by q entries.

Finally, notice that there are two minor terminological colli-
sions in this paper. First, a block generally indicates a portion of
a matrix, while also refering to an OSDM data block. Second,
a vector in general stands for a one-dimensional matrix; how-
ever, as a specific definition in OSDM, it may also represent a
segment in a data block. Which notion is used can always be
deduced from the context.

II. SIGNAL MODEL

Let us consider a transmitted block of K symbols denoted by
d = [d0 , d1 , . . . , dK−1 ]T , where the symbols {dk} are drawn
from a finite constellation, and are independent and identically
distributed (i.i.d.) with unit power, i.e., σ2

d = 1. To offer a better
understanding, we compare the baseband models of OSDM
and conventional OFDM in Fig. 1. As a well-known technique,
the conventional OFDM system treats the transmitted block
d as a whole, and performs modulation and demodulation at
the transceiver by a single K-point IDFT and DFT operation,
respectively. On the other hand, by assuming K = MN , the
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Fig. 1. Comparison between the discrete-time baseband models of OFDM and OSDM.

OSDM system partitions the transmitted block d into N symbol
vectors of length M , i.e.,

dn = [dnM , dnM +1 , . . . , dnM +M −1 ]T (1)

for n = 0, . . . , N − 1. At the transmitter, the symbols in d are
firstly written row-wise into an N × M matrix with its nth
row filled by the nth symbol vector dT

n . Then, N -point IDFTs
are performed column-wise, and the entries in the resulting
matrix are read out row-wise to obtain the length-K transmitted
signal s = [s0 , s1 , . . . , sK−1 ]T . As stated in [15], by defining
the K × K permutation matrix

PN,M =

⎡
⎢⎢⎢⎢⎣

IN ⊗ eT
M (0)

IN ⊗ eT
M (1)

...

IN ⊗ eT
M (M − 1)

⎤
⎥⎥⎥⎥⎦

(2)

where ⊗ stands for the Kronecker product, the OSDM modula-
tion process can be mathematically expressed as

s = PH
N,M

(
IM ⊗ FH

N

)
PN,M d

=
(
FH

N ⊗ IM

)
d. (3)

In the first line of the above equation, PN,M , IM ⊗ FH
N and

PH
N,M correspond to the row-wise write, N -point IDFT and

row-wise read operations, respectively. Subsequently, a CP is
inserted at the beginning of each OSDM block to eliminate
inter-block interference.

At the receiver, the received signal block after CP removal is
denoted by the K × 1 vector r = [r0 , r1 , . . . , rK−1 ]T . OSDM
demodulation uses a similar N × M matrix interleaving oper-
ation, and performs N -point DFTs column-wise. Analogous to
(3), the OSDM demodulated block can be formulated as

x = PH
N,M (IM ⊗ FN )PN,M r

= (FN ⊗ IM ) r. (4)

Before we proceed, two remarks on the OSDM signal struc-
ture are now in order.

1) The modulated block in (3) is the same as that of vector
OFDM. However, OSDM allows for a more flexible set-
ting of the CP length. Unlike the vector OFDM case, the
CP length in OSDM is not restricted to be a multiple of
M . It can be any value no less than the maximum discrete
delay of the channel [8].

2) As a generalized modulation scheme, OSDM contains
conventional OFDM and SC-FDE as its extreme cases.
It can be seen from (3) that the OSDM signal structure
reduces to that of conventional OFDM and SC-FDE when
M = 1 and M = K, respectively.
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A. Precoded-OFDM Interpretation

It is interesting to mention that the OSDM signal in (3)
also has a precoded-OFDM interpretation. To see this, we first
present a proposition on DFT matrix factorization.

Proposition 1: If K = MN , then the K × K DFT matrix
FK can be factorized as

FK = PN,M (IN ⊗ FM )Λ (FN ⊗ IM ) (5)

where

Λ = Diag
{
Λ0

M ,Λ1
M , . . . ,ΛN −1

M

}
(6)

Λn
M = diag{[1, e−j 2 π n

K , . . . , e−j 2 π n
K (M −1) ]T }. (7)

Now, by converting the OSDM signal s into the frequency
domain, it can be derived that

FK s = PN,M

⎡
⎢⎢⎢⎢⎣

FM Λ0
M d0

FM Λ1
M d1

...

FM ΛN −1
M dN −1

⎤
⎥⎥⎥⎥⎦

. (8)

Recall that, in the case of conventional OFDM, it simply yields
FK s = d, which means each symbol is modulated directly on a
single subcarrier. In comparison, for OSDM, the symbol vectors
{dn} are precoded by {FM Λn

M }, interleaved by PN,M , and
then modulated on subcarriers. We can thus consider OSDM as
a version of precoded OFDM. The proof of Proposition 1 and
(8) can be found in Appendix A.

B. Received Signal Over Frequency-Selective Channels

We proceed to establish the received OSDM signal mod-
els. For simplicity, let us first assume the channel to be
time-invariant, and denote the equivalent discrete-time chan-
nel impulse response (CIR) by the (L + 1) × 1 vector c =
[c0 , c1 , . . . , cL ]T , where L is the channel memory length. In this
case, the input-output relationship of the channel is modeled in
matrix-vector form as

r = C̃s + w (9)

where C̃ is the K × K circulant channel matrix with its first
column equal to the CIR vector c appended by K − L − 1 zeros;
w is the additive white Gaussian noise term with K entries of
zero mean and variance σ2 .

Therefore, based on (3), (4) and (9), the OSDM demodulated
block can be written as

x = Cd + z (10)

where

C = (FN ⊗ IM ) C̃
(
FH

N ⊗ IM

)
(11)

is referred to as the composite channel matrix in this paper; z =
(FN ⊗ IM )w is the noise term after demodulation. To establish
OSDM transmissions over frequency-selective channels, so far
there have been a few studies, such as [13], [18], on this issue.
The results are summarized here as a proposition to provide a
basis for our further derivations.

Proposition 2: Consider an OSDM block with N vectors of
length M = K/N transmitted over the time-invariant channel
modeled in (9). Define the frequency-domain channel coeffi-
cients as

Hk =
L∑

l=0

cle
−j 2 π

K lk , k = 0, 1, . . . , K − 1. (12)

Then, the composite channel matrix has the form

C = Diag {H0 ,H1 , . . . ,HN −1} (13)

where

Hn = ΛnH
M FH

M HnFM Λn
M (14)

Hn = diag
{
[Hn,HN +n , . . . , H(M −1)N +n ]T

}
(15)

for n = 0, 1, . . . , N − 1. Furthermore, by dividing x and z
into N vectors, and defining xn = [x]nM :nM +M −1 and zn =
[z]nM :nM +M −1 , it can be obtained that

xn = Hndn + zn , n = 0, 1, . . . , N − 1. (16)

Proof: This proposition can be easily derived from Proposi-
tion 1. See our previous work [15, (7), (8), (11) and Appendix A]
for a detailed proof. �

It is well known that conventional OFDM over frequency-
selective channels preserves orthogonality of subcarriers and
thus channel equalization can be performed independently on
each subcarrier. In comparison, as shown in (16), detection
of the symbol vectors {dn} can be similarly decoupled and
thus per-vector equalization can be adopted in OSDM [15].
Specifically, since OSDM demodulation in (4) yields a unitary
transformation, the demodulated noise z has the same distribu-
tion as w and it remains white. Therefore, the minimum mean-
square error (MMSE) estimate of the nth symbol vector can be
expressed as

d̂n =
[
HH

n

(
HnHH

n + σ2IM

)−1
]
xn (17)

= ΛnH
M FH

M

[
H

H
n

(
HnH

H
n + σ2IM

)−1
]
FM Λn

M xn .

(18)

Here, note that (18) offers a low-complexity implementation
of equalization. This is because, for the direct implementation
in (17), the total computational complexity is on the order of
O(M 3). In contrast, the low-complexity equalization in (18)
exploits the special structure of Hn in (14). As a result, only
diagonal matrix computations are needed within the brackets
in (18). Together with the two frequency shifts and two DFT
operations corresponding to Λn

M (ΛnH
M ) and FM (FH

M ), respec-
tively, the total complexity of equalization per vector is only
about O(M log2M).

C. Received Signal Over Doubly-Selective Channels

We now extend our discussion to OSDM transmissions over
doubly-selective channels. As a general channel description, let
ck,l denote the time-varying CIR at the kth time instant and
the lth delay tap. It can be seen that, over an OSDM block of
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K symbols, there are as many as K(L + 1) CIR coefficients
involved, which disables the development of low-complexity
equalization. This observation motivates the use of alternative
channel models, and in this paper we adopt the CE-BEM to
approximate the channel [26], [27].

To be specific, the CE-BEM assumes that the channel time
variation at each delay tap is approximately bandlimited and
it can be represented as a superposition of 2Q + 1 com-
plex exponential basis functions during each block, i.e., for
k = 0, 1, . . . ,K − 1 and l = 0, 1, . . . , L,

ck,l =
Q∑

q=−Q

hq,le
j 2 π

K qk (19)

where Q indicates the discrete Doppler spread. The rationale
behind (19) is that, at the lth delay tap, instead of representing
the channel time variation directly by the K CIR coefficients
{ck,l}K−1

k=0 in the time domain, we use the 2Q + 1 BEM coef-
ficients {hq,l}Q

q=−Q in the Doppler frequency domain. It can
be seen that, compared to the CFO and the time-varying phase
models in [15], [23], where a common time variation is assumed
for all channel paths, the CE-BEM models the time variation on
each delay tap independently. Therefore, the CE-BEM can nor-
mally achieve a more accurate channel approximation, although
bandlimiting the Doppler frequency may also cause a channel
modeling error, especially at the edges of each block. Moreover,
since Q � K in general, the number of channel parameters can
be greatly reduced by using the CE-BEM.

The input-output relationship of the doubly-selective channel
can be similarly modeled as (9). Based on the CE-BEM in (19),
the channel matrix C̃ in this case can be rewritten as

C̃ =
Q∑

q=−Q

Γ̃q
K G̃q (20)

where Γ̃q
K = diag{[1, ej 2 π

K q , . . . , ej 2 π
K q(K−1) ]T } is the expo-

nential basis matrix; the K × K coefficient matrix G̃q is circu-
lant with its first column equal to hq = [hq,0 , hq,1 , . . . , hq,L ]T

appended by K − L − 1 zeros. As for the structure of the com-
posite channel matrix C and the form of the demodulated vector
xn over the doubly-selective channel, we present our findings
in the next proposition.

Proposition 3: Consider an OSDM block with N vectors of
length M = K/N transmitted over the time-varying channel
modeled by (20). The composite channel matrix in this case has
the form

C =
Q∑

q=−Q

(
Jq

N ⊗ Λ−q
M

)
Gq (21)

where

Gq = Diag {Hq ,0 ,Hq ,1 , . . . ,Hq ,N −1} (22)

Hq ,n = ΛnH
M FH

M Hq ,nFM Λn
M (23)

for q = −Q,−Q + 1, . . . , Q and n = 0, 1, . . . , N − 1, with

Hq ,n = diag
{
[Hq,n ,Hq,N +n , . . . , Hq,(M −1)N +n ]T

}
(24)

and Hq,k =
∑L

l=0 hq,le
−j 2 π

K lk for k = 0, 1, . . . K − 1. Corre-
spondingly, the nth OSDM demodulated vector at the receiver
can be written as

xn = H0,ndn +
∑

0< |q |≤Q

Λ−q
M Hq ,(n−q)N

d(n−q)N
+ zn (25)

where (·)N denotes the modulo-N operation.
Proof: See Appendix B. �
To offer a better understanding, we partition the composite

channel matrix C in (21) into M × M blocks

Cn,n ′ = [C]nM :nM +M −1,n ′M :n ′M +M −1 (26)

where n, n′ = 0, 1, . . . , N − 1, and demonstrate its structure in
Fig. 2(a). It can be observed that Cn,n = H0,n , i.e., the blocks
on the main block diagonal correspond to Doppler index q = 0,
and Cn,(n−q)N

= Λ−q
M Hq ,(n−q)N

, i.e., the blocks on the qth
lower (upper) block diagonal correspond to Doppler index q > 0
(q < 0). We can thus recognize that, if Q < N/2, the compos-
ite channel matrix C has a cyclically block-banded structure.
Furthermore, from Fig. 2(a), we can intuitively understand the
OSDM demodulated vector in (25), where the first term models
the ISI within one vector and the second term represents the
IVI. It is also easy to verify that, for conventional OFDM (i.e.,
M = 1), the matrix C is reduced to a cyclically scalar-banded
matrix and IVI becomes ICI accordingly.

As for channel equalization, since the symbol vectors in (25)
are coupled, the per-vector equalization in (17) cannot be applied
over doubly-selective channels. We need to resort back to (10),
based on which a straightforward method of MMSE equalization
can be written as

d̂ = CH
(
CCH + σ2IK

)−1
x. (27)

The complexity of this method is dominated by the matrix in-
version, which is of order O(K3) and can be prohibitive for
large K. To alleviate this problem, the D-OSDM method in [20]
further organizes the symbol vectors into groups and places Q
zero vectors on both sides of each group to decouple them arti-
ficially. Although direct matrix inversion is still used, its benefit
is to reduce the matrix dimension from K to the group length.
Therefore, at the cost of lowering the transmission rate con-
siderably (due to the zero insertion), the D-OSDM method can
ease the computational load. However, without exploiting the
structure of C, its complexity is still cubic in the group length.
To this end, inspired by the low-complexity equalizer design
in (18) for frequency-selective channels, a natural question is
whether we can take a similar strategy here based on the struc-
ture of C in (21). In fact, Fig. 2(a) sheds some light on solving
the problem, and we will focus on the design of low-complexity
OSDM equalizers over doubly-selective channels in the follow-
ing section.
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Fig. 2. Structure of C, C and Cn ,n ′ with Q = 2 and M = 4 in (21), (29) and (34), respectively. (a) Structure of C and C. (b) Structures of Cn ,n ′ .

III. LOW-COMPLEXITY EQUALIZATION

Two low-complexity equalization algorithms are proposed
in this section for OSDM transmissions over doubly-selective
channels. The first one is similar to (27), which estimates all
the symbol vectors (i.e., the whole block) jointly, and thus is
referred to as block equalization. In contrast, the second one
estimates each symbol vector separately, and thus is termed as
serial equalization. Both of them exploit the structure of the
composite channel matrix C to achieve a significant reduction
in computational complexity.

To develop the algorithms, throughout this section we make
the assumption that Q < N/2, which, based on the discussion
of Proposition 3, is to guarantee the banded structure of C.
In addition, we set the leading and trailing Q vectors of the
transmitted block d to zero vectors, i.e.,

d =
[
01×M Q, dT , 01×M Q

]T
(28)

where d stacks the middle N = N − 2Q symbol vectors and
denotes the payload part of the transmitted block. By defining
the matrix T = [IK ]QM :(N −Q)M −1,: , it can be expressed as
d = Td. Meanwhile, note that instead of placing zero vectors
around each vector group as in [20], here they are inserted only
at the edges of the entire block. In other words, all symbol
vectors in the block are organized as one group. As a result, the
overhead thus incurred is reduced to the minimum.

A. Block Equalization

For block equalization, the OSDM demodulated block in (10)
is similarly truncated by T, and has the form

x = Cd + z (29)

where x = Tx, z = Tz, and C = TCTH is the MN × MN
submatrix at the center of C [see Fig. 2(a)]. By eliminating
the top-right and bottom-left corners of C, the cyclic coupling
effect is removed from x, and the remaining matrix C typically
has a standard (not cyclically) block-banded structure. Note
though that we should also pay attention to the special case
when Q ≥ N − 1, in which C is actually a full matrix. For
convenience and with a slight abuse of terminology, we consider
C as a block-banded matrix with block semi-bandwidth (BSB)

βC = min {Q,N − 1} . (30)

Then, based on (29), block MMSE equalization for OSDM
takes the form

d̂ = CH
(
CCH + σ2IM N

)−1
x. (31)

This equation can be considered as a truncated version of (27).
Moreover, from (30), it is easy to verify that here the matrix
R = CCH + σ2IM N is also block-banded with BSB

βR = min {2Q,N − 1} . (32)
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Given the fact that any block-banded matrix is also scalar-
banded, a straightforward approach to efficiently compute R−1

in this case is to treat R as a scalar-banded matrix with semi-
bandwidth MβR + M − 1. Then, the band LDLH factorization
algorithm in [25] can be adopted to implement the block equal-
izer in (31). Unfortunately, the complexity of this algorithm,
being of order O(β2

RM 3N), is still cubic in M and thus may
be impractical to use in OSDM systems with large vector sizes.

In order to reduce the equalization complexity, we further
investigate the structure of the blocks in C. To this end, we
establish the following proposition.

Proposition 4: Within the composite channel matrix C in
(21), every nonzero block Cn,n ′ defined in (26) can be factor-
ized as

Cn,n ′ = ΛnH
M FH

M Cn,n ′FM Λn ′
M , (33)

where

Cn,n ′ =

⎧
⎪⎨
⎪⎩

Hn−n ′,n ′ , if |n − n′| ≤ Q

J−1
M Hn−n ′−N,n ′ , if N − Q ≤ n − n′ ≤ N − 1

J1
M Hn−n ′+N,n ′ , if 1 − N ≤ n − n′ ≤ Q − N.

(34)
Proof: See Appendix C. �
Note that the three forms of Cn,n ′ in (33) and (34) are located

in the main block band, bottom-left and top-right corners of C,
respectively. For clarity, we also illustrate the structure of Cn,n ′

in Fig. 2(b). It can be seen that only Cn,n ′ in the main block
band can be diagonalized. Moreover, by selecting the central
part of C, the matrix C contains only such kind of blocks.
Inspired by the above observations, we propose the following
block equalization algorithm for OSDM.

Theorem 1: The truncated composite channel matrix C in
(29) can be factorized as

C = ΛH
(
IN ⊗ FH

M

)
C
(
IN ⊗ FM

)
Λ (35)

where Λ = TΛTH = Diag{ΛQ
M , . . . ,ΛN −Q−1

M }, and C =
TCTH withC being the K × K matrix composed of the blocks
in (34). Accordingly, the block MMSE equalization of OSDM
in (31) can be reformulated as

d̂ = ΛH
(
IN ⊗ FH

M

) [
C

H
(
CC

H
+ σ2IM N

)−1
]

× (IN ⊗ FM

)
Λx. (36)

Moreover, C and R = CC
H

+ σ2IM N are diagonal-block-
banded (DBB) matrices with the same block size and bandwidth
as C and R, i.e., βC and βR , respectively.

Proof: Based on Proposition 4, we can readily verify (35).
Then, substituting (35) into (31), and given the fact that(
IN ⊗ FM

)
Λ is a unitary matrix, we can obtain (36). Also,

the DBB structure of C and R can be easily identified, since

Cn,n ′ = Cn+Q,n ′+Q

=

{
Hn−n ′,n ′+Q , if |n − n′| ≤ βC

0M ×M , otherwise
(37)

Fig. 3. Proposed block equalization scheme for OSDM.

for 0 ≤ n, n′ ≤ N , where Cn,n ′ is the (n, n′)th block in C
defined similarly to (26). �

According to (36), the structure of the block equalization
algorithm is shown in Fig. 3, which consists of three steps:

1) Generate a transformed version of the demodulated block,
i.e., x =

(
IN ⊗ FM

)
Λx, by performing the frequency

shift Λn and then the DFT FM on each vector xn ;
2) Equalize the demodulated block in the transformed do-

main, i.e., d̂ = [C
H

(CC
H

+ σ2IM N )−1 ]x;
3) Transform it back and obtain the final estimate of the

symbol block d̂ = ΛH
(
IN ⊗ FH

M

)
d̂.

Moreover, from Theorem 1, we know that R is block-banded
and all its nonzero blocks are diagonal. Therefore, instead of in-
verting R as a general scalar-banded matrix in the block equal-
izer in (31), here the DBB structure of R can be further exploited
to lower the complexity of the block equalizer in (36). To make
this clear, we first extend the scalar LDLH factorization al-
gorithm in [25] to a block version, and present the following
theorem.

Theorem 2: Let R be an MN × MN positive-definite ma-
trix that is partitioned into blocks of size M × M . Its block
LDLH factorization can be written as

R = LDLH (38)

where L and D are block-lower-triangular and block-diagonal
matrices, respectively, with blocks of the same size as those in
R. Moreover, it can be shown that

1) Such factorization always exists; in addition, by restricting
the blocks on the main block diagonal of L to the identity
matrix IM , the factorization is also unique.

2) If R is block-banded, then L and R have the same BSB.
3) If all nonzero blocks in R are diagonal, so are the nonzero

blocks in L and D.
Proof: These statements can be proved similarly as their cor-

responding conclusions for scalar LDLH factorization in [32].
We thus omit the details here for briefness. �

We now focus on the special case where R = R, which is
a positive-definite and DBB matrix. For this case, an iterative
algorithm is developed for the block LDLH factorization R =
LDL

H
as shown in Algorithm 1. Here, based on Theorem 2, we

can easily make two observations. First, L is block-banded. As a
result, there is no need to compute all the blocks Ln,n ′ , 0 ≤ n′ <
n ≤ N , since, for any given n, only min{βR , n} nonzero blocks
exist below the main diagonal of L. Second, all the blocks in L
and D are diagonal. Therefore, each matrix operation (including
the matrix inversion) in lines 6 and 8 of Algorithm 1 requires
only M complex operations.

Based on the block LDLH factorization R = LDL
H

de-
scribed above, the transformed-domain equalization in Fig. 3 has
a low-complexity implementation, whose procedure is listed in
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Algorithm 1: Block LDLH Factorization.

Definitions: Rn,n ′ , Ln,n ′ and Dn,n ′ are the (n, n′)th
blocks of R, L and D, respectively.

1: Initialize the blocks L0,0 = IM and D0,0 = R0,0 .
2: for n = 1 : N − 1 do
3: Enforce the identity-block constraint: Ln,n = IM .
4: Determine the number of nonzero blocks:

β = min {βR , n} .

5: for n′ = n − β : n − 1 do
6: Compute the nonzero blocks in L:

Ln,n ′ =

⎛
⎝Rn,n ′ −

n ′−1∑
i=n−β

Ln,iDi,iL
H
n ′,i

⎞
⎠D

−1
n ′,n ′ .

7: end for
8: Compute the block on the main diagonal of D:

Dn,n = Rn,n −
n−1∑

i=n−β

Ln,iDi,iL
H
n,i .

9: end for

Algorithm 2: Transformed-domain Equalization.

1: Construct the DBB matrix R.
2: Perform the block factorization R = LDL

H
by

running
Algorithm 1, and obtain L and D.

3: Solve the linear system x = Ry in three steps:
4: (1) Solve the block-lower-triangular system x = Ly′.
5: (2) Solve the block-diagonal system y′ = Dy′′.
6: (3) Solve the block-upper-triangular system

y′′ = L
H
y.

7: Obtain the estimate of the symbol block d in the

transformed domain: d̂ = C
H
y.

Algorithm 2. Note that, since the two block-triangular systems
in lines 4 and 6 are banded, we can easily utilize a block version
of the band forward and backward substitution algorithms to
solve them. Moreover, thanks to the diagonal structure of the
blocks in L and D, the total complexity of the block equal-
ization in Algorithm 2 is only linear in MN . A more detailed
discussion on the computational complexity will be presented
in Section IV.

B. Serial Equalization

As mentioned above, serial equalization of OSDM is per-
formed on a vector-by-vector basis. Suppose we want to esti-
mate the nonzero symbol vector dn in the transmitted block
(28), where n ∈ {Q,Q + 1, . . . , N − Q − 1}. From the struc-
ture of the composite channel matrix C shown in Fig. 2, it can be
seen that the energy of dn spreads over its neighboring 2Q + 1

vectors. We can thus obtain

xn = Cndn + zn (39)

where xn = [xT
n−Q , . . . ,xT

n+Q ]T , zn = [zT
n−Q , . . . , zT

n+Q ]T ,
dn = [dT

n−2Q , . . . ,dT
n+2Q ]T , and

Cn =

⎡
⎢⎢⎣

Cn−Q,n−2Q . . . Cn−Q,n

. . .
. . .

. . .

Cn+Q,n . . . Cn+Q,n+2Q

⎤
⎥⎥⎦

(40)

is a (non-square) block-banded matrix with at most 2Q + 1
nonzero blocks on each block row. It is easy to verify that these
nonzero blocks generally have the form Ci,j = Ci,j , for n −
Q ≤ i ≤ n + Q and n − 2Q ≤ j ≤ n + 2Q, and the index j
here should be taken modulo-N . However, thanks to the leading
and trailing zero vectors in the transmitted block, the cyclic
coupling effect is eliminated among the edge vectors, and thus
{Ci,j | j < Q or j > N − Q − 1} in (40) can be further set to
zero to ease the computation. Therefore, it yields

Ci,j =

{
Ci,j , if Q ≤ j ≤ N − Q − 1
0M ×M , otherwise.

(41)

Base on this, serial equalization can be applied to produce the
symbol vector estimate

d̂n = CH
n

(
CnCH

n + σ2IM (2Q+1)
)−1

xn (42)

where Cn = [Cn ]:,2QM :2QM +M −1 .
Similar to the block equalization in (31), direct computa-

tion of (42) involves inverting Rn = CnCH
n + σ2IM (2Q+1)

and requires a cubic complexity. Therefore, as a counterpart
of Theorem 1, we establish the following result to achieve low-
complexity serial equalization.

Theorem 3: The matrix Cn in (39) can be factorized as

Cn = ΛH
n

(
I2Q+1 ⊗ FH

M

)
Cn (I4Q+1 ⊗ FM )Λ+

n (43)

where Λn = Diag{Λn−Q
M , . . . ,Λn+Q

M }, Λ+
n = Diag{Λn−2Q

M ,

. . . ,Λn+2Q
M }, and Cn has the same structure as Cn with blocks

{Ci,j} replaced by

Ci,j =

{
Ci,j , if Q ≤ j ≤ N − Q − 1
0M ×M , otherwise.

(44)

Accordingly, the serial MMSE equalization of OSDM in (42)
can be reformulated as

d̂n = ΛnH
M FH

M

[
CH

n

(
CnC

H
n + σ2IM (2Q+1)

)−1
]

× (I2Q+1 ⊗ FM )Λnxn (45)

where Cn = [Cn ]:,2QM :2QM +M −1 . Moreover, when

n = Q,Q + 1, . . . , N − Q − 1, Rn = CnC
H
n + σ2IM (2Q+1)

has a special structure with all its M × M blocks
[Rn ]qM :qM +M −1,q ′M :q ′M +M −1 , for q, q′ = 0, 1, . . . , 2Q,
being diagonal.
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Fig. 4. Proposed serial equalization scheme for OSDM.

Proof: It can be seen that, as C in block equalization, Cn

here contains only the blocks of the first kind in (34), i.e., all
nonzero blocks in Cn are diagonal. With this observation, the
proof is similar to that of Theorem 1 and thus omitted. �

Theorem 3 suggests that, instead of a direct implementa-
tion as in (42), the serial equalization may be able to achieve
a lower complexity by adopting (45). Similar to the block
equalization in Fig. 3, it can be implemented as shown in
Fig. 4. Here, the vector xn = (I2Q+1 ⊗ FM )Λnxn is first
generated, then it is equalized in the transformed domain as

d̂n = CH
n (CnC

H
n + σ2IM (2Q+1))−1xn , and finally the esti-

mate of the nth symbol vector is obtained by an inverse trans-

form, i.e., d̂n = ΛnH
M FH

M d̂n .

To compute R
−1
n for serial OSDM equalization, we do not

employ the block LDLH factorization algorithm given in Sec-
tion III-A. Instead, we extend the iterative matrix inversion al-
gorithm in [28]. Specifically, we partition Rn−1 and Rn as

Rn−1 =

[
Un−1 ΘH

n−1

Θn−1 Σn

]
, Rn =

[
Σn Θ̃n

Θ̃H
n Ũn

]
(46)

where Un−1 and Ũn are M × M matrices, Θn−1 and Θ̃n are
2QM × M matrices, and Σn is the common 2QM × 2QM
matrix in Rn−1 and Rn . Similarly, the partitioning scheme
(with the same 2 × 2 block dimensions) is also adopted for their
inverses, i.e.,

R
−1
n−1 =

[
Vn−1 ΦH

n−1

Φn−1 Ξn−1

]
, R

−1
n =

[
Ξ̃n Φ̃n

Φ̃H
n Ṽn

]
. (47)

Based on (46) and (47), the block iterative algorithm of com-
puting {R−1

n } is summarized in Algorithm 3, and the related
derivations are presented in Appendix D. The main idea is to
exploit the existence of the common block Σn to save compu-
tations. Similar to the block equalization case, the serial equal-
ization is roughly of linear complexity in MN . We will provide
its complexity analysis in Section IV.

IV. COMPUTATIONAL COMPLEXITY

Compared to the equalization methods in (31) and (42)
using direct matrix inversions, the block and serial OSDM
equalization algorithms proposed in this paper are based on
the channel matrix factorizations in (35) and (43), respectively,
and thus operate in the transformed domain. By this means, the
proposed algorithms can achieve a much lower complexity by
exploiting the special matrix structures described in Theorems 1
and 3. In this section, we present a detailed complexity analysis
to make this clearer.

A. Block Equalization

Let us begin with evaluating the complexity of Algorithm 2.
Since all its operations are in block form (with block size

Algorithm 3: Block Iterative Matrix Inversion.

1: Compute RQ and its inverse R
−1
Q .

2: for n = Q + 1 : N − Q − 1 do
3: (1) Update the matrix Rn :
4: for q = 0 : 2Q − 1 do

5:
[
Θ̃n

]
qM :qM +M −1,:

=
q∑

i=0
Cn−Q+q ,n+iC

H
n+Q,n+i

6: end for

7: Ũn = σ2IM +
2Q∑
i=0

Cn+Q,n+iC
H
n+Q,n+i

8: (2) Compute the matrix Σ−1
n :

9: Σ−1
n = Ξn−1 − Φn−1V−1

n−1Φ
H
n−1

10: (3) Update the matrix R
−1
n :

11: Ωn = −Σ−1
n Θ̃n

12: Ṽn =
(
Ũn + Θ̃H

n Ωn

)−1

13: Φ̃n = ΩnṼn

14: Ξ̃n = Σ−1
n + ΩnṼnΩH

n

15: end for

M × M ), for simplicity the complexity is first measured in
terms of block additions (BAs), block multiplications (BMs),
and block inversions (BIs). Thanks to the banded structure
of C, constructing R in line 1 does not need O(N 3) block
operations; instead, it costs only (2Q2 + Q + 1)N BAs and
(2Q2 + 3Q + 1)N BMs. Moreover, since the banded structure

is inherited by R, the block LDLH factorization R = LDL
H

in
line 2 can thus use a banded algorithm as in Algorithm 1, which
requires (2Q2 + Q)N BAs, (2Q2 + 3Q)N BMs and 2QN BIs.
Similarly, the three-step solution of x = Ry in lines 3–6 can
be implemented by band forward and backward substitution al-
gorithms, which involves 4QN BAs, 4QN BMs and N BIs. In
addition, the symbol block estimation in line 7 produces 2QN
BAs and (2Q + 1)N BMs.2

Then, given the fact that the blocks in C and R are diagonal,
we can readily have that one BA, BM and BI correspond to M
complex additions (CAs), complex multiplications (CMs) and
complex divisions (CDs), respectively. Therefore, Algorithm 2
actually has a linear complexity in MN .

B. Serial Equalization

For serial equalization, we focus first on the complexity of
Algorithm 3. During the initialization in line 1, constructing RQ

requires O(Q3) block operations, which corresponds to a com-
plexity on the order ofO(Q3M). Meanwhile, sinceRQ contains
only M × M diagonal blocks, its inversion can be decomposed
into M matrix inversions of a small size (2Q + 1) × (2Q + 1),
incurring also a O(Q3M) complexity. Furthermore, in the
main loop of Algorithm 3, updating Rn in lines 4–7 requires
2Q2 + Q + 1 BAs and 2Q2 + 3Q + 1 BMs; computing Σ−1

n in

2Note that the complexity of Algorithm 2 computed here is slightly larger
than its exact value, since we ignore the bandwidth truncation at the top-left and
bottom-right corners of banded matrices for simplicity.
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Fig. 5. OSDM block structure for channel estimation.

TABLE I
COMPLEXITY OF THE PROPOSED OSDM EQUALIZATION ALGORITHMS

line 9 requires 2Q2 + Q BAs, 2Q2 + Q BMs and 2Q BIs; updat-
ing R

−1
n in lines 11–14 requires 6Q2 + Q BAs, 6Q2 + 5Q BMs

and one BI. Then, on top of Algorithm 3, another 4Q2 + 4Q
BAs and 4Q2 + 6Q + 2 BMs are required to obtain the vector

d̂n . It can be seen that, similar to the block equalization case, in
the transformed domain the complexity of the serial equalization
(for all N data symbol vectors) is roughly3 linear in MN .

Note that both the block and serial equalization algorithms
in this paper need extra complexity for domain transformation.
Specifically, N BMs and N DFTs of size M are required to
perform the transform on the demodulated vectors, while N
BMs and N IDFTs of size M are required to perform the in-
verse transform for the symbol vector estimates. Taking these
operations into account, in Table I we summarize the overall
complexity of the two proposed time-varying channel equaliza-
tion algorithms for OSDM in terms of CAs, CMs and CDs. It can
be seen that, due to relatively small values of Q, their complexity
per vector is approximately only O(M log2M), which remains
on the same order as that of time-invariant channel equalization
in (18), and is much lower than the cubic complexity of the
direct equalization in [20].

V. CHANNEL ESTIMATION

In Section III, it is assumed that the OSDM receiver has per-
fect channel knowledge, by which we can obtain the CE-BEM
coefficients {hq,l} and construct the channel matrices C and
{Cn} for the block and serial equalizers. However, in practice,
doubly-selective channels have to be estimated prior to equal-
ization. To this end, we design an OSDM block structure, as
shown in Fig. 5, to facilitate estimation of the CE-BEM coeffi-
cients within a single block. Compared to the single-pilot-vector
scheme used in [20], the OSDM block here contains U equally
spaced pilot vectors, each of which is separated (cyclically) from
the data symbol vectors by 2Q zero vectors on both sides. As
such, the vector size restriction is relaxed from M ≥ L + 1 to
M ≥ (L + 1)/U , and thus more flexibility in the OSDM system
configuration can be obtained.

3We use the term “roughly” because we here do not count the O(Q3M )
complexity of the initialization step in Algorithm 3.

Let us denote with SP = {p0 , p1 , . . . , pU−1} the index set
of pilot vectors, where pu = Q + uΔ and Δ = N/U for u =
0, 1, . . . , U − 1. Based on (25), it is easy to know that, in this
case, the pilot and data symbol vectors can be decoupled. As
a result, centered around any vector index p ∈ SP , there are
2Q + 1 “neat” demodulated vectors {xp+q}Q

q=−Q , which con-
tain no IVI from data symbol vectors and have signal energy
only from the pilot vector dp . More specifically, we have that,
for each p ∈ SP and −Q ≤ q ≤ Q,

xp+q = Cp+q ,pdp + zp+q

= Λ(p+q)H
M FH

M Hq ,pFM Λp
M dp + zp+q (48)

where Proposition 4 is used in the second equation. Fur-
thermore, by defining xn = FM Λn

M xn , dn = FM Λn
M dn and

zn = FM Λn
M zn , it can be obtained from (48) that

xp+q = Hq ,pdp + zp+q = Πphq + z̄p+q (49)

where

Πp = diag{dp}F̃M Λp
L+1 (50)

F̃M =
[
11×U ⊗

√
MFM

]
:,0:L

. (51)

Then, stacking Πp to form Π(P) = [ΠT
p0

,ΠT
p1

, . . . ,ΠT
pU −1

]T ,

and xp+q to form x(P)
q = [xT

p0 +q ,x
T
p1 +q , . . . ,x

T
pU −1 +q ]

T , we
obtain the least-squares estimate of hq as

ĥq = Π(P)†x(P)
q , q = −Q,−Q + 1, . . . , Q. (52)

To further avoid direct matrix inversion in the above equation
and thus achieve low-complexity channel estimation, we here
select U frequency-shifted Chu sequences [29] to be the pilot
vectors, i.e.,

dp = ΛpH
M bM , p ∈ SP (53)

where bM takes the form

[bM ]m = ejπm 2 /M ,m = 0, 1, . . . ,M − 1. (54)

Then, invoking the property that the Chu sequences and their
DFTs are constant-modulus [29], we have that |[dp ]m | = 1
for m = 0, 1, . . . , M − 1, and thus Π(P)H Π(P) = MUIL+1 .
Therefore, in this case, the channel estimation in (52) can be
rewritten as

ĥq =
1

MU

∑
p∈ SP

ΛpH
L+1F̃

H
M diag

{
d
∗
p

}
xp+q . (55)

From (55), it can be seen that matrix inversion is no longer
involved and ĥq can be simply computed by performing U
IDFT operations of length M . The related complexity is only
on the order of O(UM log2M).
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Fig. 6. BER performance of the proposed block OSDM equalization algorithm
for different values of M and fd T .

Fig. 7. BER performance of the proposed serial OSDM equalization algorithm
for different values of M and fd T .

VI. NUMERICAL SIMULATIONS

In this section, numerical simulation results are provided to
illustrate the bit error rate (BER) performances of the proposed
low-complexity OSDM equalization algorithms over doubly-
selective channels. We here consider a UWA communication
scenario, where OSDM blocks are composed of K = 1024
quaternary phase-shift keying (QPSK) symbols and have a du-
ration of T = 256 ms. The symbol sampling period is thus
Ts = T/K = 0.25 ms. Moreover, to simulate the UWA chan-
nel effects, we set the channel memory length to L = 24, which
corresponds to a multipath delay spread of τmax = LTs = 6 ms.
Independent Rayleigh fading channel taps are assumed with an
exponentially decaying power delay profile losing 1.66 dB per
tap. Meanwhile, similar to [20], the channel Doppler spread is
modeled by a bell-shaped spectrum with bell coefficient equal
to 9. The normalized Doppler spread fdT , where fd is the max-
imum Doppler frequency, is changed over the range of [0, 1].

With the above settings, the performance of the proposed
algorithms is evaluated in the following four aspects.

1) Comparison With OFDM: Figs. 6 and 7 show the BER per-
formance of the proposed block and serial OSDM equalization
algorithms, respectively, with various vector lengths M = 1,

4 and 16. For comparison, two normalized Doppler spreads,
fdT = 0.4 and 0.8, are considered here. Moreover, at the re-
ceiver, we assume perfect knowledge of the time-varying CIR
and fix Q = 2. The CE-BEM channel coefficients can thus be
obtained via (19). Since OSDM reduces to OFDM when M = 1,
the corresponding curves in the two figures actually correspond
to the BER performance of the block and serial OFDM equaliza-
tion algorithms in [25]. It can be seen that the proposed OSDM
equalization algorithms outperform their OFDM counterparts,
and lower error floors are achieved as M increases. A similar
observation has been reported in [13], [15] over frequency-
selective channels, and a detailed theoretical analysis of the
diversity order can be found in [13]. An intuitive explanation
is based on the precoded-OFDM interpretation of OSDM in
Section II-A. Specifically, unlike OFDM where each symbol is
modulated independently on one subcarrier, the symbol vectors
in OSDM are precoded with {FM Λn

M }, and thus the energy
of each symbol is distributed over M subcarriers, by which
intra-vector frequency diversity can be obtained. However, we
should also note that, as fdT increases, the BER improvement
obtained by adjusting M gets smaller. This is because the CE-
BEM approximates the doubly-selective channel by ignoring
the out-of-band IVI. A larger fdT leads to a worse CE-BEM
approximation and more leakage of the out-of-band IVI, which
reduces the frequency diversity gain obtained by increasing M .

Furthermore, by comparing the results in Figs. 6 and 7, it can
be seen that serial equalization generally has a better perfor-
mance than its block equalization counterpart. This is because,
given that the CE-BEM enforces a limited Doppler spread Q,
block equalization actually uses all N demodulated vectors to
estimate each symbol vector, while serial equalization excludes
the remote demodulated vectors {xi ||i − n| > Q} (with un-
modeled IVI) from participation in estimating dn .

2) Effects of Channel Doppler Spread: Figs. 8 and 9 illus-
trate the BER performance of the proposed block and serial
OSDM equalization algorithms as a function of the normalized
Doppler spread for various Q values. Here, the OSDM vector
length is set to M = 4 and the signal-to-noise ratio (SNR) is
fixed at 20 dB. Again, we assume that perfect channel knowl-
edge is available at the receiver. It is easy to realize that, when
Q = 0, the IVI effect is ignored and thus time-invariant channel
equalization is actually adopted which serves here as a bench-
mark. As expected, the OSDM system performance improves
as Q increases, since the band approximation of the CE-BEM
gets enhanced accordingly. However, it is interesting to note
that, for some large values of Q, the BER is not monotonically
increasing with respect to the Doppler spread. This is because
extending the Doppler spread not only worsens the CE-BEM ap-
proximation but also improves the Doppler diversity gain. The
overall system performance is jointly determined by these two
coupling effects. When the Doppler spread is relatively small,
the effect of Doppler diversity prevails and the BER decreases
slightly. In contrast, as the Doppler spread increases, the effect
of the channel modeling error dominates and the BER starts to
rise.

3) Impact of Channel Estimation Errors: Fig. 10 compares
the BER performance of the proposed block OSDM equaliza-
tion algorithm with known and estimated channel knowledge.
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Fig. 8. BER performance of the proposed block OSDM equalization algorithm
for different values of Q.

Fig. 9. BER performance of the proposed serial OSDM equalization algorithm
for different values of Q.

Fig. 10. BER performance comparison of the proposed block OSDM equal-
ization algorithm with known and estimated channel knowledge.

The performance evaluation is carried out over a time-varying
(TV) channel with normalized Doppler spread fdT = 0.4, as
well as over a time-invariant (TI) channel (with fdT = 0) as a
benchmark. Here, the OSDM vector length is fixed to M = 4.
We select U = 8 and thus a total of MU = 32 pilot symbols is
used for channel estimation. It can be observed that, except for
the TI case, there exists an error floor in all TV cases due to the
band approximation of the CE-BEM. To reduce the approxima-
tion error and improve the BER performance, a simple approach

Fig. 11. NMSE performance of the OSDM channel estimation algorithm for
different values of fd T and Q.

is to increase Q when the channel is known. However, this is not
always the case when channel estimation is taken into account.
The imperfect channel knowledge can negate the performance
advantage of configuring Q > 0 at low SNR.

To make this clearer, Fig. 11 further presents the channel es-
timation performance in terms of the normalized mean square
error (NMSE). We here use the same OSDM system configura-
tions as those in Fig. 10, and consider two TV cases of fdT = 0.4
and 0.8 (against the benchmark of the TI case). As expected, the
NMSE increases with fdT . However, we cannot draw the sim-
ple conclusion here that the NMSE decreases with Q. Actually,
it can be seen that, although a larger Q introduces additional
CE-BEM coefficients for TV channel modeling, at low SNR,
their estimates are unreliable and thus lead to a higher NMSE.

Finally, it may be worth mentioning that, with Q fixed, the CE-
BEM approximation can also be improved by using a receiver
window design similar to that in [30]. However, an investigation
of this topic goes beyond the scope of this paper.

4) Comparison With D-OSDM Equalization [20]: Since the
D-OSDM equalization in [20] is performed on the entire data
block and thus can be categorized as block equalization, we com-
pare it with the block OSDM equalization proposed in this pa-
per. Also for fairness, given that the D-OSDM receiver supports
only the single-pilot-vector channel estimation scheme [20], we
select U = 1 and use a longer vector length M = 32 here to
make sure MU > L. Meanwhile, we fix the SNR to 20 dB and
the channel normalized Doppler spread to fdT = 0.4. It can be
seen in Fig. 12 that, although producing the same BER at Q = 0,
the proposed block equalization improves its performance more
slowly than the D-OSDM equalization as Q increases. And its
inferior performance becomes evident at large values of Q, es-
pecially when the channel is perfectly known at the receiver. The
reason for this phenomenon is that, unlike the D-OSDM equal-
ization which makes full use of all N demodulated vectors, the
proposed block equalization algorithm uses only the truncated
block in (31) comprising N = N − 2Q demodulated vectors.
Anyway, the performance gap between these two equalization
algorithms is quite narrow when channel estimation is taken
into account. And, more importantly, the computational com-
plexity of the proposed block equalization algorithm is only
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Fig. 12. BER performance comparison between the proposed block OSDM
equalization algorithm and the D-OSDM equalization algorithm in [20].

about 0.02% of that of its D-OSDM equalization counterpart
when Q = 5.

VII. CONCLUSION

OSDM is a generalized modulation scheme which can merge
OFDM and SC-FDE in a unified framework and offer more flex-
ibility in system design. However, OSDM suffers from IVI over
doubly-selective channels. In this paper, low-complexity block
and serial equalization algorithms have been proposed to coun-
teract its effect. Unlike the direct equalization in (31) and (42) of
cubic complexity, these proposed algorithms exploit the cycli-
cally block-banded structure of the composite channel matrix
(Proposition 4), and are performed in a transformed domain.
Then, by using block LDLH factorization (Algorithm 1) and
block iterative matrix inversion (Algorithm 3), the equalization
complexities are significantly reduced to about O(M log2M)
per symbol vector. These OSDM equalization algorithms are
based on the CE-BEM, and can be regarded as an extension
of the corresponding algorithms for OFDM in [25]. Moreover,
to facilitate their practical implementation, a CE-BEM chan-
nel estimation method has been designed for OSDM systems
(Fig. 5 and (55)), which uses frequency-shifted Chu sequences
as pilots to ease the computation. Numerical simulations are
finally provided to confirm the validity of our algorithms, and to
further examine the impact of the vector length, Doppler spread
and channel estimation error on the BER performance. The
results suggest that, equipped with these low-complexity equal-
ization algorithms, OSDM could be potentially considered for
future high-rate wireless communications over doubly-selective
channels.

APPENDIX A
PROOF OF PROPOSITION 1 AND (8)

Proposition 1 is actually based on the general Cooley-
Tukey algorithm [31], which decomposes the calculation of
an DFT of size K = MN into M smaller DFTs of size
N . Let x = [x0 , x1 , . . . , xK−1 ]T be the input sequence, y =
[y0 , y1 , . . . , yK−1 ]T be the corresponding unitary DFT output
sequence, and WK = e−j2π/K denote the primitive Kth root of
unity. Then, at any index k = mN + n for m = 0, 1, . . . ,M −
1 and n = 0, 1, . . . , N − 1, the unitary DFT output sample can

be derived as [31]

ymN +n =
1√
K

K−1∑
l=0

xlW
l(mN +n)
K

=
1√
K

M −1∑
p=0

[(
N −1∑
q=0

xqM +pW
qn
N

)
Wpn

K

]
Wpm

M .

(56)

By collecting all K DFT output samples, the above DFT factor-
ization can be described in matrix-vector form as

y = FK x = PN,M (IN ⊗ FM )Λ (FN ⊗ IM )x (57)

from which Proposition 1 is proved.
We then use the DFT matrix factorization identity in

Proposition 1 to derive the precoded-OFDM interpretation of
OSDM. Specifically, by plugging (3) and (5) into the left-hand
side of (8), it can be obtained that

FK s = [PN,M (IN ⊗ FM )Λ (FN ⊗ IM )]
[(

FH
N ⊗ IM

)
d
]

= PN,M (IN ⊗ FM )Λd (58)

where we have used the Kronecker product property, i.e.,

(A1 ⊗ B1) (A2 ⊗ B2) = (A1A2) ⊗ (B1B2) (59)

in the third line. Now, from (58), we can easily arrive at the
right-hand side of (8), which concludes the proof.

APPENDIX B
PROOF OF PROPOSITION 3

From (11) and (20), we have

C =
Q∑

q=−Q

ΓqGq (60)

where

Γq = (FN ⊗ IM ) Γ̃q
K

(
FH

N ⊗ IM

)
(61)

Gq = (FN ⊗ IM ) G̃q

(
FH

N ⊗ IM

)
. (62)

Let us first focus on (62). Since G̃q is a circulant matrix,
which has a similar structure as C̃ in (9), based on Proposition 2,
(22), (23) and (24) can be readily obtained. We then proceed to
(61). Since Γ̃q

K = Γ̃q
N ⊗ Λ−q

M , by using the Kronecker product
property in (59), it can be derived that

Γq = (FN ⊗ IM )(Γ̃q
N ⊗ Λ−q

M )(FH
N ⊗ IM )

= (FN Γ̃q
N FH

N ) ⊗ Λ−q
M . (63)

Furthermore, by exploiting the well-known property that any
N × N circulant matrix AN can be diagonalized by the DFT
matrix FN as [32]

AN = FN diag
(√

NFH
N a
)
FH

N , (64)

where a is the first column of AN , we obtain that FN Γ̃q
N FH

N in
(63) is a circulant matrix with its first column equal to

1√
N

FN

[
1, ej 2 π

N q , . . . , ej 2 π
N q(N −1)

]T
= eN (q). (65)
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Or in other words, we have

FN Γ̃q
N FH

N = Jq
N . (66)

Finally, by plugging (66) and (63) into (60), we arrive at (21),
from which (25) can be readily obtained. This concludes the
proof of Proposition 3.

APPENDIX C
PROOF OF PROPOSITION 4

We establish the block structure of C in (21) in three cases,
respectively. First, if |n − n′| ≤ Q, the block Cn,n ′ is located
in the main block band of C. It can be seen from Fig. 2(a) and
(21) that we have

Cn,n ′ = Λ(n−n ′)H
M Hn−n ′,n ′ . (67)

By plugging (23) into (67), it is obtained that

Cn,n ′ = Λ(n−n ′)H
M

(
Λn ′H

M FH
M Hn−n ′,n ′FM Λn ′

M

)

= ΛnH
M FH

M Hn−n ′,n ′FM Λn ′
M (68)

and thus Cn,n ′ = Hn−n ′,n ′ in this case.
In the second case, if N − Q ≤ n − n′ ≤ N − 1, the block

Cn,n ′ resides in the bottom-left corner of C. We can derive
accordingly that

Cn,n ′ = Λ(n−n ′−N )H
M Hn−n ′−N,n ′

= Λ(n−n ′−N )H
M

(
Λn ′H

M FH
M Hn−n ′−N,n ′FM Λn ′

M

)

= ΛnH
M

(
Γ̃−1

M FH
M

)
Hn−n ′−N,n ′FM Λn ′

M

= ΛnH
M

(
FH

M J−1
M

)
Hn−n ′−N,n ′FM Λn ′

M (69)

where we have used (66) in the last line. From (69), we arrive
at Cn,n ′ = J−1

M Hn−n ′−N,n ′ .
Finally, in the case that 1 − N ≤ n − n′ ≤ Q − N , the block

Cn,n ′ resides in the top-right corner ofC. Its derivation is similar
to that in the second case, due to which we omit the details and
complete our proof.

APPENDIX D
DERIVATIONS OF ALGORITHM 3

1) Update the matrix Rn : Since Θ̃n and Ũn are blocks
making up the last M columns of Rn , we have
[
Θ̃n

Ũn

]
=
[
CnC

H
n + σ2IM (2Q+1)

]
:,2QM :2QM +M −1

=

⎡
⎢⎢⎣

Cn−Q,n

...
. . .

Cn+Q,n . . . Cn+Q,n+2Q

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎣

C
H
n+Q,n

...

C
H
n+Q,n+2Q

⎤
⎥⎥⎥⎦

+

[
02QM ×M

σ2IM

]
(70)

from which the update equations of Rn in lines 4–7 of
Algorithm 3 can be obtained.

2) Compute the matrix Σ−1
n : Substituing (46) and (47) into

Rn−1R
−1
n−1 = IM (2Q+1) , we can obtain that

Θn−1ΦH
n−1 + ΣnΞn−1 = I2QM (71)

Θn−1Vn−1 + ΣnΦn−1 = 02QM ×M . (72)

From (71), it yields that Σ−1
n = Σ−1

n Θn−1ΦH
n−1 + Ξn−1 . Then,

given that Σ−1
n Θn−1 = −Φn−1V−1

n−1 , which is derived from
(72), we have that Σ−1

n is the Schur complement of Vn−1 in

R
−1
n−1 , i.e., the equation in line 9 of Algorithm 3.

3) Update the matrix R
−1
n : Similarly, by substituing (46) and

(47) into RnR
−1
n = IM (2Q+1) , it can be obtained that

Σn Φ̃n + Θ̃nṼn = 02QM ×M (73)

Σn Ξ̃n + Θ̃nΦ̃H
n = I2QM (74)

Θ̃H
n Φ̃n + ŨnṼn = IM ×M . (75)

Here, from (73), we have Φ̃n = −Σ−1
n Θ̃nṼn = ΩnṼn , i.e.,

the equation in line 13 of Algorithm 3. Then, plugging it into
(75), we arrive at the equation of updating Ṽn in line 12 of
Algorithm 3. Also, based on Φ̃n = ΩnṼn and (74), we obtain
the equation of updating Ξ̃n in line 14 of Algorithm 3.
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