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Abstract—Graph filters are one of the core tools in graph signal
processing. A central aspect of them is their direct distributed im-
plementation. However, the filtering performance is often traded
with distributed communication and computational savings. To
improve this tradeoff, this paper generalizes state-of-the-art dis-
tributed graph filters to filters where every node weights the signal
of its neighbors with different values while keeping the aggrega-
tion operation linear. This new implementation, labeled as edge-
variant graph filter, yields a significant reduction in terms of com-
munication rounds while preserving the approximation accuracy.
In addition, we characterize a subset of shift-invariant graph fil-
ters that can be described with edge-variant recursions. By using a
low-dimensional parameterization, these shift-invariant filters pro-
vide new insights in approximating linear graph spectral operators
through the succession and composition of local operators, i.e., fixed
support matrices. A set of numerical results shows the benefits of
the edge-variant graph filters over current methods and illustrates
their potential to a wider range of applications than graph filtering.

Index Terms—Consensus, distributed beamforming, distributed
signal processing, edge-variant graph filters, FIR, IIR, ARMA,
graph filters, graph signal processing.

I. INTRODUCTION

F ILTERING is one of the core operations in signal process-
ing. The necessity to process large amounts of data defined

over non-traditional domains characterized by a graph triggers
advanced signal processing of the complex data relations em-
bedded in that graph. Examples of the latter include biological,
social, and transportation network data. The field of graph signal
processing (GSP) [2]–[4] has been established to incorporate the
underlying structure in the processing techniques.

Through a formal definition of the graph Fourier transform
(GFT), harmonic analysis tools employed for filtering in tradi-
tional signal processing have been adapted to deal with signals
defined over graphs [5]–[11]. Similarly to time-domain filter-
ing, graph filters manipulate the signal by selectively amplify-
ing/attenuating its graph Fourier coefficients. Graph filters have
seen use in applications such as signal analysis [12], [13], classi-
fication [14], [15], reconstruction [7], [16], [17], denoising [8],
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[18]–[20] and clustering [21]. Furthermore, they are the central
block in graph filterbanks [22], [23], wavelets [24], and convo-
lutional neural networks [25], [26].

Distributed implementations of graph filters emerged as a way
to deal with the ubiquity of big data applications and to improve
the scalability of computation. By allowing nodes to exchange
only local information, finite impulse response (FIR) [4], [6], [9]
and infinite impulse response (IIR) [10], [11], [27] architectures
have been devised to implement a variety of responses.

However, being inspired by time-domain filters, the above
implementations do not fully exploit the structure in the graph
data. The successive signal aggregations are locally weighted
with similar weights often leading to high orders in approxi-
mating the desired response. To overcome this challenge, this
paper proposes a generalization of the distributed graph filter-
ing concept by applying edge-based weights to the information
coming from different neighbors. While the detailed contribu-
tions are provided in Section I-B, let us here highlight that the
above twist yields graph filters that are flexible enough to capture
complex responses with much lower complexity.

A. Related Works

Driven by the practical need to implement a linear function
with only few local operations, the works in [9], [28] propose to
ease the communication and computational cost of graph filters
(GF).

In [9], the polynomial graph filters (i.e., the FIR structure)
are extended to graph filters with node-dependent weights. This
architecture, referred to as a node-variant (NV) FIR graph filter,
assigns different weights to different nodes and yields the same
implementation as the classical FIR graph filter [4], [6]. The NV
FIR filter addresses a broader family of linear operators that goes
beyond the class of shift-invariant graph filters. However, the
NV FIR filter still uses the same weight for all signals arriving
at a particular node, ignoring the affinity between neighbors.
As we show next, this limits the ability of the NV FIR filter to
approximate the desired linear operator with very low orders.

The work in [28] introduces stochastic sparsification to reduce
the cost of a distributed implementation. This method considers
random edge sampling in each aggregation step to implement
the filter output with a lower complexity by sacrificing the accu-
racy of the graph filter. In addition, although conceptually sim-
ilar to this work, the filter following [28] is stochastic in nature
and hence its performance guarantees only hold in expectation.
Moreover, since this approach applies only to shift-invariant fil-
ters, such as the FIR [4], [6] and the IIR [10], [11], it cannot
address linear operators that are not shift invariant.
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Another related problem, which can be interpreted by means
of graph filtering, is the multilayer sparse approximation of ma-
trices [29]. Different from the previous two approaches, here
a dense linear transform (matrix) is approximated through a
sequence of sparse matrix multiplications to obtain a compu-
tational speedup. While this framework can be considered as
a series of diffusion steps over a network, the support of such
sparse matrices differs in each iteration. This in practice can be a
limitation since it often requires information from non-adjacent
nodes within an iteration. Finally, in [30] the problem of optimal
subspace projection by local interactions is studied. This paper
designs the weights of a network in order to achieve the fastest
convergence to this kind of linear projection operators. How-
ever, this methods does not address the more general GSP setup
of interest: the implementation of graph filters or more general
linear operators.

B. Paper Contributions

The main contribution of this work is the extension of the
state-of-the-art graph filters to edge-variant (EV) graph filters.
Due to the increased degrees of freedom (DoF), these filters
allow for a complexity reduction of the distributed implemen-
tation while maintaining the approximation accuracy of current
approaches. The salient points that broaden the existing litera-
ture are listed below.

– We present edge-variant architectures to implement FIR
and IIR graph filtering. This framework extends the state-
of-the-art graph filters by finding optimal edge weights to
perform local aggregation of data. These new edge weights
can differ per communication round and are generally dis-
tinct from the original weights of the graph matrix, thereby
effectively reducing the number of exchanges. As for clas-
sical graph filter implementations, only local exchanges are
required in each communication round, thus yielding an
efficient distributed implementation. Three forms are an-
alyzed: First, the general class of linear edge-variant FIR
filters is presented and its distributed implementation is dis-
cussed. Then, the constrained edge-variant FIR graph filter
is introduced, which maintains a similar distributed im-
plementation as the general form, yet allowing a simple
least-squares design. Finally, the family of edge-variant
autoregressive moving average graph filters of order one
(ARMA1) is treated. This new distributed IIR architecture
allows a better trade-off between approximation accuracy
and convergence rate compared to current IIR approaches.

– Through the definition of the filter modal response, we
give a Fourier interpretation to a particular family of edge-
variant graph filters. This subfamily shows a shift-invariant
nature and links the filtering operation with a scaling of the
graph modes (e.g., the graph shift eigenvectors). Further,
we demonstrate the connection between the constrained
edge-variant graph filters and per-tone filtering in tradi-
tional time-domain systems.

– Considering the general problem of approximating any lin-
ear operator through local operations, we demonstrate the
applicability of our methods to problems beyond graph sig-
nal processing.

– Besides outperforming state-of-the-art graph filters in GSP
tasks such as approximating a user-provided frequency re-
sponse, distributed consensus, and Tikhonov denoising, we
present two new applications that could be addressed dis-
tributively with the proposed edge-variant graph filters: a
distributed solution to an inverse problem and distributed
beamforming.

C. Outline and Notation

This paper is organized as follows. Section II reviews the pre-
liminaries of GSP and distributed graph filtering, and further
defines the modal response of a graph filter. Section III gener-
alizes the FIR graph filters to their edge-variant version. Here,
we also introduce the shift-invariant edge-variant graph filter and
characterize its graph modal response. Section IV analyzes a par-
ticular subfamily of edge-variant FIR graph filters, which enjoys
a similar distributed implementation and a least-squares design
strategy. In Section V, we generalize the idea of edge-variant
filtering to the class of IIR graph filters. Section VI corroborates
our findings with numerical results and Section VII discusses
some concluding remarks.

Throughout this paper, we adopt the following notation.
Scalars, vectors, matrices, and sets are denoted by lowercase
letters (x), lowercase boldface letters (x), uppercase boldface
letters (X), and calligraphic letters (X ), respectively. [X]i,j
denotes the (i, j)th entry of the matrix X whereas [x]i rep-
resents the ith entry of the vector x. XT, XH, and X−1 are
respectively the transpose, the Hermitian, and inverse of X .
The Moore-Penrose pseudoinverse of X is X†. The Khatri-Rao
product between X and Y is written as X ∗ Y , while their
Hadamard product as X � Y . 1 and I are the all-one vector
and identity matrix of appropriate size, respectively. vec(·) is
the vectorization operation. diag(·) refers to a diagoal matrix
with its argument on the main diagonal. null{·} and span{·}
denote the nullspace and span of their argument. nnz(X) and
supp{X} are the number of nonzero entries and the support of
X . Finally, we define the set [K] = {1, 2, . . . ,K}.

II. PRELIMINARIES

This section recalls the preliminary material that will be use-
ful in the rest of the paper. It starts with the definition of the
graph Fourier transform (GFT) and graph filtering. Then, two
distributed recursions that implement FIR and IIR filtering op-
erations on graphs are presented. Finally, the modal response of
a graph filter is defined.

Graph Fourier transform. Consider an N -dimensional sig-
nal x residing on the vertices of a graph G = (V, E) with
V = {v1, . . . , vN} the set ofN vertices, i.e., |V| = N , and E ⊆
V × V the set ofM edges, i.e., |E| =M . LetW be the weighted
graph adjacency matrix with [W ]i,j �= 0 if (vj , vi) ∈ E and
[W ]i,j = 0, otherwise. For an undirected graph, the combinato-
rial graph Laplacian matrix is L = diag(W1)−W . Both W
and L are valid candidates for the so-called graph shift operator
S, an N ×N matrix that carries the notion of shift in the graph
setting [2]–[5] but alternative shift operators are also applicable.
Throughout this work, we assume the following
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� (A.0) S is diagonalizable.
This implies that the shift matrix, S, is nondefective. This

is a reasonable assumption as the set of diagonalizable N ×N
matrices is dense on the set of N ×N matrices. Under (A.0)
we can factor S using the eigenvalue decomposition as S =
UΛU−1. The GFT of x is defined then as x̂ = U−1x and the
inverse GFT is x = Ux̂. Following the GSP convention, the
eigenvectors U = [u1,u2, . . . ,uN ] represent the graph modes
whereas the eigenvalues Λ = diag(λ1, . . . , λN ) are referred to
as the graph frequencies.

Graph filtering. A linear shift-invariant graph filter is an op-
eration on the graph signal with graph frequency domain output

ŷ = h(Λ)x̂. (1)

Here, h(Λ) is a diagonal matrix with the filter frequency re-
sponse on its diagonal. More formally, the frequency response
of a graph filter is a function

h : C �→ R, λi → h(λi), (2)

that assigns a particular value h(λi) to each graph frequency λi.
This definition is akin to the one used in traditional signal pro-
cessing. However, depending on the underlying graph topology,
some shift operators might not have a simple spectrum, i.e., the
multiplicity of some eigenvalues is greater than one. So, there
is no one-to-one mapping between the graph frequencies λi and
the graph modesui. For this reason, at the end of this section, we
will introduce the notion of graph modal response which treats
the graph filters from the graph shift eigenvector perspective.
Finally, by applying the inverse GFT on both sides of (1), we
have the vertex domain filter output

y = Hx, (3)

with H = Uh(Λ)U−1.
FIR graph filters. A popular form of H is its expression as

a polynomial of the graph shift operator [4]–[6], i.e.,

Hc �
K∑

k=0

φkS
k, (4)

which we refer to as the classical FIR graph filter. It is possible to
run the FIR filter (4) distributively due to the locality ofS [6], [9].
In particular, since Skx = S(Sk−1x) the nodes can compute
locally thekth shift ofx from the former (k − 1)th shift. Overall,
an FIR filter of order K requires K local exchanges between
neighbors and amounts to a computational and communication
complexity of O(MK).

To expand the possible set of operations that can be imple-
mented distributively through FIR recursions, [9] proposed the
NV FIR graph filter. These filters have the node domain form

Hnv �
K∑

k=0

diag(φk)S
k, (5)

where the vector φk = [φk,1, . . . , φk,N ]T contains the node
dependent coefficients applied at the kth shift. Note that for
φk = φk1, the NV FIR filter (5) reduces to the classical FIR
filter (4). Furthermore, from (5), we can notice that the NV FIR

filter preserves also the efficient implementation of (4) since it re-
lies on the same distributed implementation of the shift operator
S. Thus this filter also has a computational and communication
complexity of O(MK).

In case that a linear operator H̃ is desired to be approximated
by a matrix polynomial as in (4), the filter order K of a classi-
cal FIR filter might become large if a high accuracy is required.
As the computational complexity scales with K, implementing
large-order graph filters incurs high costs. The NV graph fil-
ter provides a first approach to tackle this issue. Starting from
Section III, we generalize these ideas towards an edge-variant
(EV) graph filter alternative, which due to its enhanced DoF can
approximate H̃ with an even lower orderK. Therefore, it leads
to a more efficient implementation. One of the main benefits
of both the NV and the EV graph filters is that they address a
broader class of operators H̃ which do not necessarily share the
eigenvectors with S, such as analog network coding [9] as well
as other applications that we will detail later on.

IIR graph filters. In [10], [11], the authors introduced an
ARMA recursion on graphs to distributively implement IIR
graph filtering, i.e., a filtering operation characterized by a ra-
tional frequency response. The building block of this filter is the
so-called ARMA graph filter of order one (ARMA1). This filter
is obtained as the steady-state of the first-order recursion

yt = ψSyt−1 + ϕx, (6)

with arbitrary y0 and scalar coefficients ψ and ϕ. The opera-
tion (6) is a distributed recursion on graphs, where neighbors
now exchange their former output yt−1 rather than the input
x. The per-iteration complexity of such a recursion is O(M).
Given that ψ satisfies the convergence conditions for (6) [11],
the steady-state output of the ARMA1 is

y � lim
t→∞yt = ϕ

∞∑

τ=0

(ψS)τx = ϕ(I − ψS)−1x

� Harma1x. (7)

Such a filter addresses several GSP tasks including Tikhonov
denoising, graph signal interpolation under a smoothness prior
[11], and aggregate graph signal diffusion [31]. In Section V,
we extend (6) to an edge-variant implementation with the aim
to improve its convergence speed without heavily affecting the
same approximation accuracy.

Graph modal response. Before moving to the main contri-
butions of this work, we define next the modal response of a
graph filter.

Definition 1: (Graph modal response) The modal response
of a linear shift-invariant graph filter

H = Udiag(h1, . . . , hN )U−1, (8)

is defined as the function

h : [N ] → C, i �→ hi,

where hi is the scaling experienced by the ith graph mode.
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This definition provides a notion for the scaling that the graph
modes experience when a graph signal undergoes a linear shift-
invariant graph filtering operation. Notice that this kind of re-
sponse is equivalent to the graph frequency response (2) when
the shift operator has a simple spectrum. Since this is not always
the case, the modal reponse provides a description that resem-
bles better the frequency response of time-domian filters. Hence,
we will use this terminology in the rest of the paper.

III. EDGE-VARIANT FIR GRAPH FILTERS

Let us assume a scenario in which each node trusts differently
the information coming from different neighbors, e.g., a person
is likely to value more the opinion of his/her partner than that
of a colleague. So, it is reasonable to treat this case as a graph
filter, where each node weights differently the information of
its neighbors. Here, we formalize the above intuition in terms
of EV FIR graph filters. First, we introduce the general form of
these filters and then in Section III-B we focus on the class of
shift-invariant edge-variant (SIEV) FIR graph filters. The filter
design strategy is discussed in Section III-C.

A. General Form

Consider an extension of the above edge-dependent fusion to
several diffusion steps (signal shifts) where in each shift a differ-
ent set of weights is used. At the kth diffusion, node vi weights
its neighbouring node vl with the weight φ(k)i,l . Hence, in each
shift k ∈ [K], and for each node vi ∈ V , there is a set of coef-
ficients {φ(k)i,l } for l ∈ Nvi

. Here, Nvi
denotes the set of nodes

adjacent to vi as well as the node vi itself, and K is the num-
ber of shifts. Mathematically, the above behavior can be written
through an order-K general EV FIR graph filter defined as

Hev � Φ1 +Φ2Φ1 + · · ·+ΦKΦK−1 · · ·Φ1

=

K∑

k=1

Φk:1,
(9)

where Φk:1 = ΦkΦk−1 · · ·Φ1 and Φj ∈ CN×N is an edge-

weighting matrix constructed from the coefficient set {{φ(j)1,l },
· · · , {φ(j)N,l}}, more specifically [Φj ]i,l = φ

(j)
i,l . The fact that l ∈

Nvi
can be formalized by the following assumption.

� (A.1) Each Φj , j ∈ [K] shares the support with S + I .
Notice that this assumption possibly allows each node to use

also its own information whenS has zero entries on its diagonal,
e.g., when S = W . Note that definition (9) does not impose any
symmetry on the coefficient matrices Φj . In fact, depending on
how adjacent nodes trust each other, the applied weights can
be different. From this point on, assumption (A.1) will extend
throughout the paper.f

The above filter description can also be interpreted differently
through time-varying shift operators [32], [33], where Φj is the
weighted, possibly directed shift operator for the jth diffusion
step with the same support as S + I . Therefore, the general EV
FIR filter accounts for signals that are generated through time-
varying systems in directed subgraphs of the original graph. In
this interpretation, the filter coefficient matrix only allows for
edge deletion or a re-weighting of graph flows.

Note that recursion (9) is a distributed graph filter. For com-
puting the output y = Hevx, each node is only required to track
the following quantities:
� the shifted signal output x(k) = Φkx

(k−1),x(0) = x,
� the accumulator output y(k) = y(k−1) + x(k),y(0) = 0.
From the locality of Φk, the output x(k) can be computed

locally in each node by combining only neighboring data.
Hence, (9) preserves the efficient distributed implementation
of the classical FIR graph filter (4). The final filter output is
y = y(K) which yields a complexity of O(MK). This stems
from the fact that at every step, similarly to the classical FIR,
only a single sparse matrix - vector multiplication is performed
with complexity O(M). Hence, the complexity scales linearly
in K for a fixed number of edges M .

Before addressing the design strategy of the filter (9), in the
sequel, we introduce a particular structure of EV FIR graph
filters that enjoys a graph Fourier domain interpretation.

B. Shift-Invariant Edge-Variant Graph Filters

An important family of graph filters is that of shift-invariant
graph filters, i.e., filters that commute with the graph shift op-
erator S. That is, given the shift S and the filter matrix H , the
following holds

SH = HS. (10)

For a non-defective shift operator S and filter H , i.e., the matri-
ces accept an eigenvalue decomposition, condition (10) is equiv-
alent to saying that the matrices S and H are jointly diagonal-
izable, or that their eigenbases coincide.

There is no reason to believe that graph filters of the form (9)
are shift invariant. However, it is possible to characterize a sub-
set of edge-variant graph filters that satisfy this property. To
do so, we consider (A.1) and the following assumption on the
coefficient matrices of the EV FIR graph filter:
� (A.2) Each Φj , j ∈ [K] is diagonalizable with the eigen-

basis of S.
Given the above assumption holds, we can rewrite (9) as

Hev =
K∑

k=1

Φk:1 = U

⎡

⎣
K∑

k=1

k∏

j=1

Λj

⎤

⎦U−1, (11)

where we substitutedΦj = UΛjU
−1. To provide a closed-form

expression for the effect of such graph filters on the graph modes,
we first describe the set of fixed-support matrices that are diag-
onalizable with a particular eigenbasis (i.e., matrices that meet
(A.1) and (A.2)). Mathematically, this set is defined as

JA
U = {A : A = UΩU−1, [vec(A)]i = 0, ∀ i ∈ A}, (12)

whereA is the index set defining the zero entries ofS + I andΩ
is diagonal. The fixed-support condition inJA

U can be expressed
in the linear system form

ΦAvec(A) = 0, (13)

with ΦA ∈ {0, 1}|A|×N2
denoting the selection matrix whose

rows are the rows of anN2 ×N2 identity matrix indexed by the
set A. By leveraging the vectorization operation properties and
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the knowledge of the eigenbasis of A, we can rewrite (13) as

ΦAvec(A) = ΦA(U−T ∗U)ω = 0, (14)

where “∗” represents the Kathri-Rao product and ω = [[Ω]1,1,
[Ω]2,2, . . . , [Ω]N,N ]T is the vector containing the eigenvalues of
A. From (14), we see that ω characterizes the intersection of the
nullspace of ΦA and the range of U−T ∗U . More formally,

ω ∈ null{TA
U}, (15)

withTA
U = ΦA(U−T ∗U) and assumingd = dim(null{TA

U}).
With this in place, the following proposition characterizes the

matrices that belong to the set J A
U .

Proposition 1: (Graph shift nullspace property) Given an or-
thonormal basis U and a sparsity pattern defined by the set A,
the matrices within the set JA

U are of the form A = UΩU−1

and have eigenvalues given by

Ω = diag(BA
Uα), (16)

where theN × d matrix BA
U is a basis for the nullspace of TA

U ,
i.e.,

span{BA
U} = null{TA

U},
and α is the basis expansion coefficient vector.

Proof: The proof follows from (14)–(15). �
The above result has been used for assessing the uniqueness

of the graph shift operator in topology identification [34]. Here,
we leverage Proposition 1 for interpreting the response of a par-
ticular class of SIEV FIR filters. Specifically, under (A.1) and
(A.2) we can express each Φj of (9) as

Φj = Udiag(BA
Uαj)U

−1, (17)

and write our SIEV FIR filter as

Hsiev = U

⎡

⎣
K∑

k=1

k∏

j=1

diag(BA
Uαj)

⎤

⎦U−1. (18)

The following proposition formally characterizes the frequency
interpretation of such filters in terms of the modal response.

Proposition 2: (Modal Response of SIEV FIR) An FIR graph
filter of the form (9) satisfying (A.1) and (A.2) has ith modal
response

hi =

K∑

k=1

k∏

j=1

(bAU ,i)
Tαj (19)

where (bAU ,i)
T is the ith row of BA

U .
Proof: The proof follows directly from (18). �
An interesting outcome of Proposition 2 is that the filter re-

sponse is independent of the graph frequencies. This is clear
from (19), where we see that the eigenvalueλi does not appear in
the expression ofhi. Therefore, we can interpret SIEV FIR graph
filters as eigenvector filters, since they act on the eigenmodes of
the graph. That is, for each graph eigenmode (eigenvector) ui,
Hsiev might apply a different gain given by (19) (independent of
λi) to the component of the input signal x in the direction of ui.
This is in contrast to classical FIR graph filters which apply the
same polynomial expression in λi to all modes {ui}i∈[N ]. As a

result, the classical FIR graph filter will always filter different
graph modes with the same graph frequency in the same way.

The following section introduces methods for designing EV
FIR graph filters in the node domain and SIEV FIR graph filters
using the parametrization in (19).

C. Filter Design

General form. Given a desired operator H̃ , we design an EV
FIR filter Hev [cf. (9)] that approximates H̃ as the solution of
the optimization problem

minimize
{Φk}

∥∥∥∥∥H̃ −
K∑

k=1

Φk:1

∥∥∥∥∥

subject to supp{Φk} = supp{S + I}, ∀ k ∈ [K],

(20)

where ‖ · ‖ is an appropriate distance measure, e.g., the Frobe-
nius norm (‖ · ‖F ), or the spectral norm (‖ · ‖2).

Unfortunately, (20) is a high-dimensional nonconvex problem
and hard to optimize. An approach to finding a local solution
for it is through block coordinate descent methods, which pro-
vide local convergence guarantees when applied to such prob-
lems [35]. In fact, the cost in (20) is a block multi-convex func-
tion, i.e., the cost function is a convex function of Φi with all
the other variables fixed.

Starting then with an initial set of matrices {Φ(0)
j }j∈[K] (po-

tentially initialized with an order-K classical FIR filter), we
solve a sequence of optimization problems where at the ith step,
the matrix Φi is found. That is, at the ith iteration, we fix the
matrices {Φ(0)

j }j∈[K]\{i} and solve the convex problem

minimize
Φi

∥∥∥∥∥H̃ −
K∑

k=1

Φ
(0)
k:(i+1)ΦiΦ

(0)
(i−1):1

∥∥∥∥∥

subject to supp{Φi} = supp{S + I},
(21)

whereΦ(0)
a:b = Φ

(0)
a Φ

(0)
a−1 . . .Φ

(0)
b+1Φ

(0)
b fora ≥ b andΦ(0)

a:b = I ,

otherwise. Then, the matrixΦ(0)
i is updated with its solution and

the procedure is repeated for all {Φj}j∈[K]. If the final fitting
error is large, the whole process can be repeated until the desired
performance is reached, or until a local minimum is found.

Although filter (9) is the most general EV FIR filter form, the
non-convexity encountered in the above design strategy may
often lead to a local solution with an unacceptable performance.
To tackle such issue, in Section IV, we introduce a constrained
EV FIR filter which provides a higher flexibility than the state-
of-the-art graph filters while accepting a simple least-squares
design.

SIEV form. Besides enjoying the modal response interpre-
tation, the SIEV FIR filter also has a simpler design than the
general form (9). For {h̃i}Ni=1 being the desired graph modal
response,1 the SIEV FIR filter design consists of solving the

1This can be for instance a low-pass form if we want to keep only the eigen-
vector contributions associated with the slowly varying graph modes.
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Fig. 1. (a) Illustration of the required communication, scaling, and recursion performed by the different graph filters. (b) Relation between the classical and CEV
FIR graph filters. This figure depicts the possibility of obtaining higher-order polynomial graph filters with reduced order CEV graph filters.

optimization problem

minimize
{αj}

N∑

i=1

∥∥∥∥∥∥
h̃i −

K∑

k=1

k∏

j=1

(bAU ,i)
Tαj

∥∥∥∥∥∥

2

2

. (22)

Similarly to (20), problem (22) is nonconvex and cannot in gen-
eral be solved to global optimality with standard convex opti-
mization methods. However, (22) is also a block multi-convex
function in each αi, i ∈ [K] and, therefore, the block coordi-
nate descent methods [35] can again be employed to find a local
minimum, yet the number of unknowns is smaller than for the
general EV form. Alternatively, the straightforward analytical
expression of the gradient of the cost function allows the use
of off-the-shelf solvers for global optimization, such as MAT-
LAB’s built-in fmincon function [36].

IV. CONSTRAINED EDGE-VARIANT FIR GRAPH FILTERS

To overcome the design issues of the general EV FIR filter,
here we present a constrained version of it that retains both the
distributed implementation and the edge-dependent weighting.
This reduction of the DoF will, in fact, allow us to design the filter
coefficients in a least-squares fashion. The structure of these
filters along with their distributed implementation is presented
in the next section. In Section IV-B we provide a modal response
interpretation of these filters, and finally in Section IV-C we
present the design strategy.

A. General Form

The constrained EV (CEV) FIR graph filter is defined as

Hcev = Φ1 +Φ2S + · · ·+ΦKSK−1 �
K∑

k=1

ΦkS
k−1, (23)

where the edge-weighting matrices {Φk}k∈[K] share again the
support with S + I . These filters enjoy the same distributed
implementation of the general form (9). In fact, each node can

compute locally the filter output by tracking the following quan-
tities:
� the regular shift output x(k) = Sx(k−1), x(0) = x,
� the weighted shift output z(k) = Φkx

(k−1),
� the accumulator output y(k) = y(k−1) + z(k), y(0) = 0.
From the locality ofS andΦk, bothx(k) andz(k) require only

neighboring information. The final filter output is y = y(K) and
is obtained with the same computational complexity ofO(MK).

Note that the construction (23) still applies different weights
to the signal coming from different edges. However, instead of
adopting a different diffusion matrix at every step, the signal dif-
fusion occurs through the graph shiftS. The additional extra step
mixes locally x(k−1) using edge-dependent weights, which are
allowed to vary for each term k. We adopt the term constrained
for this implementation since the first k − 1 diffusion steps in
every term k are constrained to be performed by the graph shift
S. Note though that the CEV FIR graph filter is not a special
case of the EV FIR graph filter. Fig. 1(a) visually illustrates the
differences between the different graph filters analyzed so far.
We conclude this section with the following remark.

Remark 1: Note that the NV graph filter of orderK from [9]
[cf. (5)] is a particular case of the CEV graph filter of order K.
The local matrices {Φk}Kk=1 are then in fact substituted asΦ1 =
diag(φ0) + diag(φ1)S and Φk = diag(φk)S

k ∀ k > 1. Also,
the classical graph filter of order K from [4]–[6] [cf. (4)] is
a particular case of the CEV graph filter of order K. In that
case, the local matrices {Φk}Kk=1 are just substituted as Φ1 =
φ0I + φ1S and Φk = φkS

k ∀ k > 1.

B. Shift-Invariant Constrained Edge-Variant Graph Filters

Following the same lines of Section III-B, we can use the set
JA
U (12) to characterize the graph modal response of the CEV

FIR graph filter when the matrices {Φk}Kk=1 satisfy (A.1) and
(A.2). This subset of CEV FIR graph filters, which we refer to
as shift-invariant CEV (SICEV) FIR graph filters, can again be
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expressed in terms of BA
U and {αk}Kk=0 as

Hsicev = U

[
K∑

k=1

diag(BA
Uαk � λ�(k−1))

]
U−1, (24)

where λ�k denotes the kth element-wise power of the eigen-
value vector of the shift operator S. The subsequent proposition
formalizes the modal response of these filters.

Proposition 3: (Modal Response of SICEV FIR) An FIR
graph filter of the form (23) satisfying (A.1) and (A.2) has ith
modal response

hi =
K∑

k=1

γikλ
k−1
i , (25)

where γik = (bAU ,i)
Tαk is the kth polynomial coefficient for

the ith graph frequency and (bAU ,i)
T is the ith row of BA

U .
Proof: The proof follows directly from (24). �
From (25), we see that there is a substantial difference be-

tween the SICEV FIR graph filters and the more general SIEV
FIR graph filters. Here, the modal response is a polynomial in
the graph frequencies. This is similar to the classical FIR filter
(4), but now each frequency has a different set of coefficients.
In other words, the modal response of the SICEV FIR filter is
a mode-dependent polynomial. For readers more familiar with
traditional discrete-time processing, this behavior can be inter-
preted as applying different polynomial filters to each frequency
bin (see e.g., [37]).

Remark 2: The particular form of the SICEV FIR filter al-
lows it to match all shift-invariant polynomial responses of or-
der K as well a subset of higher-order polynomials of order up
to N − 1 which includes all higher order responses. The latter
property follows from the observation that any shift-invariant
graph filter is a polynomial of the graph shift operator [4] and
from the filter response in (25). In fact, the SICEV FIR filter is
still a polynomial of the shift S, though with a different polyno-
mial response per graph frequency. This additional freedom ex-
tends the set of functions that can be approximated by a SICEV
FIR filter of order K. Fig. 1(b) further illustrates the relation
among different graph filters.

C. Filter Design

General form. Following a similar approach as in Section
III-C, we can approximate a desired operator H̃ with a CEV
FIR filter by solving the problem

minimize
{Φk}

∥∥∥∥∥H̃ −
K∑

k=1

ΦkS
k−1

∥∥∥∥∥

2

F

subject to supp{Φk} = supp{S + I}, ∀ k ∈ [K].

(26)

Exploiting then the properties of the vectorization operator and
the Frobenius norm, we can transform (26) into

minimize
{φk}

∥∥∥∥∥h̃−
K∑

k=1

(Sk−1 ⊗ I)φk

∥∥∥∥∥
2

subject to supp{Φk} = supp{S + I}, ∀ k ∈ [K],

(27)

where h̃ � vec(H̃) and φk � vec(Φk).

Since the support of the weighting matrices is known, problem
(27) can be written in the reduced-size form

minimize
{φk}

‖h̃−Ψθ‖22 (28)

where Ψ = [I Š · · · ŠK ], θ = [φ̌
T
0 φ̌

T
1 · · · φ̌T

K ]T, φ̌k is the
vector φk with the zero entries removed and Šk is the matrix
(Sk ⊗ I) with the appropriate columns removed. In addition,
if a regularized solution is desired, a natural penalization term
might be the convex �1-norm which induces sparsity in the so-
lution yielding only few active coefficients.

Problem (27) has a unique solution as long asΨ is full column
rank, i.e., rank(Ψ) = nnz(S) ·K +N . Otherwise, regulariza-
tion must be used to obtain a unique solution.

Remark 3: Besides leading to a simple least-squares prob-
lem, the design of the CEV FIR filter can also be computed
distributively. Given that each node knows the desired filter re-
sponse and the graph shift operator (i.e., the network structure),
it can be shown that by reordering the columns of Ψ and the
entries of θ the framework of splitting-over-features [38] can be
employed for a decentralized estimation of θ.

SICEV form. Similar to the more general CEV FIR filter, the
design of {αk}Kk=1 for the SICEV form can be performed in a
least-squares fashion.

First, for a set of vectors {αk}Kk=1 the modal response of the
SICEV FIR filter reads as

hλ =

K∑

k=1

[BA
Uαk � λ�(k−1)], (29)

where hλ is obtained by stacking the modal responses, i.e.,
{hi}Ni=1, in a column vector. By using the properties of the
Hadamard product, (29) can be written as

hλ =
K∑

k=1

diag(λ�(k−1))BA
Uαk =

K∑

k=1

Mkαk, (30)

withMk = diag(λ�(k−1))BA
U . Defining thenM = [M1, . . . ,

MK ] and α = [αT
1, . . . ,α

T
K ]T, we obtain the linear relation

hλ = Mα. (31)

Therefore, the approximation of a desired response h̃λ = [h̃1,
. . . , h̃N ]T consists of solving the least-squares problem

minimize
α∈Rd(K+1)

‖h̃λ −Mα‖2, (32)

which has a unique solution when M is full column rank, i.e.,
rank(M) = d(K + 1) ≤ N .

V. EDGE-VARIANT IIR GRAPH FILTERS

We now extend the edge-variant filtering concept to the class
of IIR graph filters. As stated in Section II, we focus on the basic
building block of these filters, i.e., the ARMA1 recursion (6).
We follow the same organization of the former two sections, by
introducing the edge-variant ARMA1 structure in Section V-A,
the shift-invariant version in Section V-B, and the design strate-
gies in Section V-C.
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A. Edge-Variant ARMA1

We build an edge-variant ARMA1 (EVA1) recursion on
graphs by modifying (6) as

yt = Φ1yt−1 +Φ0x, (33)

where Φ0 and Φ1 are the edge-weighting matrices having the
support of S + I that respectively weight locally the entries of
yt−1 and x. Proceeding similarly as in [11], for ‖Φ1‖2 < 1, the
steady-state output of (33) is

y = lim
t→∞yt = (I −Φ1)

−1Φ0x � Heva1x, (34)

where we notice the inverse relation w.r.t. the edge-weighting
matrix Φ1. Recursion (33) converges to (34) linearly with a rate
governed by ‖Φ1‖2. The classical form (6) can be obtained by
substituting Φ1 = ψS and Φ0 = ϕI .

The EVA1 filter presents the same frequency interpretation
challenges as the FIR filter counterpart. Therefore, we next an-
alyze the shift-invariant version of it and we will see a rational
modal response.

B. Shift-Invariant EV ARMA1

By limiting the choices of {Φ0,Φ1} to the ones that sat-
isfy (A.1) and (A.2), we obtain the shift-invariant edge-variant
ARMA1 (SIEVA1) graph filter

Hsieva1 = U [(I − diag(BA
Uα1))

−1diag(BA
Uα0)]U

−1,
(35)

where α0 and α1 are the respective basis expansion vectors
of Φ0 and Φ1 onto the nullspace of TA

U (see Proposition 1).
From (35), we see that the inverse relation that appears in (34)
indeed appears as a function affecting the graph eigenmodes.
The following proposition concludes this section by stating this
finding in a formal way.

Proposition 4: (Modal Response of SIEVA1) An ARMA1

graph filter of the form (34) satisfying (A.1) and (A.2) forK =
1 has ith modal response

hi =
(bAU ,i)

Tα0

1− (bAU ,i)
Tα1

(36)

where (bAU ,i)
T is the ith row of the matrix BA

U .
Proof: The proof follows directly from (35). �

C. Filter Design

EVA1 form. Here, we extend the design approach of [39] and
design {Φ0,Φ1} by using Prony’s method. For H̃ being the
desired operator, we can define the fitting error matrix

E = H̃ − (I −Φ1)
−1Φ0, (37)

which presents nonlinearities in the denominator coefficients,
i.e., in Φ1. To tackle this issue, we consider the modified fitting
error matrix

E′ = H̃ −Φ1H̃ −Φ0, (38)

which is obtained by multiplying both sides of (37) by I −Φ1.

This way, the filter design problem is transformed to the con-
vex optimization problem

minimize
Φ0,Φ1

‖H̃ −Φ1H̃ −Φ0‖

subject to ‖Φ1‖2 < δ, δ < 1,

supp{Φ0} = supp{Φ1} = supp{S + I}.
(39)

The objective function in (39) aims at reducing the modified
error E′, while the first constraint trades the convergence rate
of (33) with approximation accuracy.

Note that it is possible to improve the performance of the
filter design (39) if a second step is performed after the matrices
{Φ0,Φ1} have been obtained. Using the matrix Φ1 obtained by
solving (39), we can fit again Φ0 by using the error expression
in (37). That is, we can obtain a new matrix Φ0 by solving

minimize
Φ0

‖H̃ − (I −Φ1)
−1Φ0‖

subject to supp{Φ0} = supp{S + I},
(40)

where Φ1 is the coefficient matrix obtained from (39). This
procedure is known as Shanks’ method [40] and has also been
adopted in [11], [39].

SIEVA1 form. Following the same idea as in (37)–(39), the
modified fitting error of a SIEVA1 graph filter is

e′i = h̃i − h̃i(b
A
U ,i)

Tα1 − (bAU ,i)
Tα0, (41)

with h̃i, (bAU ,i)
Tα0, and (bAU ,i)

Tα1 denoting respectively the
desired modal response and the eigenvalues of Φ0 and Φ1 w.r.t.
the ith mode. In vector form, (41) can be written as

e′ = h̃λ − M̄ᾱ, (42)

withe′ = [e′1, . . . , e
′
N ]T, h̃λ = [h̃1, . . . , h̃N ]T,M̄ = [BA

U , diag

(h̃λ)B
A
U ], and ᾱ = [αT

0 αT
1]

T. Then, {α0,α1} can be estimated
as the solution of the constrained least-squares problem

minimize
α0,α1∈Rd

‖h̃λ − M̄α‖22

subject to ‖BA
Uα1‖∞ < δ, δ < 1,α = [αT

0 αT
1]

T.

(43)

As (39), problem (43) again aims at minimizing the modified
fitting error, while tuning the convergence rate through δ. Here
again, Shanks’ method can be considered.

Differently from the general EVA1, here the number of un-
knowns is reduced to 2d, as now only the vectors α0 and α1

need to be designed. Due to this low dimensionality, one can
also opt for global optimization solvers to find an acceptable
local minimum of the true error (i.e., the equivalent of (37)).

Remark 4: The approximation accuracy of the EVA1 and
SIEVA1 filters can be further improved by following the iter-
ative least-squares approach proposed in [41]. This method has
shown to improve the approximation accuracy of Prony’s de-
sign by not only taking the modified fitting error into account
but also the true one. However, as this idea does not add much
to this work, interested readers are redirected to [41] for more
details.
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TABLE I
SUMMARY OF THE DIFFERENT GRAPH FILTERS. (∗) INDICATES A CONTRIBUTION OF THIS WORK. HERE, I STANDS FOR THE MAXIMUM NUMBER OF ITERATIONS

Fig. 2. (a) NSE vs. filter order for different FIR graph filters. (Top) Results in approximating the exponential kernel response. (Bottom) Results in approximating
a low-pass response. (b) Frequency response of the graph filters when approximating an exponential kernel with parameters μ = 0.75 and γ = 3. (c) Frequency
response of the graph filters when approximating a perfect low pass filter with λc = 1.

VI. NUMERICAL RESULTS

We now present a set of numerical examples to corroborate
the applicability of the proposed filters for several distributed
tasks. Table I presents a summary of the different graph filters
mentioned in this work along with their specifications. In our
simulations,2 we made use of the GSP toolbox [42].

A. Graph Filter Approximation

We here test the proposed FIR graph filters in approximat-
ing a user-provided frequency response. We consider a random
community graph of N = 256 nodes and shift operator S = L.
The frequency responses of interest are two commonly used
responses in the GSP community, i.e.,

i) the exponential kernel

h̃(λ) := e−γ(λ−μ)2 ,

with γ and μ being the spectrum decaying factor and the
central parameter, respectively;

ii) the ideal low-pass filter

h̃(λ) =

{
1 0 ≤ λ ≤ λc

0 otherwise,

with λc being the cut-off frequency.

The approximation accuracy of the different filters is eval-
uated in terms of the normalized squared error NSE = ‖H̃ −
Hfit‖2F /‖H̃‖2F . Hfit stands for the filter matrix of the fitted fil-
ters. Fig. 2 illustrates the performances of the different filters. In
the exponential kernel scenario, we observe that the CEV FIR
filter outperforms the other alternatives by showing a perfor-
mance improvement of several orders of magnitude. A similar
result is also seen in the low-pass example, where the CEV FIR
filter achieves the error floor for K = 8, while the NV graph
filter for K = 13 and the classical FIR filter for K = 17. Addi-
tionally, we observe that the SIEV FIR filter achieves a similar
performance as the NV FIR filter. This result suggests that de-
spite the additional DoF of the SIEV FIR filter, the nonconvex
design strategy (22) yields a local minimum that does not exploit
the full capabilities of the filter. This local minimality effect can
be seen in the stagnation of the error of the SIEV FIR filter for the
exponential kernel case after K ≥ 8. Finally, we notice that the
SICEV filter achieves a performance similar to the NV Filter of
the same order, while having less DoF. This characteristic of the
SICEV shows its benefits as the order increases. Having to esti-
mate less parameters, the error stagnation for the step response

2The code to reproduce the figures in this paper can be found at
https://gitlab.com/fruzti/graphFilterAdvances
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Fig. 3. NSE versus filter order for different distributed FIR filter implementa-
tions when approximating the consensus operator H̃ = 1/N11T .

is achieved at a higher filter order, hence a better approximation
can be obtained.

The above observations further motivate the use of the CEV
FIR filter, which trades better the simplicity of the design and
the available DoF. In fact, even though the CEV FIR filter is
conceptually simpler than the SIEV graph filter, it performs bet-
ter than the latter. In addition, the larger DoF of the CEV FIR
filter compared to the NV FIR filter (i.e., nnz(S) ·K+N vs
N · (K + 1)) allows the CEV FIR filter to better approximate
the desired response. In a distributed setting, these benefits trans-
late into communication and computational savings.

B. Distributed Linear Operator Approximation

Several distributed tasks of interest consist of performing a
linear operation H̃ ∈ RN×N over a network. This can be for
instance a beamforming matrix over a distributed array or a
consensus matrix. In most of these cases, such linear operators
cannot be straightforwardly distributed. In this section, we illus-
trate the capabilities of the developed graph filters in addressing
this task.

Given a desired linear operator H̃ , we aim at implementing
this linear operator distributively through the solution of the
optimization problem

minimize
θ

‖H̃ −H(S,θ)‖

subject to θ ∈ Θ,
(44)

where H(S,θ) stands for the considered graph filter
parametrized by the shift S and a set of parameters θ living
in the domain Θ.

Distributed consensus. For distributed consensus, the oper-
ator H̃ has the form H̃ = 1

N 11T , which for S = L translates
into a low-pass graph filter passing only the constant signal com-
ponent.

Fig. 3 compares the fitting NSE = ‖H̃ −Hfit‖2F /‖H̃‖2F for
the different FIR graph filters. We notice once again that the
CEV implementation offers the best approximation accuracy
among the contenders achieving an NSE of order 10−4 in only

10 exchanges. These results yield also different insights about
the SIEV and SICEV graph filters. In this example, we consider
a community network consisting of N = 512 nodes generated
using the GSP Toolbox [42].

First, both the SIEV and the SICEV implementations fail to
compare well with the CEV, though the linear operator Ã is
shift invariant. We attribute this degradation of performance to
assumption (A.1), which is a sufficient (not necessary) condition
for these filters to have a modal response interpretation. In fact,
forcing each filter coefficient matrix to be shift invariant seems
limiting the filter ability to match well the consensus operator.

Second, the different design strategies used in SIEV and
SICEV further discriminate the two filters. We can see that the
least-squares design of the SICEV implementation is more ben-
eficial, though the SIEV filter has more DoF. Unfortunately, this
is the main drawback of the latter graph filter, which due to the
nonconvexity of the design problem leads to suboptimal solu-
tions. However, we remark that both these filters outperform (or
compare equally with) the classical FIR filter. Further investiga-
tion in this direction is needed to understand if the SIEV and/or
SICEV structures can be used to achieve finite-time consensus
as carried out in [43], [44].

Wiener-based denoising. When the statistics of the graph
signal and noise signal are available, a typical approach for per-
forming denoising is the Wiener filter. This filter is obtained by
minimizing the mean-squared error, i.e.,

H̃ = argmin
H∈RN×N

E
[‖Hz − x‖22

]
, (45)

where z = x+ n is the graph signal corrupted with additive
noise. For the case of zero-mean signalsx andnwith covariance
matrices Σx and Σn, respectively, the solution for (45) is

H̃ = Σx(Σx +Σn)
−1, (46)

given Σx +Σn is not singular. When the covariance matrices
Σx and Σn share the eigenvectors with the graph shift operator,
the optimal filter H̃ can be approximated by classical graph
filters. However, in many instances, this is not the case.

We illustrate an example where instead of approximating the
Wiener filter through a classical FIR graph filter, we employ
a CEV FIR filter. For this example we consider the Molene
dataset,3 where the temperature data of several cities in France
has been recorded. The graph employed is taken from [45] and
the graph signal has been corrupted with white Gaussian noise.
The results in terms of NSE for the different fitted graph filters
are shown in Fig. 4. From this plot we observe that the CEV FIR
filter outperforms all the other alternatives. This is due to the fact
that the optimal Wiener filter is not jointly diagonalizable with
the eigenbasis of the shift operator, i.e., the covariance matrix
of data is not shift invariant, hence classical graph filters are not
appropriate to approximate the filter.

3Access to the raw data through the link donneespubliques.meteofrance.fr/
donnees_libres/Hackathon/RADOMEH.tar.gz
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Fig. 4. NSE versus filter order for different distributed FIR filter implementa-
tions when approximating the Wiener filter for the Molene temperature dataset.

Distributed Beamforming. We here consider the task of ap-
plying a beamforming matrix W H to signals acquired via a dis-
tributed array. More specifically, we aim at obtaining the output

y = W Hx, (47)

where x is the data acquired in a distributed way. Since W H

might often be a dense matrix, e.g., in zero-forcing beamform-
ing, the operation (47) cannot be readily distributed. To obtain
the output at each node, we approximate the beamforming ma-
trix with different graph filters.

We illustrate this scenario in a distributed 2D sensor array.
The network is generated using N = 1000 random locations
on a 2D plane where the communication network is an �N/5�-
nearest neighbor graph. The beamforming matrix is the matched
filter [46] matrix for a uniform angular grid of 1000 points in
the range (−180, 180]. In other words, every node will see the
information from a sector of approximately 0.36 degrees. Since
in general WH does not share the eigenbasis with S, classical
graph filters fail to address this task. Therefore, here we compare
only the CEV FIR filter and the NV FIR filter. Fig. 5 shows two
output beampatterns obtained by solving (44) with H̃ = WH

for the two considered filters with order K = 5. We notice that
the CEV outperforms the NV FIR filter as it follows more closely
the desired beampattern.

To demonstrate that our proposed designs can be directly ex-
tended to asymmetric shift matrices, we also plot, in Fig. 5, the
beampatterns obtained when we consider an asymmetric ver-
sion of the previous communication network. This asymmetric
network is generated by converting 323 random edges of the
original nearest neighbor graph into directed edges. We refer to
these beampatterns in the figure as CEVAsym or the CEV filter
and NVAsym for the NV filter. From Fig. 5, we observe that
despite the performance changes in the sidelobe region, in the
mainlobe region the CEV and CEVAsym perform similarly both
outperforming their NV graph filter counterparts.

Note that the above framework treats the distributed beam-
forming differently from approaches based on distributed opti-
mization tools [47]. The latter methods usually aim at computing

Fig. 5. Comparison of beampatterns for the node with desired steering angle,
θ0. (a) θ0 = 0o and (b) θ0 = 90o.

the beamforming matrix (i.e., the weighting matrix is data de-
pendent) and then perform consensus. On the other hand, we
assume that W H is fixed and that it must be applied to the ar-
ray data. Still, this problem can be solved through distributed
convex optimization tools by solving the least-squares problem

minimize
y

‖x− (W H)†y‖22. (48)

Our formulation avoids the computation of the pseudo-inverse
and the graph-filtering based approach requires only five itera-
tions to compute the final output.

We next compare the CEV and the NV graph filters with dis-
tributed optimization tools for solving a general inverse problem.

C. Comparison With Distributed Optimization

We now compare the proposed graph filters with the primal-
dual method of multipliers (PDMM)4 [48] to solve the following
least-squares problem in a distributed fashion:

minimize
x

‖y −Ax‖22. (49)

Without loss of generality, we consider A to be an N ×N
matrix. The baseline assumption for all distributed optimization
methods is that vi knows its own data, i.e., ith element of y, yi,
and its own regressor, i.e., the ith row of A, aT

i . The task is then
for each node to retrieve the full vector xls = A†y by means
of local communications.Here, the communication graph is a
community graph with N = 512 with �√N/2� communities
generated using the GSP toolbox [42].

For the graph filter-based approaches, we approximate A†

through a set of rank-one matrices {H̃i � 1ãT
i }Ni=1 with ãi

T

being the ith row ofA†. This means that in contrast to distributed

4PDMM is an alternative to the classical alternating direction method of mul-
tipliers (ADMM), and is often characterized by a faster convergence [48].
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Fig. 6. Convergence error versus the number of iterations for the NV and the
CEV graph filters and for the PDMM solver [48]. Dashed lines indicates the
saturation floor of the NV and CEV FIRs.

optimization methods, here every node vi needs to know the full
A. Each H̃i is then fitted with the NV and CEV recursions to
approximate xls as the output after filtering the graph signal y.
It must be noticed that the number of rounds between adjacent
nodes does not scale with N . In fact, both the NV and the CEV
will shift the signal onlyK times and the nodes can locally apply
the respective coefficients to obtain the outputs.

To quantify the performance, we perform 100 Monte Carlo
simulations with a randomly generated system matrix and so-
lution vector. Fig. 6 compares the graph filter approaches with
the distributed optimization methods in terms of the NSE =
‖x− x̂(k)‖22/‖x‖22. The graph filter methods achieve a faster
decay compared to the distributed optimization method in the
first hundred iterations. However, due the ill-conditioning of the
system matrices perfect approximation of the desired response is
not achieved and both graph filters exhibit an error floor. PDMM,
on the other hand, does not run into this issue and guarantees
convergence to the true solution. Despite this difference in per-
formance, the graph filter approaches can be employed for cases
where the accuracy requirements are not strict, or as warm starts
for distributed optimization methods. The above comparison,
besides proposing graph filters as an alternative for solving dis-
tributed least-squares problems, raises the question how graph
filters relate to distributed convex optimization. Further research
is needed to relate the design and implementation of distributed
EV graph filters with the well-established theory of distributed
optimization.

D. Tikhonov-Based Denoising

One of the central problems in GSP is that of recovering an
unknown signalx from a noisy realizationz = x+ n given that
x is smooth w.r.t. the underlying graph [3]. Differently known
as the Tikhonov denoiser, the estimation of x can be obtained
by solving the regularized least-squares problem:

xtik = arg min
x∈RN

‖z − x‖22 + μxTSx, (50)

for S = L and where μ trades off the noise removal with the
smoothness prior. Problem (50) has the well-known solution
xtik = (I + μS)−1z, which in terms of the terminology used

Fig. 7. Convergence error versus the number of iterations for the Tikhonov
denoising problem. The EVA1 results are plotted for different values of δ in
(39) to highlight the tradeoff between convergence speed and approximation
accuracy.

in Section II is an ARMA1 graph filter with ϕ = 1 and ψ =
−μ (see also [11] for further analysis). While recursion (6) can
implement this problem distributively, the convergence of the
Neumann series in (7) cannot be controlled as the rate is fixed
by |μ|λmax{S}.

Here, we show that through the EVA1 in (33) it is possible
to improve the convergence speed of the ARMA1 graph filter
by exploiting the additional DoF given by the edge-weighting
matrices {Φ0,Φ1}. However, since now the design is not exact
and involves the modified error [cf. (39)], this speed benefit will
come at the expense of accuracy. To illustrate this, we consider
an example of problem (50) with μ = 0.8 and S = λ−1

max(L)L,
such thatS has unitary spectral norm. Here, the network is gener-
ated using N = 300 random locations on a 2D plane where the
communication network is an �N/5�-nearest neighbor graph.
Fig. 7 shows the convergence error of the EVA1 for different
values of δ in (39) and compares it with the classical ARMA1.

We make the following observations. First, low values of δ
are preferred to improve the convergence speed. However, val-
ues below 0.7 should in general be avoided since this restricts
too much the feasible set of (39), hence leading to a worse ap-
proximation error. Second, values of δ ≈ 0.7 seem to give the
best tradeoff, since the convergence speed is doubled w.r.t the
ARMA1 and the approximation error is close to machine preci-
sion. Finally, we did not plot the classical FIR filter for solving
this problem, since its performance is identical to the ARMA1

for the same distributed cost [11].

VII. CONCLUSION

In this work, a generalization of distributed graph filters was
proposed. These filters, that we referred to as edge-variant graph
filters, have the ability to assign different weights to the infor-
mation coming from different neighbors. Through the design
of edge-weighting matrices, we have shown that it is possible
to weight, possibly in an asymmetric fashion, the information
propagated in the network and improve the performance of state-
of-the-art graph filters.
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By introducing the notion of filter modal response, we showed
that a subclass of the edge-variant graph filters have a graph
Fourier interpretation that illustrates the filter action on the graph
modes. Despite that the most general edge-variant graph filter
encounters numerical challenges in the design phase, a con-
strained version of it was introduced to tackle this issue. This
so-called constrained edge-variant graph filter enjoys a similar
distributed implementation, generalizes the state-of-the-art ap-
proaches, and is characterized by a simple least-squares design.
For the constrained version, we also showed that there exists a
subclass which has a modal response interpretation.

Finally, we extended the edge-variant idea to the family of IIR
graph filters, particularly to the ARMA1 graph filter. We showed
that by adopting the same local structure a distributed rational
filter can be achieved, yet with a much faster convergence speed.
Several numerical tests corroborate our findings and show the
potential of the proposed filters to improve state-of-the-art tech-
niques.

Future research in this direction should concern the follow-
ing points: i) improve the design strategy of the more general
edge-variant version; ii) improve the saturation accuracy of the
proposed methods when dealing with a distributed implemen-
tation of linear operators; iii) conciliate the world of GSP with
that of distributed optimization and exploit the latter to design
distributed graph filters; and iv) extend the edge-variant concept
beyond the ARMA1 implementation to the global family of IIR
graph filters.
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