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a b s t r a c t 

The paper considers direction of arrival (DOA) estimation from long-term observations in a very noisy 

environment. The concern is to derive methods obtaining reasonable DOAs at very low SNR. The noise is 

assumed zero-mean Gaussian and its variance varies in time and space, causing stationary data models 

to fit poorly over long observation times. Therefore a heteroscedastic Gaussian noise model is introduced 

where the variance varies across observations and sensors. The source amplitudes are assumed indepen- 

dent zero-mean complex Gaussian distributed with unknown variances (i.e. the source powers), inspiring 

stochastic maximum likelihood (ML) DOA estimation. The DOAs of plane waves are estimated from multi- 

snapshot sensor array data using sparse Bayesian learning (SBL) where the noise is estimated across both 

sensors and snapshots. This SBL approach is more flexible and performs better than other high-resolution 

methods since they cannot estimate the heteroscedastic noise process. An alternative to SBL is simple 

data normalization, whereby only the phase across the array is utilized. Simulations in noisy environ- 

ments demonstrate that taking the heteroscedastic noise into account causes the DOA estimation to fail 

at lower SNR, often at 20 dB lower SNR. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

With long observation times, weak signals can be extracted in

 noisy environment. Most statistical signal processing tools as-

ume the noise to be wide sense stationary: the noise variance

s constant. However, for long observation times the noise process

ay show non-stationary behavior, by the noise variance chang-

ng in both space and time. Such noise process is called het-

roscedastic, meaning that the noise variance is changing. While

he noise variance is a nuisance parameter that we are not inter-

sted in, it may still need to be estimated in the processing chain

n order to obtain accurate estimates of the weak signals. We fo-

us the paper in deriving and demonstrating methods where DOA

stimation fails at much lower SNR then for a stationary noise

ssumption. 

Accounting for the noise variation is important for machine

earning [1,2] and related to robust statistics [3–5] . Heteroscedas-

ic noise models have been used in e.g. finance [6] and im-

ge processing [7] . In statistical signal processing, the noise has
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een assumed to vary spatially [8–12] , contain structure [13,14] , or

ave outliers [15] . Inspired by [6] , the heteroscedastic model was

sed to predict the time evolution of the noise for DOA estima-

ion [16,17] . The proposed processing could be applied to spatial

oherence loss [18–20] or to wavefront decorrelation, where tur-

ulence causes the wave front to be incoherent for certain obser-

ations (thus more noisy). This has lead to so-called lucky imag-

ng in astronomy [21] or lucky ranging in ocean acoustics [22] ,

here only the measurements giving good results are used. As

 result an involved hypothesis testing is needed to determine

he measurements to be used. In contrast, we propose using all

easurements. 

The papers above [8–15,22] are mainly concerned with high

NR cases. In contrast, we are interested in the low SNR case

here a more complete modelling of the noise nuisance param-

ter can cause the DOA estimation to fail ∼ 20dB later. 

In applications, a simple way to account for noise power vari-

tions is to normalize the data to constant magnitude. The nor-

alized data only contains phase information as demonstrated for

eamforming in seismology [23,24] , noise cross correlation in seis-

ology [25–29] and acoustics [30] , source deconvolution in ocean

coustics [31,32] , and speaker localization [33,34] . An example of

on-uniform spatiotemporal noise is a seismic array for finding

eak sources where interference from a passing car dominates a
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few nearby sensors [35] or a strong earthquake can dominate a

few snapshots. Similarly, in ocean acoustics, a passing ocean wave

on the surface temporarily increases the noise on the hydrophones

near to the surface. 

High-resolution DOA estimators such as MUSIC [36] which are

based on the sample covariance matrix (SCM) do not perform well

for heteroscedastic noise as few sensors or samples with loud

noise realizations dominate the SCM. More robust methods than

an eigenvalue decomposition are needed to separate the signal and

noise subspaces. We demonstrate that for well-separated sources

normalizing the data which amounts to retaining only the phase

information works well. 

When the sources are closely spaced, more advanced paramet-

ric methods are needed for DOA estimation when the noise power

is varying in space and time and the sources are weak. In this

paper we resolve closely spaced weak sources when the noise

power is varying in space and time. Specifically, we derive noise

variance estimates and demonstrate this for compressive beam-

forming [37–41] using multiple measurement vectors (MMV), also

called multiple snapshots. We solve the MMV problem using the

sparse Bayesian learning (SBL) framework [39,42,43] . We assume

the source signals to jointly follow a zero-mean multivariate com-

plex normal distribution with unknown power levels. The noise

across sensors and snapshots also follows a zero-mean multivariate

complex normal distribution with unknown variances. These as-

sumptions lead to a Gaussian likelihood function. The correspond-

ing posterior distribution is also Gaussian and already developed

SBL approaches solve this well. 

We base our development on our fast SBL method

[42,43] which simultaneously estimates noise variances as

well as source powers. For the heteroscedastic noise consid-

ered here, there could potentially be as many unknown variances

as number of observations. Existing techniques are based on

minimization-majorization [44] and expectation-maximization

(EM) [39,40,45–49] , though not all estimates work well. Instead,

we estimate the unknown variances using approximate stochastic

ML [50–52] modified to obtain noise estimates even for a single

observation. 

At high SNR, the Cramér-Rao bound (CRB) for spatially colored

noise has been well-analysed [9] . However, our proposed methods

are designed for DOA estimation from array data at low SNR and

unknown noise variances which may vary in space and time. Due

to the low SNR, the CRB does not provide a useful bound as we

are in the threshold or no-information region where the CRB is

not tight [53] . Without further assumptions on the noise variance

evolution in space and time, the number of unknown noise vari-

ance parameters grows linearly with observation time and number

of array elements. Thus, the ratio of the number of unknowns to

the number of observations does not converge to zero when the

observation time is increased. For this reason, we cannot expect

that the CRB is attainable for large observation time or large array

size even at high SNR. 

To summarize, we develop methods for extracting information

from weak stationary signals buried in non-stationary noise us-

ing long-term observations. We focus on DOA estimation for spa-

tiotemporal heteroscedastic noise, the noise variance estimates are

in Sections 3.1 –3.3 . We base our DOA analysis on SBL developed for

stationary noise ( Section 3.4 ) and augment it with heteroscedas-

tic noise. This model can have more noise and signal parame-

ters to estimate than observations, as there as many noise esti-

mates as observations. The examples demonstrate that SBL with

heteroscedastic noise works quite well ( Section 5 ). Interestingly,

empirical whitening ( Section 4 ), as used by practitioners [23] –

[34] works quite well at very low SNR for well-separated sources

( Section 5 ). 
. Background 

We treat the parameters of heteroscedastic noise as unknown

eterministic variables as described in Section 2.1 . These parame-

ers are estimated as described in Sections 3.1 —3.3 . This is in con-

rast to modeling the noise parameters as random variables with

n associated prior distribution. Such alternative model with ran-

om parameters could be treated by a hierarchical Bayesian ap-

roach, but we do not follow up on this here. 

.1. Heteroscedastic noise observation model 

For the l th observation snapshot, we assume the linear model

 l = A x l + n l , (1)

here the dictionary A ∈ C 

N×M is constant and known, and the

ource vector x l ∈ C 

M contains the physical information of inter-

st. Further, n l ∈ C 

N is additive zero-mean circularly symmetric

omplex Gaussian noise, which is generated from a heteroscedastic

aussian process n l ∼ CN ( n l ; 0 , �n l 
) , where �n l 

is the covariance

atrix corresponding to the l th observation of the noise vector n l .

ue to the circular symmetry of the noise the phase is uniformly

istributed. 

We specialize to diagonal covariance matrices, parameterized as

n l = 

N ∑ 

n =1 

σ 2 
nl J n = diag (σ 2 

1 l , . . . , σ
2 
Nl ) , (2)

here J n = diag ( e n ) = e n e 
T 
n with e n the n th standard basis vector.

ote that the covariance matrices �n l 
are varying over the snap-

hot index l = 1 , . . . , L and we introduce the matrix of all noise

tandard deviations as 

 N = 

⎛ ⎝ 

σ11 . . . σ1 L 

. . . 
. . . 

. . . 
σN1 . . . σNL 

⎞ ⎠ ∈ R 

N×L 
0+ , (3)

here R 0+ denotes non-negative real numbers. 

We consider three noise cases for the a priori knowledge on the

oise covariance model (2) which are expressed as constraints on

 N . 

Case I We assume wide-sense stationarity of the noise in space

and time: σ 2 
nl 

= σ 2 . The model is homoscedastic, 

V N ∈ V I = { V ∈ R 

N×L 
0+ | V = σ1 N 1 

T 
L } , (4)

where 1 N is the N -dimensional all-one vector. 

Case II We assume wide-sense stationarity of the noise in space

only, i.e., the noise variance for all sensor elements

is equal across the array, σ 2 
nl 

= σ 2 
0 l 

and it varies over

snapshots. The noise variance is heteroscedastic in time

(across snapshots), 

V N ∈ V II = { V ∈ R 

N×L 
0+ | V = 1 N [ σ01 . . . σ0 L ] 

T } . (5)

For Noise Case II, an example of a noise standard devia-

tion matrix V N is illustrated in Fig. 1 a. 

Case III No additional constraints other than (3) . The noise vari-

ance is heteroscedastic across both time and space (sen-

sors and snapshots). In this case 

V N ∈ V III = R 

N×L 
0+ . (6)

For Noise Case III, an example of a random V N is illus-

trated in Fig. 1 b and an example for a spatiotemporal

evolution of the noise standard deviation is shown in

Fig. 1 c. 
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Fig. 1. Examples of noise standard deviation matrix V N in (3) for N = 20 sensors 

and L = 50 snapshots. The average noise standard deviation is normalized to 1. 

Noise Cases a) II, b) III, c) III with evolving noise, d) Histogram of noise standard 

deviation for Noise Case III (10 0 0 samples) in b) with log 10 σnl ∼ U(−1 , 1) . 

 

 

o

2

 

x  

D  

s  

s  

m

Y  

T  

v  

e  

e  

t

 

e  

w

M  

a  

s  

t  

n

 

o  

p  

t  

o  

p  

I

2

 

d  

a  

w

i  

a

�  

a  

a  

t  

b  

r

M  

T  

s  

d  

m

2

 

n  

t

 

 

 

 

 

3

 

t  

(  

s

�

T

T

l

T  

t  

t  

b  

p  

p

The relation between the domains for the three noise cases is

V I ⊂ V II ⊂ V III = R 

N×L 
0+ . From the elements in the sets V d ( d is I, II,

r III) both V N in (3) and �n l 
in (2) can be constructed. 

.2. Array model 

Let X = [ x 1 , . . . , x L ] ∈C 

M×L be the complex source amplitudes,

 ml = [ X ] m,l = [ x l ] m 

with m ∈ {1, ���, M } and l ∈ {1, ���, L }, at M

OAs with arbitrary spacing (e.g., θm 

= −90 ◦ + 

m −1 
M 

180 ◦) and L

napshots for a frequency ω. We observe narrowband waves on N

ensors for L snapshots Y = [ y 1 , . . . , y L ] ∈ C 

N×L . A linear regression

odel relates the array data Y to the source amplitudes X as 

 = AX + N . (7)

he dictionary A = [ a 1 , . . . , a M 

] ∈ C 

N×M contains the array steering

ectors for all hypothetical DOAs as columns, with the ( n, m )th el-

ment given by e j 
ωd n 

c sin θm ( d n is the distance to the reference el-

ment and c the phase speed). The array configuration d n is arbi-

rary. 

We assume M > N and thus (7) is underdetermined. In the pres-

nce of only few stationary sources, the source vector x l is K -sparse

ith K � M . We define the l th active set 

 l = { m ∈ N | x ml � = 0 } , (8)

nd assume M l = M = { m 1 , . . . , m K } is constant across all snap-

hots l . Also, we define A M 

∈ C 

N×K which contains only the K “ac-

ive” columns of A . In the following, ‖ · ‖ p denotes the vector p -

orm and ‖ · ‖ F the matrix Frobenius norm. 

Similar to other DOA estimators, K can be estimated by model

rder selection criteria or by examining the angular spectrum. The

arameter K is required only for scaling the noise standard devia-

ion in the SBL algorithm, with a factor 1 / 
√ 

N − K , and for the size

f the projection matrix. For real-world data sets, we have good ex-

erience with choosing K based on the observed number of DOAs.

n this paper, K is assumed known. 
.3. Prior on the sources 

We assume that the complex source amplitudes x ml are in-

ependent both across snapshots and across DOAs and follow

 zero-mean circularly symmetric complex Gaussian distribution

ith DOA-dependent variance γ m 

, m = 1 , . . . , M, 

p(x ml ;γm 

) = 

{
δ(x ml ) , for γm 

= 0 

1 
πγm 

e −| x ml | 2 /γm , for γm 

> 0 

, (9) 

p(X ;γ ) = 

L ∏ 

l=1 

M ∏ 

m =1 

p(x ml ;γm 

) = 

L ∏ 

l=1 

CN ( x l ; 0 , �) , (10) 

.e., the source vector x l at each snapshot l ∈ {1, ���, L } is multivari-

te Gaussian with potentially singular covariance matrix, 

= diag ( γ ) = E 

[ x l x 
H 
l ;γ] , (11)

s rank (�) = card (M ) = K ≤ M (typically K � M ). Note that the di-

gonal elements of �, denoted as γ , represent source powers and

hus γ ≥ 0 . When the variance γm 

= 0 , then x ml = 0 with proba-

ility 1. The sparsity of the model is thus controlled with the pa-

ameter γ , and the active set M is equivalently 

 = { m ∈ N | γm 

> 0 } . (12)

he SBL algorithm ultimately estimates γ rather than the complex

ource amplitudes X . This amounts to a significant reduction of the

egrees of freedom resulting in a low variance of the DOA esti-

ates. 

.4. Heteroscedastic noise estimate 

For the low SNR cases considered, it is important to take the

oise variance into account. We propose two methods for doing

his: 

• We estimate the spatiotemporal noise parameters (matrix V N )

and the DOAs (active set M ) and power levels ( γ) using

Stochastic Maximum Likelihood, see Section 3 . 
• We weight the array data with matrix W l which is a square

root of the estimated inverse noise covariance matrix (39) or

suitable approximations there of for the case of low SNR, see

Section 4 . 

. Stochastic maximum likelihood 

We here derive the well-known stochastic likelihood func-

ion [44,54–56] . Given the linear model (7) with Gaussian source

10) and noise (2) the array data Y is Gaussian with for each snap-

hot l the covariance �y l 
given by 

y l = E 

[ y l y 
H 
l ] = �n l + A�A 

H (13) 

he probability density function of Y is thus given by 

p(Y ) = 

L ∏ 

l=1 

CN ( y l ; 0 , �y l ) = 

L ∏ 

l=1 

e 
−y H 

l 
�−1 

y l 
y l 

πN det �y l 

. (14) 

he L -snapshot log-likelihood for estimating γ and V N is 

og p(Y ;γ , V N ) ∝ −
L ∑ 

l=1 

(
y H l �

−1 
y l 

y l + log det �y l 

)
. (15) 

his likelihood function is identical to the Type II likelihood func-

ion (evidence) in standard SBL [40,42,45] which is obtained by

reating γ as a hyperparameter. The Type II likelihood is obtained

y integrating the likelihood function over the complex source am-

litudes, cf. (29) in [42] . The stochastic maximum likelihood ap-

roach is used here as it is more direct. 



66 P. Gerstoft, S. Nannuru and C.F. Mecklenbräuker et al. / Signal Processing 161 (2019) 63–73 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

SBL Algorithm. 

0 Initialize: γnew = diag [ A H S y A ] , 

�new 
n l 

= Eq. (23), (25), (49) , or (29) 

with P = 0 , K = 0 

εmin = 0 . 001 , ε = 2 εmin , j = 0 , j max = 100 

1 while ( ε > εmin ) and ( j < j max ) 

2 γold = γnew , � = diag ( γold ) , �old 
n l 

= �new 
n l 

3 �y l = �old 
n l 

+ A�A H (13) 

4 γ new 
m use (36) 

5 M = { m ∈ N | K largest peaks in γ}
={ m 1 . . . m K } (12) 

6 A M 

= (a m 1 , . . . , a m K ) , P = A M 

A + M 

7 �new 
n l 

= choose from (23), (25), (49) , or (29) 

8 ε = ‖ γnew − γold ‖ 1 / ‖ γold ‖ 1 , j = j + 1 (38) 

9 Output: M , γnew , �new 
n l 
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The parameter estimates ˆ γ and ̂

 V N are obtained by maximizing

the likelihood, leading to 

( ̂  γ , ̂  V N ) = arg max 
γγ ≥0 , V N ∈V d 

log p(Y ;γ , V N ) , (16)

where V d is the feasible set of noise variances V N in (3) corre-

sponding to the noise cases ( d = I, II, or III, see Section 2.1 ). If γ
and V N , or �n l 

, are known, then the posterior for each snapshot

l is p(x l | Y ) = CN ( x l ; ˆ x MAP 
l 

, �x l 
) with the posterior mean 

ˆ x MAP 
l 

and

covariance �x l 
[42,57] , 

ˆ x 

MAP 
l = �A 

H �−1 
y l 

y l , (17)

�x l = 

(
A 

H �−1 
n l 

A + �−1 
)−1 

. (18)

The diagonal elements of �, i.e., γ , control the row-sparsity of ˆ x MAP 
l 

as for γm 

= 0 the corresponding m th element of ˆ x MAP 
l 

becomes 0

too. 

While there has been more focus on estimating the DOAs or

γ , noise is an important part of the physical system and a correct

estimate is needed for good convergence properties. For example,

in SBL the noise variance controls the sharpness of the peaks in the

γ spectrum, with higher noise levels giving broader peaks. Thus, as

we optimize the DOAs we expect the noise levels to decrease and

the γ spectrum to become sharper. 

In the following, we estimate the noise variance parameters for

the three noise cases described in Section 2.1 and introduce sim-

plifying approximations suitable at low signal to noise ratios. In

Sections 3.1 –3.3 , we assume the support of γ to be known. More

specifically, we let �M 

= diag ( γnew 

M 

) be the covariance matrix of

the K active sources obtained by maximizing (15) . The correspond-

ing active steering matrix is A M 

. 

3.1. Noise estimate, Case I 

Under Noise Case I, where �n l 
= σ 2 I N with I N the identity ma-

trix of size N , stochastic ML [47,50,52] provides an asymptotically

efficient estimate of σ 2 if the set of active DOAs M is known. The

data covariance matrix is then given by 

�y l = σ 2 I N + A M 

�M 

A 

H 
M 

. (19)

Note that, the data covariance matrices (13) and (19) are identi-

cal. Let us then define the projection matrix onto the subspace

spanned by the active steering vectors 

P = A M 

A 

+ 
M 

= A M 

(A 

H 
M 

A M 

) −1 A 

H 
M 

= P 

H = P 

2 . (20)

and the sample covariance matrix 

S y = 

1 

L 
Y Y 

H 
. (21)

We use the approximate ML noise variance estimate ˆ σ 2 obtained

by [50,52] 

σ 2 = 

tr [ �y l − PS y ] 

N − K 

= 

tr [ S y − PS y ] + ε

N − K 

(22)

≈ tr [(I N − P ) S y ] 

N − K 

= ˆ σ 2 . (23)

Here, we introduce the power estimation error ε = tr [ �y l 
− S y ] .

The estimate (23) has been used for SBL implementations [42,47] . 

The above approximation motivates the noise power estimate

for Noise Case I (23) , which is error-free if tr [ �y ] = tr [ S y ] , unbiased

because E [ ε] = 0 , consistent since also its variance tends to zero for

L → ∞ [58] , and asymptotically efficient as it approaches the CRLB

for L → ∞ [59] . The Noise Case I estimate (23) is valid even for

one snapshot. 
For the purpose of noise covariance matrix estimation at very

ow SNR, when the signals of interest are weak, we may ignore

ll signal power in (23) . We set K = 0 and P = 0 in (23) and use

he sensor data SCM as a low-cost estimate of the noise covariance

atrix, i.e., 

ˆ 2 = 

‖ Y ‖ 

2 
F 

NL 
and 

̂ �n l = 

‖ Y ‖ 

2 
F 

NL 
I N . (24)

e do not use (24) in the SBL algorithm in Table 1 , but it moti-

ates the approximate pre-whitening in Section 4 . 

.2. Noise estimate, Case II 

For Noise Case II, where �n l 
= σ 2 

l 
I N , we apply (23) for each

napshot l individually, leading to 

ˆ 2 l = 

tr [(I N − P ) y l y 
H 
l 

] 

N − K 

= 

‖ (I N − P ) y l ‖ 

2 
2 

N − K 

. (25)

imilarly to (24) , we may ignore all signal power in (25) for very

ow SNR. We set K = 0 and P = 0 in (25) and use the sensor data

CM as a low-cost estimate of the noise covariance matrix, i.e., 

ˆ 2 l = 

‖ y l ‖ 

2 
2 

N 

and 

̂ �n l = 

‖ y l ‖ 

2 
2 

N 

I N . (26)

e do not use (26) in the SBL algorithm in Table 1 , but it moti-

ates the approximate pre-whitening in Section 4 . 

.3. Noise estimate, Case III 

Let us start from the definition of the noise covariance 

n l = E 

[
( y l − A x l )( y l − A x l ) 

H 
]

= E 

[
( y l − A M 

x M ,l )( y l − A M 

x M ,l ) 
H 
]
. (27)

his motivates plugging-in the single-observation signal estimate
 

 M ,l = A 

+ 
M 

y l ∈ C 

K for the active (non-zero) entries in x l . This esti-

ate is based on the single observation y l and the projection ma-

rix (20) , giving the rank-1 estimate ̂ 

n l = (I − P ) y l y 
H 
l (I − P ) . (28)

ince the signal estimate ̂ x M ,l maximizes the estimated signal

ower, this noise covariance estimate is biased and the noise level

s likely underestimated. 

Since we assume independent noise across sensors, all off-

iagonal elements of �n l 
are known to be zero. With this con-

traint in mind, we modify (28) as ̂ 

n l = diag [ σ 2 
1 l , . . . , σ

2 
nl , . . . , σ

2 
Nl ] 

= diag 
[
diag 

[
(I − P ) y l y 

H 
l (I − P ) 

]]
. (29)

he estimate (29) is demanding as for all the N × L complex-valued

bservations in Y , we obtain N × L estimates of the noise variance.
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L 
ote that the estimate ̂ �n l 
in (28) is not invertible whereas the

iagonal constraint in (29) leads to a non-singular estimate of �n l 
ith high probability (it is singular only if an element of y l is 0).

s a result, the expression (29) for �y l 
that is used for estimating

in (36) is likely invertible. 

Similarly to (24) and (26) , we may ignore all signal power in

29) for very low SNR. We set P = 0 in (29) , resulting in the low-

ost estimate ̂ 

n l = diag 
[
diag 

[
y l y 

H 
l 

]]
= diag (| y 1 ,l | 2 , . . . , | y N,l | 2 ) . (30) 

r ̂ 

2 
nl = | y nl | 2 . (31)

his can be shown to be the stochastic ML noise estimate for no

ources ( K = 0 ) or very low power sources. We do not use (30) in

he SBL algorithm in Table 1 , but it motivates the approximate pre-

hitening in Section 4 . 

.4. Source power estimation 

We impose the diagonal structure � = diag ( γ ) , in agreement

ith (10) , and form derivatives of (15) with respect to the diagonal

lements γ m 

, cf [54] . Using 

∂�−1 
y l 

∂γm 

= −�−1 
y l 

∂�y l 

∂γm 

�−1 
y l 

= −�−1 
y l 

a m 

a 

H 
m 

�−1 
y l 

, (32) 

∂ log det (�y l ) 

∂γm 

= tr 

(
�−1 

y l 

∂�y l 

∂γm 

)
= a 

H 
m 

�−1 
y l 

a m 

, (33) 

he derivative of (15) is formulated as 

∂ log p(Y ;γ , V N ) 

∂γm 

= 

L ∑ 

l=1 

(
a 

H 
m 

�−1 
y l 

y l y 
H 
l �

−1 
y l 

a m 

− a 

H 
m 

�−1 
y l 

a m 

)
= 

L ∑ 

l=1 

a 

H 
m 

(
�−1 

y l 
y l y 

H 
l �

−1 
y l 

− �−1 
y l 

)
a m 

= 

L ∑ 

l=1 

| y H l �
−1 
y l 

a m 

| 2 −
L ∑ 

l=1 

a 

H 
m 

�−1 
y l 

a m 

= 

1 

γ 2 
m 

L ∑ 

l=1 

| ̂ x 

MAP 
ml | 2 −

L ∑ 

l=1 

a 

H 
m 

�−1 
y l 

a m 

, (34) 

here the first term in the last equation is expressed by the first

oment of the posterior ˆ x MAP 
ml 

(17) and γ m 

for the m th element.

ssuming ˆ x MAP 
ml 

and �y l 
given (from previous iterations or initial-

zation) and forcing (34) to zero gives the γ m 

update: 

(γ new 

m 

) 2 = 

∑ L 
l=1 | ̂ x 

MAP 
ml 

| 2 ∑ L 
l=1 a 

H 
m 

�−1 
y l 

a m 

. (35) 

ince γ old 
m 

is common in 

ˆ x MAP 
ml 

across all L snapshots, see (17) , we

btain the following 

new 

m 

= γ old 
m 

(∑ L 
l=1 | y H l 

�−1 
y l 

a m 

| 2 ∑ L 
l=1 a 

H 
m 

�−1 
y l 

a m 

)0 . 5 

. (36) 

his update rule was used in [42] . Using an exponent of 1 (instead

f 0.5) in (36) gives the update equation used in [39,43,57] . 

.5. Sparse Bayesian learning 

We are now ready to describe the SBL algorithm solv-

ng (16) without pre-whitening. For a detailed derivation of the

ource power estimates ˆ γ , see [42] , and for multiple dictionaries
ee [43] . The algorithm iterates between the source power esti-

ates ˆ γ derived in Section 3.4 and the noise parameter estimates
 

 N computed in Sections 3.1 —3.3 . 

The proposed SBL algorithm is summarized in Table 1 which

s applicable for Noise Cases I, II, and III. Given the observed Y , we

teratively update �y l 
(13) by using the current γ and �n l 

. The �−1 
y l 

s computed directly as the numerical inverse of �y l 
. For updating

m 

, m = 1 , . . . , M we use (36) . For the initialization of γ we use

he conventional beamformer (CBF) power estimate 

= diag [ A 

H S y A ] . (37) 

The noise covariance matrix �n l 
is based on either Noise Case

 (23) , II (25) , or III (29) . The noise is initialized using (23), (25) ,

r (29) with P = 0 , K = 0 , which provides an over estimate of the

oise variance. 

The convergence rate ε measures the relative change in esti-

ated total source power, 

= ‖ γnew − γold ‖ 1 

/ ‖ γold ‖ 1 . (38)

he algorithm stops when ε ≤ εmin and the output is the active set

 (see (12) ) from which all source parameters are computed. 

. Approximate pre-whitening 

The purpose of this section is to motivate the empirical ev-

dence [23] –[34] that phase-only processing with conventional

eamforming (CBF) might provide improved DOA estimates over

sing both amplitude and phase of the array data (not needed for

BL which estimates the heteroscedastic noise variance). Such im-

rovements in DOA estimation are observed when sources are not

losely spaced and at low SNR as demonstrated in the examples,

ection 5 . 

For snapshot l , we factorize the inverse noise covariance �−1 
n l 

=
 

H 
l 

W l , where W l is chosen to be square and positive definite. For

eteroscedastic noise modeled in (2) , we choose 

 l = diag (σ−1 
1 l 

, . . . , σ−1 
Nl 

) . (39)

he matrix W l is useful for pre-whitening the sensor data. The cor-

esponding whitened sensor data is 

 

 l = W l y l . (40) 

or known diagonal noise covariance �n l 
the above means we have

o normalize each row in (1) with σ nl as then the noise satisfies
 

 l ∼ CN ( ̃  n l ; 0 , I ) , and thus all entries are identically distributed. 

For real-world sensor data, the noise covariance matrices are

nknown and must be estimated as described in Sections 3.1 —3.3 .

t very low SNR, we may use the corresponding low-cost estimates

24), (26) , and (30) . The corresponding pre-whitening matrices are

hen 

 l ≈

⎧ ⎨ ⎩ 

√ 

NL 
‖ Y ‖ F I for Case I √ 

N 
‖ y l ‖ 2 I for Case II 

diag (| y 1 ,l | , . . . , | y N,l | ) −1 for Case III 

(41) 

eading to the approximately pre-whitened array data 

 

 l ≈

⎧ ⎪ ⎨ ⎪ ⎩ 

√ 

NL 
‖ Y ‖ F y l for Case I √ 

N 
‖ y l ‖ 2 y l for Case II [
y 1 ,l / | y 1 ,l | , . . . , y N,l / | y N,l | 

]T 
for Case III . 

(42) 

Empirically, it has been found that applying pre-whitening to

he data y l only (the dictionary A is non-whitened) is effective in

nding the strongest DOA [23] –[34] . 

For Noise Case I, pre-whitening does not play a role and the

onventional beamformer is formulated using the power spectrum

t DOA θm 

 CBF (θm 

) = 

1 

a 

H 
m 

Y Y 

H a m 

= a 

H 
m 

S y a m 

(43) 
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where the sample covariance matrix S y is defined in (21) . 

For Noise Cases II and III on the other hand, we will work with

the approximately pre-whitened data. In those cases, the conven-

tional beamformer leads to the powerspectra P CBF2 and P CBF3 , re-

spectively, which can be formulated as 

P CBF* (θm 

) = 

1 

L 
a 

H 
m ̃

 Y ̃

 Y 

H 
a m 

= a 

H 
m 

S ˜ y a m 

(44)

where P CBF* is either P CBF2 or P CBF3 . The whitened sample covari-

ance matrix is 

S ˜ y = 

1 

L ̃
 Y ̃

 Y 

H = 

1 

L 

L ∑ 

l=1 

y l W 

2 
l y 

H 
l . (45)

The weighting W l is given by (41) . For Noise Case III, only phase

is used as can be observed from (42) , which results in phase-only

processing P CBF3 . As demonstrated in Section 5.2 this simple pre-

whitening can improve the DOA performance at low SNR. 

5. Examples 

When the noise process is stationary (Noise Case I) and only

a single source is active, the peak of the CBF spectrum provides

the optimal DOA estimate. For heteroscedastic noise (Noise Cases

II and III) this does not hold true in general. In the following sim-

ulation examples, we investigate different DOA estimators in het-

eroscedastic noise. 

In Section 5.2 , we investigate CBF (with and without weighting)

and compare with MUSIC results. Next, we investigate a DOA esti-

mator based on SBL, which takes into account the heteroscedastic

noise explicitly ( Section 5.3 ) for a single source and the case of

multiple sources is discussed in Section 5.4 . 

5.1. Simulation setup 

In the analysis of seismic data the noise for each snapshot was

observed to be log-normal distributed [35] . Noise has also been

modeled with extreme-value distributions [60] . In the simulations

here, the noise follows a normal-uniform hierarchical model. The

noise is complex zero-mean Gaussian with the noise standard de-

viation uniformly distributed over two decades, i.e., log 10 σnl ∼
U (−1 , 1) , where U is the uniform distribution. Three noise cases

are simulated: 

(a) Case I: constant noise standard deviation over snapshots and

sensors, 

(b) Case II: standard deviation changes across snapshots with

log 10 σl ∼ U(−1 , 1) , and 

(c) Case III: standard deviation changes across both snapshots

and sensors with log 10 σnl ∼ U(−1 , 1) . 

A realization of the noise standard deviation matrix is shown

for Noise Case II in Fig. 1 a. A realization for Noise Case III is shown

in Fig. 1 b) for N = 20 sensors and L = 50 snapshots. The corre-

sponding histogram is presented in Fig. 1 d. An example for a spa-

tiotemporal evolution of the noise standard deviation is shown in

Fig. 1 c. 

5.2. Single DOA with CBF and MUSIC 

The single source is located at −3 ◦. The complex source am-

plitude is stochastic and there is additive heteroscedastic Gaus-

sian noise with an SNR variation from −40 to 0 dB. The sensor

array has N = 20 elements with half wavelength spacing. We pro-

cess L = 50 snapshots. The angle space [ −90 , 90] ◦ is divided into a

0.5 ◦ grid ( M = 360 ). The single-snapshot array signal-to-noise ratio

(SNR) is 

SNR = 10 log 10 [ E 

{‖ A x l ‖ 

2 
2 

}
/ E 

{‖ n l ‖ 

2 
2 

}
] . (46)
p  
e first compute the beam spectra using CBF (43) , as well as

BF2 and CBF3, both using (44) but with different weightings (42) .

hen the noise is homoscedastic (constant standard deviation),

he beam spectra for the three processors behave similarly (first

ow in Fig. 2 ). For heteroscedastic noise CBF2 and CBF3 give much

etter discrimination between signal and noise, see Fig. 2 middle

Noise Case II) and bottom row (Noise Case III). 

The root mean squared error (RMSE) of the DOA estimates over

N sim 

= 500 runs with random noise realizations is used for evalu-

ting the algorithm 

MSE = 

√ 

N sim ∑ 

n =1 

K ∑ 

i =1 

( ̂  θn 
i 

− θ0 
i 
) 2 

N sim 

K 

, (47)

here θ0 
i 

is the true DOA and 

ˆ θn 
i 

is the estimated DOA for the i th

ource and n th simulation when K sources are present. 

The SNR curves ( Fig. 3 ) demonstrate increased robustness of

BF2 and CBF3, failing 20 dB later. Due to the heteroscedastic noise,

USIC performs worse than CBF for a single source. CBF3 diverges

t an SNR 15–20 dB later than CBF for Noise Cases II and III. 

.3. Single DOA estimation with SBL 

We use the following SBL methods with γ update (36) and pa-

ameters given in Table 1 : 

SBL: Solves Noise Case I using standard SBL, with σ from (23) . 

BL2: Solves Noise Case II, with σ l for each snapshot from (25) . 

BL3: Solves Noise Case III, with σ nl from (29) . 

Parameters used for SBL are in Table 1 . In addition to these

ethods, we use basis pursuit (BP) as implemented in [41] . 

For Noise Case I, all the methods fail near the same SNR of

12 . 5 dB, Fig. 4 a. When the noise is heteroscedastic across snap-

hots, CBF, BP, and SBL fail early. Since both SBL2 and SBL3 cor-

ectly model the noise, they perform the best for Noise Case II,

ig. 4 b. CBF3 also performs well. For heteroscedastic Noise Case III,

BL3 fails the last and as before CBF3 also performs well. SBL3 fails

5 dB later than any other SBL-method. This demonstrates the use-

ulness of accurate noise models in DOA processing. 

For Noise Cases II and III, the SCM (21) based on the raw

rray data Y might be dominated by a few (“corrupted”) snap-

hots/sensors with strong noise. For CBF it is clear that a more

obust approach is to dampen the influence of the corrupted snap-

hots/sensors by replacing the SCM (21) with the approximately

re-whitened SCM (45) . This is the intuitive explanation that CBF3

erforms well in Fig. 4 . For MUSIC, an SCM (21) dominated by few

orrupted snapshots/sensors will not be able to separate the signal

nd noise subspace in Fig. 4 . Though basis pursuit (BP) is a com-

ressive sensing method, due to changing noise, the regularization

arameter cannot be uniquely chosen and hence its performance

uffers in Fig. 4 . 

An example statistic of the heteroscedastic noise standard de-

iation is shown in Fig. 5 for a 20-element array with a single

ource. The standard deviation for each sensor is either 0 or 
√ 

2 .

BL3 estimates the standard deviation from (29) . The average noise

n Fig. 5 b closely resembles the true noise ( Fig. 5 a) whereas the

ample standard deviation estimate ( Fig. 5 c) has high variability

ince each estimate is based on just one observation. Given many

imulations and snapshots, however, the mean of the estimated

tandard deviation is close to the true noise ( Fig. 5 d). On average,

he noise estimate is close to the true noise. 

.4. Three DOA estimation with SBL 

In Fig. 6 , we consider three sources located at [ −3 , 2 , 50] ◦ with

ower [10, 22, 20] dB. For Fig. 6 c, the CBF3 performs worse than
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Fig. 2. Beam spectra for source at −3 ◦ for SNR −10 dB (left) and −25 dB (right) for CBF (black), CBF2 (red), CBF3 (blue). The noise standard deviation is a) constant or 

heteroscedastic with either b) log 10 σl ∼ U(−1 , 1) or c) log 10 σnl ∼ U(−1 , 1) . 20 elements and 50 snapshots based on one simulation are used. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Single source at θ = −3 ◦: Array RMSE using beamforming with pre- 

whitening for Noise Cases (a) I, (b) II, and (c) III. Each noise case is solved with 

CBF, CBF2, CBF3, and MUSIC. 
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Fig. 4. Single source at −3 ◦: RMSE vs. SNR for DOA estimation using various algo- 

rithms for Noise Cases (a) I, (b) II, and (c) III. 

o  

f

w  

(  

a  

a

 

w  

a  

s  

o  

t  

(

BL3 from an SNR above −15 dB, as the sources at −3 ◦ and 2 ◦ are

oth in the CBF main lobe. Interestingly, CBF3 performs the best at

ery low SNR, below −15 dB where the RMSE is about 10 ◦. 

The localization ability of the algorithms can also be gauged

rom the histogram of the top three peaks, see Fig. 7 . Since SBL3

ccounts for the heteroscedastic Noise Case III, its histogram is

oncentrated near the true DOAs. 

.4.1. Noise estimate convergence 

The performance of the SBL methods is strongly related to the

ccuracy of the noise estimates. For the l th snapshot, the true noise

ower σ 2 
l,T 

(Noise Case II) is 

2 
l,T = E 

[ ‖ n l ‖ 

2 
2 ] /N = 10 

−SNR / 10 
E 

[ ‖ A x l ‖ 

2 
2 ] /N. (48)

he estimated σ 2 
l 

(25) deviates from σ 2 
l,T 

(48) randomly. Several

lternative estimators for the noise variance are proposed based
n EM [39,45,46,57,61] . We use the iterative noise EM-estimate

rom [45] , given by 

(σ 2 
l ) 

new = 

|| y l − A ̂

 x 
MAP 
l || 2 F + (σ 2 

l 
) old 

(
M − ∑ M 

i =1 

(�x l 
) ii 

γi 

)
N 

, (49) 

here the posterior mean 

̂ x MAP 
l and covariance �x l 

are given in

17) and (18) , respectively. Empirically, EM noise estimates such

s (49) significantly underestimate the true noise variance in our

pplications. 

Fig. 8 compares the two noise estimates for noise generated

ith log σl ∼ U(−1 , 1) . The evolution of the histograms of the rel-

tive noise variance σ 2 
Est 

/σ 2 
T with iterations is in Fig. 8 b for just 10

imulations, in total 10 ∗50 = 500 variances are estimated. The mean

f the ratio of σ 2 
Est 

/σ 2 
T 

is close to 1 for SBL2 but is much lower for

he EM noise estimate (49) , this likely causes the SBL2 (EM noise,

49) ) to fail 3 dB earlier. 
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Fig. 5. Single source at −3 ◦, array SNR = 0 dB: SBL3 noise standard deviation ma- 

trix V N in (3) : (a) true standard deviations, (b) average estimated (500 simulations) 

standard deviations, (c) a typical estimate of standard deviations, and (d) average 

standard deviations across simulations and snapshots. 

Fig. 6. RMSE vs. SNR with the three sources at {−3 ◦, 2 ◦, 50 ◦} and power {10, 22, 

20} dB. 

 

 

 

 

 

 

 

 

 

Fig. 7. Three sources at {−3 ◦, 2 ◦, 50 ◦} : Histogram of the top three peak locations 

for Noise Case III at SNR −15 dB. 

Fig. 8. Three sources at {−3 ◦, 2 ◦, 50 ◦} (Noise Case II): (a) RMSE vs. SNR for SBL2 

with two noise estimates. (b) Evolution of histogram of noise variance σ 2 
Est /σ

2 
T for 

SBL2 (25) and SBL2 with EM noise estimate (49) with iterations at SNR −10 dB. 

Fig. 9. Three sources at {−3 ◦, 2 ◦, 50 ◦} (Noise Case III): RMSE vs. Number of snap- 

shots with SNR −5 dB. 
5.4.2. Number of snapshots 

The RMSE versus the number of snapshots for Noise Case III

( Fig. 9 ) shows that SBL3 is most accurate with CBF3 following. 

5.4.3. Noise distribution 

For Noise Case III, we are just using one observation to esti-

mate the noise standard deviation for SBL3 (29) . Thus the individ-

ual estimates are not good as shown in the histogram in Fig. 10 .

The histograms are based on N = 20 sensors and L = 50 snapshots

(10 0 0 noise standard deviations). The true noise standard deviation

histogram is generated from log 10 σT,nl ∼ U(−1 , 1) , see Fig. 10 a.

The histogram of the deviation from the true standard deviation

σEst − σT ( Fig. 10 c) is well-centered (mean 0.007), but with large

outliers. 
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Fig. 10. Three sources at {−3 ◦, 2 ◦, 50 ◦} (Noise Case III): Histogram of noise for a realization for SBL3 with 50 snapshots and 20 sensors (10 0 0 observations) with SNR 0 dB. 

a) True σ T , b) estimated σ Est , and c) deviation σEst − σT . 

Fig. 11. As Fig. 6 , but with the SBL implementation in [39] . 
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Fig. 12. RMSE vs. SNR with three off-grid sources at {−2 . 889 ◦, 2 . 222 ◦, 50 . 178 ◦} and 

different power {10, 22, 20} dB. 

Fig. 13. RMSE vs. SNR with three off-grid sources at {−2 . 889 ◦, 2 . 222 ◦, 50 . 178 ◦} and 

same power {10, 10, 10} dB. 
.4.4. SBL Comparison 

Here, we compare to other SBL technique [39, Eq. (18)] , see

ig. 11 . Noise estimates and all parameters are identical to those

sed in Fig. 6 . In comparison, the two SBL algorithms give similar

esults, demonstrating that the noise estimate plays a more signif-

cant role than the SBL technique. 

.4.5. Off-grid and random sources 

We are here concerned with a scenario where the ideal con-

itions are not satisfied by simulating off-grid sources with ei-

her different powers for each DOA ( Fig. 12 ) or identical powers

 Fig. 13 ). For identical powers the solution here diverges at a lower

rray SNR, though the divergence is then faster. 

We also investigate when all 3 DOAs are uniformly random,

ubject to a DOA separation | sin θi − sin θ j | > 0 . 05 corresponding

o at least 2.5 ◦ (computed at broadside, at endfire it is 18 ◦), see

ig. 14 . Naturally each SBL that satisfies the noise assumptions does

ell (SBL for Noise Case I, SBL2 for Noise Case II, and SBL3 for

oise Case III). 
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Fig. 14. RMSE vs. SNR with three sources at uniform random DOAs separated by at 

least 2.5 ◦ and the same power {10, 10, 10} dB. 
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The 2.5 ◦ separation is so small that CBF and CBF3 cannot re-

solve the DOAs even at high SNR. At very low SNR CBF3, which is

whitened to only retain phase, performs better than any other of

the processors. For larger separation (not shown) where CBF3 does

not have resolution problems it performs even better that any of

the other processors at low SNR. This supports the empirical evi-

dence that retaining phase when extracting information from noise

is beneficial [23] , [34] . 

6. Conclusion 

Stochastic likelihood based DOA estimators from long-term ob-

servations corrupted by non-stationary additive noise are proposed

and discussed. In such a setting, the DOA estimators which are de-

veloped for stationary noise perform poorly, meaning the DOA esti-

mation fails at too high SNR. Therefore a heteroscedastic Gaussian

noise model is introduced with the noise variance varying across

sensors and snapshots. We develop sparse Bayesian learning (SBL)

approaches to estimate source powers, source DOAs, and the noise

variance parameters. 

We considered three noise models as follows. Noise Case I:

noise variance is assumed constant, the classic homoscedastic

model. Noise Case II: noise variance is varying across snapshots.

Noise Case III: noise variance is varying across snapshots and sen-

sors, fully heteroscedastic model. These can be seen as nested

models, with Noise Case I being the reduced model and Noise Case

III the full model. Multiple hypotheses testing could provide a for-

mal tool for model selection based on the data. 

A more practical approach is to observe which model gives

highest goodness of fit or lowest RMSE. For the simulations per-

formed there are significant gains in choosing a noise model with

more variance parameters. The simulations indicate that the pro-

posed SBL algorithm tailored to Noise Case III (”SBL3”) performs

satisfactorily for all three noise cases. The loss in RMSE is negligi-

ble when SBL3 is used for array data following Noise Cases I or II.

We observe that SBL3 pushes the SNR threshold (where DOA es-

timation fails) down to −30 dB when the array data follow Noise

Case III and only a single source is present. When multiple sources

are present, this qualitative behavior of the proposed SBL algo-

rithms remains unchanged at low SNR. 

Simulations show that normalizing the array data magnitude

(such that only the phase information is retained) is simple and

useful for estimating well separated DOAs in heteroscedastic Gaus-

sian noise. For the estimation of (multiple) closely spaced sources,
 problem specific SBL approach gives much lower RMSE in the

OA estimates. 

The processing has been demonstrated on experimental data

62] . 
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