
AGGREGATION GRAPH NEURAL NETWORKS

Fernando Gama†, Antonio G. Marques∗, Alejandro Ribeiro†, and Geert Leus‡

† Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, USA
∗ Department of Signal Theory and Communications, King Juan Carlos University, Madrid, Spain
‡ Department of Microelectronics, Delft University of Technology, Delft, The Netherlands

ABSTRACT

Graph neural networks (GNNs) regularize classical neural net-
works by exploiting the underlying irregular structure supporting
graph data, extending its application to broader data domains.
The aggregation GNN presented here is a novel GNN that ex-
ploits the fact that the data collected at a single node by means
of successive local exchanges with neighbors exhibits a regular
structure. Thus, regular convolution and regular pooling yield
an appropriately regularized GNN. To address some scalability
issues that arise when collecting all the information at a single
node, we propose a multi-node aggregation GNN that constructs
regional features that are later aggregated into more global fea-
tures and so on. We show superior performance in a source lo-
calization problem on synthetic graphs and on the authorship at-
tribution problem.

Index Terms— graph neural networks, convolutional neural
networks, network data, graph signal processing

1. INTRODUCTION

Convolutional neural networks (CNNs) have become the de facto
standard for solving a myriad of classification and regression
tasks involving images and time signals, as evidenced in their
ubiquitous application in a wide array of fields, such as pattern
recognition, computer vision and medicine [1, 2].

The resounding success of CNNs might be rooted in the fact
that they regularize classical neural networks (i.e. multilayer per-
ceptrons) by exploiting the underlying regular structure of the
data. More precisely, by replacing general linear transforms by
convolutions with banks of filters, they address the statistical is-
sue of the curse of dimensionality, the optimization issue of need-
ing a large dataset, and the computational issue of having to com-
pute large matrix multiplication results [3].

Data collected from networks usually deviates from the regu-
lar structure that is exhibited in images or time signals, since ele-
ments in each datapoint are related by arbitrary pairwise relation-
ships described by an underlying graph support [4–6]. In the hope
of extending the remarkable performance of CNNs to new data
domains, graph neural networks (GNNs) have emerged [7]. Most
popular solutions entail the replacement of convolutions by banks

Supported by USA NSF CCF 1717120, ARO W911NF1710438, ISTC-
WAS and Intel AI DevCloud; and Spanish MINECO TEC2013-41604-R and
TEC2016-75361-R.

of linear shift-invariant graph filters, as carried out by [8–11] and
reducing the size of the graph by either graph coarsening [9] or
zero-padding [10]. Alternative regularizations using node-variant
graph filters [12] or MIMO graph filters [13] are also possible.
Graph neural networks have also enjoyed great popularity in the
problem of semi-supervised learning, with several architectures
that include the use of graph filters [14], receptive fields [15] and
attention networks [16]. In what follows, we focus on the prob-
lem of either classification or regression on graph signals (the
dataset constitutes signals, all of them supported on the same
graph, as is the case of weather measurements [17] or recom-
mendation systems [18, 19]).

The objective of this paper is to introduce a novel architecture
called aggregation GNN. This architecture exploits the fact that
all the relevant information can be collected at a single node by
means of local exchanges with neighbors (Sec. 3). This aggre-
gated signal exhibits a regular structure that takes into account
the underlying graph support. Thus, applying regular convolu-
tion does indeed linearly relate neighboring values of the sig-
nal, and using regular pooling lends itself naturally to a multi-
resolution analysis in terms of summarizing information from
further away neighborhoods. In order to address some scalabil-
ity issues that arise in large networks, we introduce multi-node
aggregation GNNs (Sec. 4) where we distribute the computation
of regional features across several nodes, and then aggregate the
resulting summaries by means of zero-padding. We show in two
experiments involving a source localization on a synthetic graph
and an authorship attribution problem, that the presented archi-
tecture outperforms GNNs using graph filters and graph coarsen-
ing (Sec. 5). An introduction to GNNs can be found in Sec. 2 and
conclusions in Sec. 6.

2. GRAPH NEURAL NETWORKS

Let T = {(xi,yi)}|T |i=1 be a training set comprised of |T | exam-
ples. We typically consider x ∈ X to be the input data and y ∈ Y
to be some desired target representation that is useful for the task
at hand. The objective is to learn how to obtain an adequate rep-
resentation ŷ ∈ Y for some input x /∈ T . In order to achieve
this, we propose a model f : X → Y such that ŷ = f(x) and
that minimizes some loss function L(ŷi,yi) over the training set
ŷi = f(xi), yi ∈ T . It is expected that minimizing L would lead
to a good model f that generalizes well to unseen data x /∈ T .

In the case of neural networks, the proposed model f is a lay-

4943978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019

ered information processing architecture f = f (L) ◦ f (L−1) ◦
· · · ◦ f (1) consisting of a succession of linear transforms com-
posed with pointwise nonlinearities

x(`) = f (`)(x(`−1)) = σ(`)(A(`)x(`−1)) , ` = 1, . . . , L (1)

where x(`) ∈ X (`), A(`) : X (`−1) → X (`) is a linear transform
and σ(`) : X (`) → X (`) is a pointwise nonlinearity. Typically,
we have x(0) = x and x(L) = ŷ. Once this model is set (i.e.
the number of layers L and the dimensions of x(`) are fixed, and
the nonlinearity σ(`) has been chosen), the optimal linear trans-
formations can be obtained by minimizing the loss function over
the training set, minA(`)

∑
(xi,yi)∈T L(ŷi,yi).

We observe that the number of parameters to learn in the lin-
ear transform A(`) depends on both the size of the input and the
size of the output. This causes major hurdles in the application of
neural networks with arbitrary linear transforms to large datasets,
such as the curse of dimensionality, the need for larger and richer
datasets, and a large computational cost. All these challenges can
be overcome by regularizing the linear transform A(`) to take into
account some structure present in the data.

In this paper, we focus on graph data, and therefore, we seek
for a regularization of the linear transform that takes into account
its graph nature, with the objective of making neural networks
efficient and effective in these domains. To be more precise, let
us start by defining G = (V, E ,W) to be a graph with a set of
nodes V = {1, . . . , N}, a set of edges E ⊆ V × V and a weight
functionW : E → R assigning weights to the edges. We assume
W(i, j) = wij ≥ 0 for all (i, j) ∈ E . We describe the data x
as a graph signal x ∈ RN where each element [x]n is the value
assigned to node n ∈ V . To describe the interaction between
the data x and the underlying graph support G, we introduce the
concept of graph shift operator (GSO) S ∈ RN×N . The GSO
is any matrix that respects the sparsity of the graph, that is, any
matrix S that satisfies that [S]ij can be nonzero if and only if
(j, i) ∈ E or i = j. This forces x′ = Sx to be a local operation,
where each element [x′]n can be computed by interacting only
with the 1-hop neighborhood of n. Examples of GSOs found
in the literature include the adjacency matrix [4, 5], the graph
Laplacian [6], the transition matrix of a Markov chain [20], and
several normalized versions of these graph operators [9, 14].

In this context, graph neural networks can be defined as lay-
ered information processing architectures, where each layer f (`)

is as follows [cf. (1)]

x(`) = σ(`)(A(`)(S)x(`−1)) (2)

thus regularizing A(`) to explicitly be a function of S. This can
be readily achieved by the use of graph filters [8, 9], see [10] for
details. In what follows, we introduce aggregation GNNs, where
we construct an alternative lossless representation of the data x
such that applying regular CNNs results in a GNN as in (2).

In regular CNNs, the nonlinear operation σ(`) is expanded to
include a pooling operation, which acts as a summarizing func-
tion of information in a hierarchical fashion. This operation heav-
ily depends on the structure of the data as well, so that, tech-
nically, σ(`)(·) = σ(`)(·;S). In selection GNNs, this can be
achieved by means of graph coarsening [9] or zero-padding [10].

3. AGGREGATION GNN

Let us start by defining matrix X ∈ RN×N comprised of all
shifted versions of the signal

X = [x,Sx, . . . ,SN−1x] = [y1,y2, . . . ,yN] (3)

where each column of X is given by yn = Sn−1x = yn(S), for
n = 1, . . . , N . We note that yn(S) is a function of S. Matrix X
is a redundant representation of data x since, for any connected
graph, any row of X is sufficient to recover x as each row con-
tainsN linear combinations of x [21]. We thus note that any such
row has successfully incorporated the graph structure included in
the powers of the graph shift operator S.

In particular, we focus on a single node in the network p ∈ V
and observe the aggregated signal z = z(p,S) ∈ RN at this node:

z = z(p,S) =
[
[x]p, [Sx]p, . . . , [S

N−1x]p

]T
=
[
[y1(S)]p, [y2(S)]p, . . . , [yN (S)]p

]T
.

(4)

First, we note that the representation z contains information about
the underlying structure included in S. Second, is clear that we
can recover x from z (as long as the graph is connected), and
therefore it is a lossless representation. Third, we note that it can
be obtained in an entirely local fashion, by successive exchanges
with neighboring nodes. Finally, and most importantly for what
follows, we observe that z exhibits a regular structure akin to that
of discrete-time signals. More precisely, contiguous elements in
vector z represent nearby neighborhoods in the graph.

It is indeed this regular structure of vector z that can be ex-
ploited to readily process the information in the graph signal x.
Let h = [h0, . . . , hK−1]

T ∈ RK be a filter of size K. Then, the
regular convolution between h and z is defined as

[u]n = [(h ∗ z)]n =

K−1∑
k=0

[h]k[z]n−k (5)

where we deal with border effects by zero-padding z and keeping
[u]n for n = 1, . . . , N . Now, when we replace z = z(p,S) by its
definition (4), the regular convolution (5) becomes

[u]n =

K−1∑
k=0

hk[z(p,S)]n−k =

K−1∑
k=0

hk[S
n−k−1x]p. (6)

Thus, [u]n is the result of a linear operation that relates neighbor-
ing values of the graph signal x. In this way, we have effectively
regularized the linear operation by taking into account the under-
lying graph structure of the data, u = A(S)x [cf. (2)].

Each element of u contains information of K successive
neighborhoods of the signal around p. The application of a
pointwise nonlinearity σ(·) on u is straightforward on each ele-
ment [u]n. At the pooling stage, we apply regular pooling and
downsampling, reducing the size of u from N to N ′ ≤ N . We
note that, since contiguous elements of u correspond to related
neighborhoods, regular pooling is satisfactorily summarizing

4944

neighboring information, thus the output of the pooling stage can
be written as z′ = σ(u;S).

Typically, we want to obtain F features that describe differ-
ent aspects of the aggregated input signal z. In order to do this,
we use a bank of filters, and compute the convolution with each
of them [cf. (5)]. Also, we reduce the dimensionality of the vec-
tors by means of pooling so that, typically, after convolution and
pooling, we obtain F vectors z′f of size N ′ each, f = 1, . . . , F .
We also observe that successive application of these operations
leads to a multi-resolution analysis of the information contained
in the graph signal, by pooling further away neighborhoods.

The general description at layer ` ∈ {1, . . . , L} of the aggre-
gation GNN at node p ∈ V is as follows. We add a superscript
(`) to denote values at layer ` and a subscript f or g to keep
track of the feature (the signal) being processed. At any given
layer `, we have, at selected node p ∈ V , F (`−1) input features
z
(`−1)
g ∈ RN(`−1)

, g = 1, . . . , F (`−1), and we want to obtain
F (`) features as the output of layer `. Towards this, we filter each
input feature z

(`−1)
g with F (`) (different) filters of length K(`),

whose filter taps are h
(`)
fg for f = 1, . . . , F (`) [cf. (5)]. Then, we

sum all the F (`−1) outputs obtained for each of the F (`) filters
(output of the tensor-convolution operation)

u
(`)
f =

F (`−1)∑
g=1

(h
(`)
fg ∗ z

(`)
g) (7)

to yield F (`) features u
(`)
f , f = 1, . . . , F (`). Then, a pointwise

nonlinearity followed by regular pooling, are applied, summariz-
ing neighboring information into features z(`)f = σ(u

(`)
f ;S) of di-

mension N (`) ≤ N (`−1). We set z(0)1 = z(p,S) since F (0) = 1.
We also note that node p ∈ V can learn appropriate filter taps h(`)

fg

by optimizing a given loss function over the training set.
While aggregation GNNs are easy to implement, entirely lo-

cal and can be computed at a single node p, they suffer from
scalability issues when applied to large networks. We need to
aggregate data up to the (N − 1)-hop neighborhood in order to
obtain a lossless representation z(p,S) of x; and the communica-
tion cost of these neighborhood exchanges for large N might be
prohibitive. Also, numerical instabilities are likely to arise from
large powers of S that are required in large networks. Neverthe-
less, we might still be able to process partial information from a
subgraph of the network around the selected node p.

4. MULTI-NODE AGGREGATION GNN

In order to address the scalability issues of (single-node) aggre-
gation GNNs described in Sec. 3 we introduce multi-node aggre-
gation GNNs next. Let P ⊆ V be a subset of P = |P| nodes,
and let Q ≥ 0 represent a given number of neighbor exchanges.
Consider a submatrix of X in (3) containing P rows correspond-
ing to nodes p ∈ P and Q consecutive columns. Using a slight
abuse of notation, each row z(p)T of this new submatrix can be
described as [cf. (4)]

z(p) = z(p,Q,S) =
[
[x]p, [Sx]p, . . . , [S

Q−1x]p

]T
(8)

for p ∈ P ⊆ V and Q ≤ N . This vector z(p) ∈ RQ exhibits
a regular structure that takes into account the underlying graph
support, much like (4). Therefore, regular convolution, point-
wise nonlinearities, and regular pooling can be readily (and re-
peatedly) applied at each node to obtain F (L) descriptive fea-
tures of the information gathered at each node. More precisely,
z
(L)
f (p) is a N (L)-dimensional vector representing feature f for
f = 1, . . . , F (L), obtained at node p ∈ V as follows

z
(`)
f (p) = σ(`)

F (`−1)∑
g=1

(
h
(`)
fg (p) ∗ z

(`)
g (p)

)
;S

 (9)

for ` = 1, . . . , L, and where z
(0)
1 (p) = z(p,Q,S) [cf. (8)].

At this point, we have successfully managed to obtain F (L)

descriptive features of the (Q − 1)-hop neighborhood surround-
ing each of the p ∈ P selected nodes. In order to keep processing
the data and aggregate information at larger neighborhoods, we
need to share these features. This can be achieved by consider-
ing a signal x′f (m) containing [z

(L)
f (p)]m the m-th component

of feature f at each of the p ∈ P nodes, and zero in all the non-
selected nodes, for each of the m = 1, . . . , N (L) components.
Consequently, the zero-padded signal x′f (m) can be written as

[x′f (m)]n =

{
[z

(L)
f (n)]m if n ∈ P

0 otherwise.
(10)

Since signal x′f (m) = x′f is appropriately defined on the graph
S for every m = 1, . . . , N (L), we can readily share feature f by
means of Q′ local exchanges [cf. (8)]

z′f (p) = z′f (p,Q
′,S) =

[
[x′f]p, [Sx

′
f]p, . . . , [S

Q′−1x′f]p

]T
(11)

for p ∈ P ′. Typically, we have Q′ ≥ Q and P ′ ⊆ P in order to
aggregate further away features at a smaller subset of nodes.

We term outer layers the local exchanges happening between
nodes [cf. (8) and (11)], and inner layers the regular convolution,
nonlinearity and pooling operations applied within each node [cf.
(9)]. The general description of the multi-node aggregation GNN
is as follows. Let us start with outer layer r, by having F (r−1)

signal features x(r−1)
g defined at P(r−1) nodes and zero-padded

at nodes V\P(r−1), g = 1, . . . , F (r−1) [cf. (10)]. We then se-
lect a subset P(r) ⊆ P(r−1) of nodes and carry out Q(r) local
exchanges to obtain zf (p,Q

(r),S) for p ∈ P(r) [cf. (11)]. Then,
on the aggregated signal zf (p,Q(r),S), we perform, at each of
these nodes p ∈ P(r), a number of L(r) inner layers [cf. (9) with
` = 1, . . . , L(r)] in order to obtain F (r) features at each of the
P(r) nodes. We repeat this procedure for r = 1, . . . , R.

The multi-node aggregation GNN addresses the scalability is-
sues of the single-node by acting as a decentralized method for
constructing regional features. The computational cost at each
outer layer r is O(

∑P (r)

p=1

∑L(r)

`=1 N
(`−1) K(`) F (`−1) F (`)) and

the number of parameters to learn is O(
∑P (r)

p=1

∑L(r)

`=1 K
(`) F (`)

F (`−1)), independent of the size of the graph.

4945

5. NUMERICAL EXPERIMENTS

In this section, we test the proposed single-node and multi-node
aggregation GNNs on the problems of source localization on a
synthetic SBM network [22], and on authorship attribution [23].
We select the nodes following three different strategies: those
with the highest degree, or experimentally designed sampling
(EDS) scores [24], or spectral proxies (SP) [25]. In all archi-
tectures, we consider max-pooling summarizing functions and
ReLU activation functions for the corresponding GNN layers;
and the last layer is a fully-connected readout layer, followed by
a softmax, to perform classification.

Unless otherwise specified, all GNNs were trained using the
ADAM optimizer [26] with learning rate 0.001 and forgetting
factors β1 = 0.9 and β2 = 0.999. The training phase is carried
out for 40 epochs with batches of 100 training samples. The loss
function considered in all cases is the cross-entropy loss between
one-hot target vectors and the output from the last layer of each
architecture.

Source localization. Let G be a 120-node graph with 3 commu-
nities of 40 nodes each [22]. The probability of two nodes being
connected within the same community is 0.8 and between differ-
ent communities is 0.2. In the source localization problem, we
observe a diffusion process after some unknown time t, that orig-
inated at some unknown node i, x = Wtδi, for W the adjacency
matrix, and δi a signal with all zeros and a 1 on node i. The objec-
tive is to determine which community the source node i belongs
to. We generate a training sample of size 10, 000 by randomly
selecting the origin i from a pool of C = 3 nodes (the highest-
degree node of each community; recall that all nodes have, on
average, the same degree) and randomly selecting the diffusion
time t < 25, as well. Analogously, we generate a test set of 200
different samples. We repeat this experiment for 10 different ran-
dom graphs, and for each graph we consider 10 realizations of the
training and test set. The GSO is set to be S = W/λmax(W) the
adjacency matrix normalized by the largest eigenvalue to avoid
numerical instabilities.

The single-node aggregation GNN processes the data through
aL = 2 layer architecture, with regular convolutions ofK(1) = 4
and K(2) = 8 filter taps, constructing F (1) = 16 and F (2) = 32
features, respectively. The downsampling on the pooling stage
is by a factor of 2 on each case. In the multi-node aggrega-
tion GNN we have R = 2 outer layers where we select the
P (1) = 30 and P (2) = 10 best nodes, respectively. We carry
out Q(1) = Q(2) = 5 neighbor exchanges at each node. There
are L(1) = L(2) = 2 inner layers, using filters of size 3 to com-
pute 16 and 32 features, and downsampling by a factor of 2 on
each regular pooling stage. The baseline graph coarsening archi-
tecture [9] consists of 2 layers with graph filters of size 5 that
compute 32 features. After each layer, the graph is coarsened to
be half of its size. Results shown in Table 1 (second column) in-
dicate that the multi-node aggregation GNN with nodes selected
by SP outperforms all other architectures.

Authorship attribution. Consider the problem of authorship at-
tribution where the main task is to determine if a given text was
written by a certain author. We construct author profiles by means

Architecture Source localization Authorship
A-Degree 92.7(±3.5)% 77.7(±2.1)
A-EDS 87.2(±6.1)% 68.8(±3.9)
A-SP 87.6(±8.4)% 74.6(±3.5)
MN-Degree 89.7(±6.4)% 84.5(±1.7)
MN-EDS 90.9(±2.7)% 83.2(±2.7)
MN-SP 94.4(±3.2)% 88.4(±1.5)
C 84.6(±2.5)% 75.6(±3.4)

Table 1: Accuracy on the test set for each of the problems consid-
ered. (A) single-node and (MN) multi-node aggregation GNNs,
and (C) graph coarsening.

of word adjacency networks (WANs). This WAN acts as the un-
derlying graph support for the graph signal representing the word
count (bag-of-words) of the target text of unknown authorship,
see [23] for a detailed construction of WANs. In particular, we
consider all works by Jane Austen. We construct a WAN with
188 nodes (functional words) using 617 of her texts. We build
a training set consisting of these texts, together with 617 texts of
other contemporary authors. For the test set, we consider 308 text
excerpts, 154 being authored by Jane Austen and 154 written by
others. The adopted GSO is the adjacency matrix of the corre-
sponding WAN normalized so that each row adds up to 1, and
then symmetrized.

The single-node aggregation GNN model is as follows: L =
3 layers, K(1) = 6 and K(2) = K(3) = 4 filter taps, F (1) = 32,
F (2) = 64 and F (3) = 128 features, and downsampling by 4
in the first layer and 2 in the next ones. In the multi-node ag-
gregation GNN we have: R = 2 outer layers, P (1) = 30 and
P (2) = 10 selected nodes, and Q(1) = Q(2) = 5 neighbor ex-
changes at each node. There are L(1) = L(2) = 2 inner layers,
using filters of size 3 to compute 16 and 32 features, and down-
sampling by a factor of 2 on each regular pooling stage. The
baseline graph coarsening architecture consists of 2 layers, graph
filters of size 5 that compute 32 features, and graph coarsening
by a factor of 2. Training is carried out for 80 epochs.

Table 1 (third column) shows that multi-node GNNs follow-
ing any of the selection criteria outperforms the baseline, with SP
being the best.

6. CONCLUSIONS

In this paper we proposed a novel GNN that acts on graph sig-
nals. Aggregation GNNs collect all the information at a single
node by means of successive local exchanges with neighbors.
The resulting aggregated signal exhibits a regular structure while
incorporating information of the underlying graph structure as
well. Given this regularity of the aggregated signal we can effec-
tively apply regular convolution and regular pooling, obtaining
linear combinations of neighboring values and multi-resolution
analysis, respectively. To address some scalability issues we in-
troduced multi-node aggregation GNNs where regional informa-
tion is collected at a subset of nodes and then shared among these
nodes to obtain descriptions of larger regions. Tests run on a syn-
thetic source localization problem and on authorship attribution
show better performance over the baseline.

4946

7. REFERENCES

[1] Y. LeCun, K. Kavukcuoglu, and C. Farabet, “Convolu-
tional networks and applications in vision,” in 2010 IEEE
Int. Symp. Circuits and Syst., Paris, France, 30 May-2 June
2010, IEEE.

[2] H. Greenspan, B. van Ginneken, and R. M. Summers,
“Deep learning in medical imaging: Overview and future
promise of an exciting new technique,” IEEE Trans. Med.
Imag., vol. 35, no. 5, pp. 1153–1159, May 2016.

[3] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning,
The Adaptive Computation and Machine Learning Series.
The MIT Press, Cambridge, MA, 2016.

[4] A. Sandryhaila and J. M. F. Moura, “Discrete signal pro-
cessing on graphs,” IEEE Trans. Signal Process., vol. 61,
no. 7, pp. 1644–1656, Apr. 2013.

[5] A. Sandyhaila and J. M. F. Moura, “Discrete signal process-
ing on graphs: Frequency analysis,” IEEE Trans. Signal
Process., vol. 62, no. 12, pp. 3042–3054, June 2014.

[6] D. I Shuman, S. K. Narang, P. Frossard, A. Ortega, and
P. Vandergheynst, “The emerging field of signal process-
ing on graphs: Extending high-dimensional data analysis to
networks and other irregular domains,” IEEE Signal Pro-
cess. Mag., vol. 30, no. 3, pp. 83–98, May 2013.

[7] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and
G. Monfardini, “The graph neural network model,” IEEE
Trans. Neural Netw., vol. 20, no. 1, pp. 61–80, Jan. 2009.

[8] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral
networks and deep locally connected networks on graphs,”
arXiv:1312.6203v3 [cs.LG], 21 May 2014.

[9] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convo-
lutional neural networks on graphs with fast localized spec-
tral filtering,” in Annu. Conf. Neural Inform. Process. Syst.
2016, Barcelona, Spain, 5-10 Dec. 2016, NIPS Foundation.

[10] F. Gama, A. G. Marques, G. Leus, and A. Ribeiro, “Convo-
lutional neural network architectures for signals supported
on graphs,” arXiv:1805.00165v1 [eess.SP], 1 May 2018.

[11] J. Du, S. Zhang, G. Wu, J. M. F. Moura, and
S. Kar, “Topology adaptive graph convolutional networks,”
arXiv:1710.10370v2 [cs.LG], 2 Nov. 2017.

[12] F. Gama, G. Leus, A. G. Marques, and A. Ribeiro, “Con-
volutional neural networks via node-varying graph filters,”
in 2018 IEEE Data Sci. Workshop, Lausanne, Switzerland,
4-6 June 2018, IEEE.

[13] F. Gama, A. G. Marques, A. Ribeiro, and G. Leus, “MIMO
graph filters for convolutional networks,” in 19th IEEE Int.
Workshop Signal Process. Advances in Wireless Commun.,
Kalamata, Greece, 25-28 June 2018, IEEE.

[14] T. N. Kipf and M. Welling, “Semi-supervised classification
with graph convolutional networks,” in 5th Int. Conf. Learn-
ing Representations, Toulon, France, 24-26 Apr. 2017, As-
soc. Comput. Linguistics.

[15] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning con-
volutional neural networks for graphs,” in 33rd Int. Conf.
Mach. Learning, New York, NY, 24-26 June 2016.

[16] P. Veličković, G. Cucurull, A. Casanova, A. Romero,
P. Liò, and Y. Bengio, “Graph attention networks,”
arXiv:1710.10903v3 [stat.ML], 4 Feb. 2018.

[17] D. Owerko, F. Gama, and A. Ribeiro, “Predicting power
outages using graph neural networks,” in IEEE Global
Conf. Signal and Inform. Process. 2018, Anaheim, CA, 26-
29 Nov. 2018, IEEE.

[18] W. Huang, A. G. Marques, and A. Ribeiro, “Rating pre-
diction via graph signal processing,” IEEE Trans. Signal
Process., vol. 66, no. 19, pp. 5066–5081, Oct. 2018.

[19] F. Monti, M. Bronstein, and X. Bresson, “Geometric matrix
completion with recurrent multi-graph neural networks,”
in 31st Annu. Conf. Neural Inform. Process. Syst., Long
Beach, CA, 4-9 Dec. 2017, NIPS Foundation.

[20] A. Heimowitz and Y. C. Eldar, “A unified view of diffusion
maps and signal processing on graphs,” in 2017 Int. Conf.
Sampling Theory and Appl., Tallin, Estonia, 3-7 July 2017,
IEEE.

[21] A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, “Sam-
pling of graph signals with successive local aggregations,”
IEEE Trans. Signal Process., vol. 64, no. 7, pp. 1832–1843,
Apr. 2016.

[22] A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová,
“Asymptotic analysis of the stochastic block model for
modular networks and its algorithmic applications,” Physi-
cal Review E, vol. 84, no. 6, pp. 066106, Dec. 2011.

[23] S. Segarra, M. Eisen, and A. Ribeiro, “Authorship attri-
bution through function word adjacency networks,” IEEE
Trans. Signal Process., vol. 63, no. 20, pp. 5464–5478, Oct.
2015.

[24] R. Varma, S. Chen, and J. Kovačević, “Spectrum-blind sig-
nal recovery on graphs,” in 2015 IEEE Int. Workshop Com-
put. Advances Multi-Sensor Adaptive Process., Cancún,
México, 13-16 Dec. 2015, pp. 81–84, IEEE.

[25] A. Anis, A. Gadde, and A. Ortega, “Efficient sampling set
selection for bandlimited graph signals using graph spectral
proxies,” IEEE Trans. Signal Process., vol. 64, no. 14, pp.
3775–3789, July 2016.

[26] D. P. Kingma and J. L. Ba, “ADAM: A method for stochas-
tic optimization,” in 3rd Int. Conf. Learning Representa-
tions, San Diego, CA, 7-9 May 2015, Assoc. Comput. Lin-
guistics.

4947

