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ABSTRACT 

Data acquisition in compressive sensing (CS) is commonly 

believed to be less complicated, and even less costly, while 

performing agreeably. There is a major lack of measureable 

foundations supporting this optimism as the performance 

and complexity of a CS sensor have hardly been quantified. 

We aim to fill the gap by computing the performance of 

diverse compressive data acquisition schemes by the output 

signal-to-noise ratio (SNR) they provide with the same input 

signal. The SNR is assessed analytically, and also confirmed 

numerically with simulated data. Only with a scheme of 

compressive data acquisition starting directly at reception 

(with no receiver noise yet), CS is less complicated and still 

performs as good as, if not better than, existing sensing. 

Index Terms— compressive sensing, data acquisition, 

signal-to-noise ratio, performance 

 

1. INTRODUCTION 

Compressive sensing (CS) is a recent paradigm in sensing 

that works with a reduced number of measurements for a 

comparable sensing result. This is possible because CS is 

optimized to available information in measurements rather 

than to the sensing bandwidth only. The optimization is 

based on two conditions: sparsity of sensing results and the 

sensing incoherence (e.g. [1]). In a CS sensor, sparse signal 

processing (SSP) is crucial in the back end, while its front 

end facilitates compressive data acquisition. The ultimate 

goal of CS is to create a CS sensor which can be less 

complicated and still can perform at least as good as, or 

preferably even better, than existing sensors. 

Compressive data acquisition is regularly believed to be 

less complicated (and even less costly) while performing 

satisfactorily (e.g. [2]-[5]). However, there are no exact 

grounds provided for this optimism as the performance and 

complexity have almost never been quantified.  

The performance and overall processing gain in CS are 

becoming additionally important and delicate due to fewer 

measurements (e.g. [6]-[7]). As we focus on a CS sensor as a 

whole, we check how fewer measurements from the 

compressive data acquisition affect the performance of SSP 

in the back end. Therefore, we measure the performance of 

different compressive data acquisition schemes by their 

output signal-to-noise ratio (SNR) given the same input 

signal. We show that only with compressive data acquisition 

directly at reception (e.g. [8] and [9]), the front end with CS 

simplifies while performing as good as existing sensors.  

1.1. Related Work 

Compressive data acquisition was much investigated in the 

last decade and commonly anticipated to be better (e.g. [2]-

[5]). There is a substantial lack of concrete quantities 

underlying this assertion. Recently in [9], we started 

investigating the balance between the performance and 

complexity of typical front-end architectures in CS. In this 

paper, we focus on the performance given by the output SNR. 

1.2. Outline and Main Contributions 

In Section 2, relevant data acquisition schemes are presented 

starting with the Nyquist-sampled scheme as the reference, 

followed by typical sub-Nyquist schemes with compression 

before, at and after reception. In Section 3, their performance 

is analyzed by the output SNR. In Section 4, numerical 

results are presented. In Section 5, conclusions are drawn and 

future work is indicated. In Section 6, details of the 

performance analysis are given in an appendix.  

Our main contributions are the performance analysis of 

different data acquisition schemes in CS. Furthermore, we 

compare compressive data acquisition with a corresponding 

existing scheme as the reference. Finally, we look at a CS 

sensor as a whole. We reveal that a CS sensor with certain 

compressive data acquisition can be less involved and still 

perform as good as, if not better than, existing sensors. 

2. COMPRESSIVE DATA ACQUISITION 

Compressive data acquisition may change processing gain 

and sensing performance (e.g. [6]-[7]). We are interested in 

data acquisition schemes with Nyquist-sampled data as the 

reference, and typical sub-Nyquist data acquisition schemes 

with compression before, at and after reception.  

Raw complex-valued measurements gathered in a vector 

 𝒚 ∈ ℂ𝑁 of an input (true) signal 𝒔 can be modeled as:  

         𝒚 = 𝑨𝑡𝒔 + 𝒛 

where 𝑨𝑡 ∈ ℂ𝑁x𝐾  is a sensing matrix at 𝒔 ∈ ℂ𝐾  and 𝒛 ∈ ℂ𝑁 is 

a (complex Gaussian) receiver-noise vector of i.i.d. elements 

with zero mean and equal variances , 𝒛~𝐶𝑁(𝟎, γ𝑰𝑁).  

2.1 Nyquist-sampled scheme 

For the sake of simplicity, we investigate the CS performance 

when 𝒔 contains a single nonrandom component only, i.e. 
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when 𝐾 =1. Accordingly, the reference Nyquist-sampled 

(NS) data 𝒚 ∈ ℂ𝑁x1 can be written as:  

         𝒚 = 𝒂𝑠 + 𝒛

where 𝒂 ∈ ℂ𝑁x1 is a column of 𝑨𝑡 belonging to the nonzero 

response 𝑠 and 𝒛 is as before, 𝒛~𝐶𝑁(𝟎, γ𝑰𝑁). The sensing 

vector 𝒂 is nonrandom and exponential (as e.g. in DOA) 

with norm √𝑁, ‖𝒂‖ = √𝑁 as |𝑎𝑛| =1, n= 1, ..., N. 

2.2 Sub-Nyquist schemes 

We investigate compressive data acquisition with three 

typical sub-Nyquist data models. First we look at models 

related to compression before and after reception, namely to 

sparse sensing (SS, e.g. [4]) and analog-to-information 

conversion (AIC, e.g. [2], [3] and [5]), respectively. Further, 

we look at a recent scheme of random mask (RM, e.g. [8] 

and [9]) which enables the compression directly at reception.  

In the SS and AIC cases, the model of compressed data 

𝒚c ∈ ℂ𝑀 (c being ss or aic), M < N, can be written as follows:  

       𝒚c = 𝑩c𝒚 = 𝑩c𝒂𝑠 + 𝑩c𝒛 =𝒂c𝑠 + 𝒛c

where 𝑩c is a compression matrix, 𝑩𝐜 ∈ ℂ𝑀𝑥𝑁. 

In the SS case, 𝑩ss has M ones (chosen in a multi-coset 

manner, e.g. [4]) one on every row and zeros elsewhere. 

Accordingly, 𝒚ss, 𝒂ss and 𝒛ss contain the corresponding M 
elements from 𝒚, 𝒂 and 𝒛, respectively. Thus, there are 𝑀 

outputs, each output having the noise corresponding to the 

noise in the reference case, 𝒛ss~𝐶𝑁(𝟎, γ𝑰𝑀). The noise 𝒛ss  

remains white because 𝑩ss𝑩ss
H  equals 𝑰𝑀.   

In AIC, 𝑩aic is a full random matrix. We investigate a 

practical 𝑩aic which contains uniformly-distributed phase 

shifts. Accordingly, 𝒚aic, 𝒂aic and 𝒛aic are the result of the 

projection of 𝒚, 𝒂 and 𝒛, respectively, with 𝑩aic. If 𝑩aic 

would be a single realization (and thus, could be treated as 

nonrandom), 𝒛aic~𝐶𝑁(𝟎, γ𝑩aic𝑩aic
H ). Otherwise, 𝒛aic is not 

Gaussian anymore as a product of the uniform 𝑩aic and the 

Gaussian 𝒛. The noise 𝒛aic might also not be white anymore 

because 𝑩aic𝑩aic
H  could deviate from the identity matrix.   

In the RM case, the related model of compressed data 

𝒚rm ∈ ℂ𝑀, M < N, can be written as follows:  

          𝒚rm = 𝑩rm𝒂𝑠 + 𝒛rm =𝒂rm𝑠 + 𝒛rm

where 𝑩rm is a compression matrix. For the sake of a clear 

comparison, we assume the same random compression 

matrix 𝑩 in both RM and AIC cases, 𝑩 = 𝑩rm = 𝑩aic. In 

RM, 𝑩rm affects only the signal as it works at reception 

without any receiver noise yet. After reception there are 𝑀 

outputs whose receiver noise is equivalent to the SS case, i.e. 

𝒛rm~𝐶𝑁(𝟎, γ𝑰𝑀). In AIC, 𝑩aic affects both the signal and 

receiver noise as it occurs after reception in a CS sensor. 

In CS, the solution for the unknown 𝑠 from data models 

(2)-(4) is sought by applying the model: 𝒚c = 𝑨c𝒙 + 𝒛c 

where 𝑨c is the sensing matrix over a discrete grid of size N, 

𝑨c ∈ ℂ𝑀x𝑁 and 𝒙 is a sparse vector, 𝒙 ∈ ℂ𝑁. The usual 

sparse signal processing (SSP), e.g. LASSO [10], applies as:  

𝒙SSP = arg min𝒙  ‖𝒚c − 𝑨c𝒙‖2 + η‖𝒙‖1

where the l1-norm ‖𝒙‖1 promotes sparsity, the l2-norm 

‖𝒚c − 𝑨c𝒙‖ minimizes the errors, and a regularization 

parameter  balances between the two tasks. The parameter 

is closely related to the detection threshold (e.g. [11]). An 

underdetermined system can be solved, M < N, because of 

the sparsity, i.e. only K nonzeros in x (representing the 

unknown 𝒔), K < M < N, and because of the incoherence of 

𝑨c (e.g. [1]). The mutual coherence κ(𝑨)of a matrix𝑨 is an 

incoherence measure, κ(𝑨) = max𝑖,𝑗,𝑖≠𝑗 |𝒂𝑖
H𝒂𝑗| ‖𝒂𝑖‖‖𝒂𝑗‖⁄  

where 𝒂𝑛 is the nth column of 𝑨, n= 1, .., N. Main CS applies 

if 𝐾 < 1 + 1 κ(𝑨)⁄  and 𝑀 > (𝐾 4⁄ )log(𝑁 𝐾⁄ ) (e.g. [1]). 

3. PERFORMANCE ANALYSIS 

The ultimate goal of CS is to produce a CS sensor which can 

be simpler and still can perform at least as good as, or 

preferably even better, than existing sensors. Hence, we 

measure the performance of the four different data 

acquisition schemes from (2)-(4) by the SNR they can give at 

the output with the same signal 𝑠 at the input, and receiver 

noise from 𝐶𝑁(𝟎, γ𝑰) in (2)-(4) with the same variance . 

The output SNR is measured after matched filtering (MF) 

of the acquired data 𝒚, 𝒚𝑐 or 𝒚rm from (2) to (4) because MF 

gives the optimal SNR and moreover, it is also the basis of 

SSP (as well as existing SP, e.g. [11]-[12]). The MF output 

𝑠𝑐,MF with 𝒚𝑐 from (3) is given by: 𝑠𝑐,MF = 𝒂𝒄
H𝒚𝑐 = 𝒂𝒄

H𝒂𝑐𝑠 +

𝒂𝒄
H𝒛𝑐. Thus, the signal energy 𝑆𝑐 and the noise energy 𝑁𝑐 

equal the expected values of |𝒂𝒄
H𝒂𝑐𝑠|2 and of |𝒂𝒄

H𝒛𝑐|2, 

𝑆𝑐 = 𝐸[|𝒂𝒄
H𝒂𝑐𝑠|2] and 𝑁𝑐 = 𝐸[|𝒂𝒄

H𝒛𝑐|2], respectively.   

In the reference case,  𝑆ns = 𝐸[|𝒂H𝒂𝑠|2] = ‖𝒂‖4|𝑠|2 =
𝑁2|𝑠|2 and 𝑁ns = 𝐸[|𝒂H𝒛|2] = 𝐷[𝒂H𝒛] =  ‖𝒂‖2𝐷[𝑧𝑛] =
𝑁γ, n= 1, .., N, where 𝐷[ ] indicates the variance (dispersion).  

The SS scheme is equivalent to the NS case except that 

the number of measurements is 𝑀 in SS instead of 𝑁 in NS. 

Thus, 𝑆ss = 𝐸[|𝒂H𝑩ss
H 𝑩ss𝒂𝑠|2] = ‖𝑩ss𝒂‖4|𝑠|2 = 𝑀2|𝑠|2 

and 𝑁ss = 𝐸[|𝒂ss
H 𝒛ss|2] =  𝐷[𝒂ss

H 𝒛ss] = 𝐷[𝒂H𝑩ss
H 𝒛ss] =

‖𝑩ss𝒂‖2𝐷[𝑧ss,𝑚] = 𝑀γ, m = 1, .., M. 

In the AIC and RM cases, the MF signal equals ‖𝑩𝒂‖2𝑠 

and becomes random due to the matrix 𝑩 whose 𝑚𝑛–th 

element equals exp(𝑗φ𝑚𝑛) √𝑀⁄ , φ𝑚𝑛~𝑈(0,2𝜋), and whose 

column norm is one. Accordingly, 𝑆aic = 𝑆rm =
|𝑠|2𝐸[‖𝑩𝒂‖4] = 𝑁2|𝑠|2[1 + (𝑁 − 1) 𝑁𝑀⁄ ] (Appendix).  

In all the sub-Nyquist schemes except SS, the noise after 

MF is not Gaussian anymore as it is a product involving the 

uniform compression 𝑩 and the Gaussian noise 𝒛 or 𝒛rm. 

The RM noise after MF equals 𝒂H𝑩H𝒛rm with the energy 

given by: 𝑁rm = 𝐸[|𝒂H𝑩H𝒛rm|2] = 𝑁γ (Appendix). 

The AIC noise equals 𝒂H𝑩H𝒛 with the energy given by: 

𝑁aic = 𝐸[|𝒂H𝑩H𝑩𝒛|2] = 𝑁γ[1 + (𝑁 − 1) 𝑀⁄ ]  (Appendix). 

Thus, the SNRs in the reference Nyquist case from (2) 

and the three typical compressive (sub-Nyquist) acquisition 

schemes from (3) and (4), can be written as follows:  
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SNRns =
𝐸[|𝒂H𝒂𝑠|

2
]

𝐸[|𝒂H𝒛|
2

]
=

𝑁2|𝑠|2

𝑁γ
= 𝑁

|𝑠|2

γ


      SNRss =
𝐸[|𝒂𝑠𝑠

H 𝒂𝑠𝑠𝑠|
2

]

𝐸[|𝒂𝑠𝑠
H 𝒛𝑠𝑠|

2
]

=
𝐸[|𝒂H𝑩𝑠𝑠

H 𝑩𝑠𝑠𝒂𝑠|
2

]

𝐸[|𝒂H𝑩𝑠𝑠
H 𝑩𝑠𝑠𝒛|

2
]

= 𝑀
|𝑠|2

γ
    (6) 

SNRaic =
𝐸[|𝒂aic

H 𝒂aic𝑠|
2

]

𝐸[|𝒂aic
H 𝒛aic|

2
]

=
𝐸[|𝒂H𝑩aic

H 𝑩aic𝒂𝑠|
2

]

𝐸[|𝒂H𝑩aic
H 𝑩aic𝒛|

2
]

=  

= 𝑀 (
1

𝑀
+

𝑁−1

𝑀+𝑁−1
)

|𝑠|2

γ
       (7) 

SNRrm =
𝐸[|𝒂rm

H 𝒂rm𝑠|
2

]

𝐸[|𝒂rm
H 𝒛rm|

2
]

=
𝐸[|𝒂H𝑩rm

H 𝑩rm𝒂𝑠|
2

]

𝐸[|𝒂H𝑩rm
H 𝑩ss𝒛|

2
]

=       

= 𝑁 (1 +
𝑁−1

𝑀𝑁
)

|𝑠|2

γ
         (8)

For clarity, the SNR results are also given in Table 1. 

Table 1. SNRs per data acquisition scheme (at |𝑠| =  γ = 1) 

      * NS SS AIC RM 

SNR∗ 𝑁 𝑀 𝑀 (
1

𝑀
+

𝑁 − 1

𝑀 + 𝑁 − 1
) 𝑁 (1 +

𝑁−1

𝑀𝑁
)  

S∗ 𝑁2 𝑀2 𝑁2 (1 +
𝑁−1

𝑀𝑁
)  𝑁2 (1 +

𝑁−1

𝑀𝑁
)  

N∗ 𝑁 𝑀 𝑁 (1 +
𝑁−1

𝑀
)  𝑁 

 

4. NUMERICAL EXPERIMENTS 

The SNR analysis is supported with numerical experiments 

from angle processing with antenna-array measurements.  

Accordingly, in the reference data model from (2), the 

sensing vector 𝒂 is a steering vector at angle θ whose 𝑛-th 

element equals:  𝑎𝑛 = exp(𝑗𝛽𝑛 sin θ) where  𝛽𝑛 is an 

observation variable at the 𝑛-th element (Nyquist-sampled) 

position. The total number 𝑁 of antenna elements is chosen 

to be 100 while a number 𝑀 of compressive measurements 

is chosen to be 50, 25, 20 and 10, i.e. the compression factor 

𝑁 𝑀⁄  equals 2, 4, 5 and 10, respectively. The true angle θ is 

chosen to be zero. The 𝑚𝑛–th element: exp (𝑗φ𝑚𝑛), of the 

random matrix 𝑩, 𝑩 = 𝑩rm = 𝑩aic, represents a phase shift 

by a uniformly-distributed angle φ𝑚𝑛, φ𝑚𝑛~𝑈(0,2𝜋). A 

multi-coset pattern is chosen for 𝑩ss and moreover, the edge 

elements are always kept equal to one (so that the aperture 

remains the same in all the acquisition schemes).  

The true signal value 𝑠 is chosen to be one. The noise 

variance γ also equals one, so that the input SNR equals one 

too, |𝑠|2/γ =1. The output SNRs from (5) to (8) are 

computed numerically as the ratios of the mean values of the 

signal and noise energy from 1000 Monte-Carlo realizations 

of the noise 𝒛, and of the compression matrices 𝑩ss and 𝑩.  

In Fig.1, analytical and numerical results of the SNR are 

compared. The results on the expected SNR coincide. 

Moreover, the results from RM are superior as the RM 

scheme holds the SNR of the Nyquist-sampled scheme but 

with less measurements. This is due to the CS consequence 

that the signal energy is preserved, i.e. 𝑁2|𝑠|2[1 +
(𝑁 − 1) 𝑁𝑀⁄ ] w.r.t. the reference 𝑁2|𝑠|2, while the noise 

energy remains the same: 𝑁γ, as given in Table 1. 

In other compressive data acquisition schemes the output 

SNR is clearly lower depending on the compression factor 

𝑁 𝑀⁄ . In AIC the signal is preserved but the noise is 

stronger. In SS both signal and noise are weaker w.r.t. NS. 

With smaller compression factors, SS gives higher SNR than 

AIC. Their SNRs get closer with a higher compression factor, 

e.g. with 𝑁 𝑀⁄  equal to 10 in Fig.1 whose circles coincide.  

In Fig. 2, the sensing incoherence from different data 

acquisition schemes is given by the mean of the mutual 

coherence κ(𝑨c) from the same Monte-Carlo runs. SS gives 

higher incoherence than AIC and RM. The incoherence 

serves as a bound on the number 𝑀 of measurements needed 

in CS. Note that the general CS rules (e.g. [1]) of 𝐾 < 1 +
 1 κ(𝑨c)⁄  and 𝑀 > (𝐾 4⁄ )log(𝑁 𝐾⁄ ) are satisfied. 

 
Fig. 1. SNR computed numerically from 1000 Monte-Carlo runs 

versus SNR from (5) to (8) of typical data acquisition 

schemes: Nyquist-sampled reference (ns), sparse sensing (ss), 

analog-to-information conversion (aic) and random mask 

(rm),  and four compression factors: 2, 4, 5 and 10. 

  
Fig. 2. Mutual coherence κ(𝑨c) from data acquisition schemes 

and compression factors from the same tests as in Fig. 1. 
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5. CONCLUSIONS 

 

The performance of typical sub-Nyquist data acquisition 

schemes from CS was investigated by computing the output 

SNR they can provide with the same input signal. Moreover, 

the performance was compared with the performance of the 

corresponding Nyquist-sampled scheme as the reference.  

 The SNR analysis demonstrated that a CS sensor could 

be simpler with a fewer measurements and still perform as 

good as, if not better than, existing sensors. This is true only 

in the case of random-mask compressive data acquisition 

starting directly at reception with no receiver noise yet, and 

thus, affecting the signal only. 

5.1. Future work 

The performance of CS sensors is being further assessed by 

evaluating the SSP performance in detection, accuracy and 

resolution when random-mask compressive data acquisition 

schemes are applied. Furthermore, measurements and their 

SNRs are also being analyzed in the continuous domain to 

determine the reference before any sampling.  
 

6. APPENDIX 

 

The SNRs from (7) and (8) provided by the AIC and RM 

acquisition schemes, respectively, are detailed here. The 

SNRs are computed in the outcomes 𝑠aic,MF and 𝑠rm,MF of the 

matched filtering (MF) with data 𝒚aic and 𝒚rm from the 

compressive acquisition schemes AIC and RM, respectively.  

The MF outputs with the AIC and RM data are given by:   

𝑠aic,MF = 𝒂aic
H 𝒚aic = 𝒂aic

H 𝒂aic𝑠 + 𝒂aic
H 𝒛aic  and 

𝑠rm,MF = 𝒂rm
H 𝒚rm = 𝒂rm

H 𝒂rm𝑠 + 𝒂rm
H 𝒛rm, respectively, 

where 𝒂rm ≡ 𝒂aic = 𝑩𝒂, 𝒛aic = 𝑩𝒛, 𝑩 is a compression 

matrix, 𝑩 = 𝑩rm = 𝑩aic, 𝒛rm~𝐶𝑁(𝟎, γ𝑰𝑀) and 𝒂 and 𝒛 as 

in (2). The compression matrix 𝑩 ∈ ℂ𝑀𝑥𝑁 contains  

uniformly-distributed phase shifts. Its 𝑚𝑛–th element 𝑏𝑚𝑛 

equals exp(𝑗φ𝑚𝑛) √𝑀⁄  where φ𝑚𝑛~𝑈(0,2𝜋). 

The signal energy after MF in AIC and RM, can be 

written as: 𝑆aic = 𝑆rm = 𝐸[|𝒂H𝑩H𝑩𝒂𝑠|2] = |𝑠|2𝐸[‖𝑩𝒂‖4], 
where the expected value of  ‖𝑩𝒂‖4 is further derived as: 

𝐸[‖𝑩𝒂‖4] = 𝐷[‖𝑩𝒂‖2] + (𝐸[‖𝑩𝒂‖2])2.  

The squared norm ‖𝑩𝒂‖2 can be written as:  

‖𝑩𝒂‖2 =∑ |𝒃𝑚𝒂|2𝑀
𝑚=1 =

∑ (∑ 𝑏𝑚𝑛𝑎𝑛
𝑁
𝑛=1 )∗𝑀

𝑚=1 (∑ 𝑏𝑚𝑛𝑎𝑛
𝑁
𝑛=1 ) =

 ∑ ∑ ∑ (𝑏𝑚𝑛𝑎𝑛)∗𝑏𝑚𝑙𝑎𝑙
𝑁
𝑙=1 =𝑁

𝑛=1
𝑀
𝑚=1

∑ ∑ {|𝑏𝑚𝑛|2|𝑎𝑛|2 + ∑ 2𝑅𝑒[(𝑏𝑚𝑛𝑎𝑛)∗𝑏𝑚𝑙𝑎𝑙]𝑁
𝑙=𝑛+1 }𝑁

𝑛=1
𝑀
𝑚=1 

The dispersion (variance) of ‖𝑩𝒂‖2can be derived as:  

𝐷[‖𝑩𝒂‖2] = 

∑ ∑ {
𝐷[|𝑏𝑚𝑛|2]|𝑎𝑛|4 +

∑ 2𝑅𝑒[𝐷[𝑏𝑚𝑛
∗ 𝑏𝑚𝑙]|𝑎𝑛

∗ 𝑎𝑙|2]𝑁
𝑙=𝑛+1

}𝑁
𝑛=1

𝑀
𝑚=1 =  

∑ ∑ ∑ 2 𝑀2⁄𝑁
𝑙=𝑛+1

𝑁
𝑛=1

𝑀
𝑚=1 = ∑ ∑ 2(𝑁 − 𝑛) 𝑀2⁄ =𝑁

𝑛=1
𝑀
𝑚=1

∑ (𝑁 − 1)𝑁 𝑀2⁄ =𝑀
𝑚=1 (𝑁 − 1)𝑁 𝑀⁄  

where 𝐷[𝑏𝑚𝑛
∗ 𝑏𝑚𝑙] =  𝐸[|𝑏𝑚𝑛

∗ 𝑏𝑚𝑙|2] − (𝐸[𝑏𝑚𝑛
∗ 𝑏𝑚𝑙])2 =

1 𝑀2⁄ − 0 = 1 𝑀2⁄  and 𝐷[|𝑏𝑚𝑛|2] = 0, and 𝑏𝑚𝑛 and 𝑏𝑚𝑙  

are independent random variables with equal variances 1 𝑀⁄ . 

Note that the computations of the dispersion or the 

expected value of a function 𝑓(𝜑) with a uniform variable 𝜑, 

φ~𝑈(0,2𝜋), are based on the mean-value integral given by: 

𝐸[𝑓(𝜑)] = ∫ 𝑓(𝜑)
1

2𝜋
𝑑𝜑

2𝜋

0
. In particular, 𝐸[e𝑗φ] =

−𝑗e𝑗φ

2𝜋
|

0

2𝜋

= 0, and 𝐷[e𝑗φ] = 𝐸 [|e𝑗φ|
2

] − (𝐸[e𝑗φ])2 = 1. 

The expectation of ‖𝑩𝒂‖2 is derived as:  

𝐸[‖𝑩𝒂‖2] =

 ∑ ∑ {𝐸[|𝑏𝑚𝑛|2]|𝑎𝑛|2 +𝑁
𝑛=1

𝑀
𝑚=1

∑ 2𝑅𝑒[𝐸[𝑏𝑚𝑛
∗ 𝑏𝑚𝑙]𝑎𝑛

∗ 𝑎𝑙]𝑁
𝑙=𝑛+1 } =  𝑀𝑁 𝑀 = 𝑁⁄  

where 𝐸[𝑏𝑚𝑛
∗ 𝑏𝑚𝑙] = 0 and 𝐸[|𝑏𝑚𝑛|2] = 1 𝑀⁄ .  

Finally, in the AIC and RM cases, the signal energy after 

MF,  can be written as: 

𝑆aic = 𝑆rm = |𝑠|2𝐸[‖𝑩𝒂‖4] =  |𝑠|2[(𝑁 − 1)𝑁 𝑀⁄ +  𝑁2].

In AIC, the noise vector 𝒛aic is a product of the matrix 𝑩 

(containing uniformly-distributed 𝜑) with the Gaussian-

distributed vector 𝒛, 𝒛aic = 𝑩𝒛. In (7) and Table 1, the noise 

energy 𝑁aic in 𝑠aic,MF after MF has been derived as:  

𝑁aic = 𝐸[|𝒂H𝑩H𝑩𝒛|2] = 𝐷[𝒂H𝑩H𝑩𝒛] + (𝐸[𝒂H𝑩H𝑩𝒛])2 =

∑ |𝑎𝑛|2𝐷[∑ 𝑏𝑚𝑛
∗ ∑ 𝑏𝑚𝑙𝑧𝑛

𝑁
𝑙=1

𝑀
𝑚=1 ]𝑁

𝑛=1 = ⋯ =

 ∑ 𝐷[∑ |𝑏𝑚𝑛|2𝑧𝑛 + ∑ 𝑏𝑚𝑛
∗ 𝑏𝑚𝑙𝑧𝑛

𝑁
𝑙≠𝑛

𝑀
𝑚=1 ]𝑁

𝑛=1 =  

 ∑ 𝐷 [∑
γ

𝑀
+𝑀

𝑚=1
γ

𝑀

𝑁−1

𝑀
]𝑁

𝑛=1 = 𝑁γ (1 +
𝑁−1

𝑀
). 

Finally, SNRaic = 𝑆aic 𝑁aic⁄ = 𝑀 (
1

𝑀
+

𝑁−1

𝑀+𝑁−1
)

|𝑠|2

γ
.  

In the RM scheme, the noise 𝒛rm remains Gaussian, 

𝒛rm~𝐶𝑁(𝟎, γ𝑰𝑀). In (8) and Table 1, the noise energy 𝑁rm 

in 𝑠rm,MF after MF has been derived as:  

𝑁rm = 𝐸[|𝒂H𝑩H𝒛rm|2] = 𝐷[𝒂H𝑩H𝒛rm] +

(𝐸[𝒂H𝑩H𝒛rm])2 =  ∑ |𝑎𝑛|2𝐷[∑ 𝑏𝑚𝑛
∗ 𝑧rm,𝑚

𝑀
𝑚=1 ]𝑁

𝑛=1 = 𝑁γ  

where 𝑏𝑚𝑛 and 𝑧rm,𝑚 are independent random variables with 

variances 1 𝑀⁄  and γ, respectively.  

Finally, SNRrm = 𝑆rm 𝑁rm⁄ = 𝑁 (1 +
𝑁−1

𝑀𝑁−1
)

|𝑠|2

γ
.  
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