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ABSTRACT
In this work, we jointly exploit tools from graph signal processing
and control theory to drive a bandlimited graph signal that is being
diffused on a random time-varying graph from a subset of nodes.
As our main contribution, we rely only on the statistics of the graph
to introduce the concept of controllability in the mean, and there-
fore drive the signal on the expected graph to a desired bandlimited
state. A mean-square error (MSE) analysis is performed for two
main tasks: i) to highlight the role played by the signal bandwidth
and the control nodes to the deviation from the mean signal of a par-
ticular realization; and ii) to select the control nodes and design the
control signal that minimize this MSE. Numerical results validate
the introduced controllability in the mean framework and show its
ability to cope with time-varying topologies.

Index Terms— Graph signal processing, random graphs, time-
varying graphs, control, complex networks.

1. INTRODUCTION

Graph signal processing (GSP) emerged recently as a novel frame-
work to process signals defined on the vertices of a graph (i.e. graph
signals) [1]. Examples of interest are load charge in smart grids,
fMRI measurements on brain networks, and traffic monitoring on
road networks. Differently from other network processing tech-
niques, GSP introduces a spectral analysis on graphs [1, 2], which
allows us to process graph signals in the so-called graph Fourier
domain rather than only in the vertex domain. Motivated by this
unique way of processing graph signals, several signal process-
ing concepts such as filtering [2–6], sampling [7–10] and adaptive
algorithms [11–13] have been extended in the GSP context.

Another interesting task that has found an extension to GSP is
the control of a graph signal diffusion, i.e., driving a signal that is
being diffused over the graph to a desired state. Specifically, [14,15]
have shown that this task can be achieved by acting only on a few
relevant nodes, referred to as the control nodes. However, in appli-
cations including smart grids and road networks, the graph topol-
ogy has more often a stochastic nature due to link or sensor failures,
such as grid problems or street closure [16]. In this instance, the
signal will be diffused on random graph realizations and, therefore,
we should account for the graph randomness in controlling the dif-
fusion.

In this work, we take one step further by extending the control
of graph signals to a stochastic environment. Specifically, by consid-
ering the graph signal being diffused over a random edge sampling
(RES) graph model [16, 17], we introduce the concept of control-
lability in the mean. This approach is blind to the specific realiza-
tions of the graph and accounts only for the graph statistics to drive
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the expected signal, i.e., the signal that is diffused on the expected
graph, to a desired bandlimited state. In addition, to perform control
from few nodes we consider the graph signal to be now bandlimited
w.r.t. the expected graph, though this might not be the case for the
particular realizations. An important consequence is that the con-
trolled particular realization becomes a random variable, and thus it
might deviate from the expected state. To quantify for this deviation,
we perform a mean-square error (MSE) analysis that i) highlights
the role played by the different actors, such as the graph statistics,
the signal bandwidth and the control nodes; and ii) serves as a per-
formance measure to jointly pick the control nodes and design the
respective control signals such that a target MSE deviation from the
expected state is guaranteed. To the best of our knowledge this is the
first contribution that approaches sparse controllability of network
signals from this statistical viewpoint.

Our results are validated by numerical simulations, which show
the potential of the controllability in the mean approach to perform
graph signal control on random time-varying graphs.

2. BACKGROUND

This section covers some background concepts that are exploited
throughout the paper. Specifically, we review the basics of GSP,
the considered RES graph model and diffusion control over time-
invariant graphs.
GSP basics. Consider an undirected graph G = (V, E ,W ), with
V the set of N nodes (vertices), E the edge set, and W denoting
the weighted adjacency matrix with Wn,m = Wm,n > 0 if the ver-
tices vn and vm are connected (i.e., (n,m) ∈ E) and Wn,m = 0,
otherwise. A graph signal x is defined as a mapping from the ver-
tex set to the field of complex numbers, i.e., x : V → C with the
nth entry xn representing the signal value on the node vn. Next
to W , another matrix that captures the graph connectivity is the
graph Laplacian matrix L = diag(1T

NW ) −W or any general-
ization of it (e.g., the normalized Laplacian matrix) [18]. Since L is
real and symmetric it enjoys an eigendecomposition L = V ΛV H,
where V = [v1, . . . ,vN ] denotes the eigenvector matrix and Λ =
diag(λ1, . . . , λN ) contains the eigenvalues of L. Throughout this
work we consider graphs with Laplacians L belonging to some set
L with finite spectral norm ‖L‖ ≤ %.

The projection ofx onto the eigenbasisV is defined as the graph
Fourier transform (GFT) and is denoted as x̂ = V Hx [1], where the
nth entry x̂n denotes the nth Fourier coefficient. Using this analogy,
vn is the nth frequency basis and λn the nth graph frequency. Like-
wise, the graph signal x can be written as a linear combination of the
frequency basis weighted by the frequency coefficients, x = V x̂,
an operation known as the inverse GFT. A graph signal is said to
be bandlimited if it has a sparse support in the graph frequency do-
main (i.e., it has few nonzero frequency coefficients). Without loss
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of generality, assume that the first K elements of x̂ are nonzero, so
we can write x̂ = [x̂T

K ,0
T
N−K ]T where x̂K ∈ CK and 0N−K is

the all-zero vector of length N − K. Then, by partitioning V as
V = [V K ,V N−K ] a bandlimited graph signal can be expressed in
the compact form x = V Kx̂K and similarly x̂K = V H

Kx.
Random graph model. From [16], a RES realization Gt of the orig-
inal graph G at time t is defined as:
Definition 1 (RES graph model). In a RES realization Gt of an un-
derlying graph G an edge (m,n) ∈ E is activated with a probability
0 < pm,n ≤ 1. The edges are activated independently over both
the graph and temporal dimension and are considered mutually in-
dependent from the graph signal if the latter has a stochastic nature.
In other words, for each time instant t we have a graph realization
Gt = (V, Et) drawn from the underlying graph G = (V, E), where
the edge set Et ⊆ E is generated via an independent Bernoulli pro-
cess. For what regards this work, we consider pn,m = pact, i.e. all
edges of the underlying graph to be activated with the same prob-
ability. Refer to L as the graph Laplacian relative to the graph G
and to Lt as the graph Laplacian relative to the graph realization Gt.
To ease the exposition, let us further denote the expected Laplacian
E[Lt] as L̄ related to the expected graph Ḡ. Note that L̄ = pactL,
i.e., the expected Laplacian is a scaled version of the Laplacian ma-
trix of the underlying graph G. Since L ∈ L and Et ⊆ E , the
instantaneous LaplaciansLt of Gt belong also to L, meaning that all
Lt have bounded eigenvalues. From the interlacing property [19],
the following holds ‖Lt‖ ≤ ‖L‖ ≤ % for all t.
Diffusion control over graphs. With x(t) denoting the continuous-
time graph signal at time t, its instantaneous diffusion follows the
model ∂x/∂t = −Lx(t), which in a discretized form can be ex-
pressed as

xt+1 = (I − εL)xt := Axt (1)

where A = I − εL is commonly referred to as the state transition
matrix. To guarantee the stability of (1), ε has to satisfy 0 < ε ≤
1/%. Then, the steering of (1) from the initial graph signal x0 to a
desired state x∗ in T steps amounts to designing the input signals ut
on the nodes V through the linear system

xt+1 = Axt +But, (2)

with B denoting the control input matrix. It is clear that system (2)
is controllable if and only if the controllability matrix

C = [B,AB, . . . ,AT−1B] (3)

has full row rank, i.e., rank(C) = N [20]. The authors in [15]
perform sparse control in a graph-time fashion by designing u =
[u0, . . . ,uT−1] that minimizes the cost function f(u) = ‖u‖22 +
γ‖u‖0 w.r.t. u such that xT = x∗.

However, the control nodes are not fixed over time. Further, the
impact of the signal bandwidth on the controlled signal xT , as well
as the conditions that B should satisfy for C to be full rank remain
still open problems. In the next section, we answer these questions
and show that sparse control of graph signals can be directly per-
formed in the graph Fourier domain. These aspects will then result
useful also for the controllability in the mean approach of Section 4.

3. SPARSE CONTROL IN THE GRAPH FOURIER
DOMAIN

In this section we formulate the framework of driving system (2) to
a desired bandlimited state x∗ = V H

Kx̂
∗
K from a subset of nodes

S ⊆ V with a bandlimited control signal ut = V H
Kût,K . As ban-

dlimited graph signals concentrate their energy in few Fourier coef-
ficients, they facilitate follow-up tasks such as subsampling and de-
noising. We also remark that the design costs for the control signals
is now significantly reduced, as the control matrix will have lower
dimensions.

Then, by applying the GFT to (2) we have

x̂t+1 = Âx̂t + V HBut, (4)

where Â = V HAV . As in graph signal diffusion processes, A
shares the eigenvectors of the graph Laplacian L [e.g., (1)], we have
Â = diag(â), with the vector â ∈ CN containing the spectrum of
the matrix A. Furthermore, as our aim is to drive the graph signal
from a subset of nodes, we consider B to be a diagonal selection
matrix, i.e.,B = D := diag(d) such that dn,n = 1 if the vnth node
is used for control and zero otherwise.

We can write (4) as[
x̂t+1,K

x̂t+1,N−K

]
=

[
diag(âK)x̂t,K

diag(âN−K)x̂t,N−K

]
(5)

+ V HD[V K ,V N−K ]

[
ût,K
ût,N−K

]
where diag(âK) and diag(âN−K) are diagonal matrices containing
respectively the firstK and the lastN−K elements of â in the main
diagonal; ût,K is theK×1 vector consisting of the firstK elements
of the GFT of ut and ût,N−K is a (N −K)× 1 vector containing
the remaining N −K elements of ût. Then, for control signals that
are bandlimited w.r.t. the underlying graph (i.e., ût,N−K = 0N−K ,
for all t ≥ 0), (5) becomes[

x̂t+1,K

x̂t+1,N−K

]
=

[
diag(âK)x̂t,K

diag(âN−K)x̂t,N−K

]
+ V HDV Kût,K . (6)

Recursion (6) leads to two main observations: i) under the con-
dition that the tuple (Â,V HDV K) is controllable, we can drive
xt to any desired signal x∗ with a bandlimited input signal ût,K ;
and ii) the selection constraint on the control signals implies that
it is not possible to keep the system evolving within the subspace
of bandlimited graph signals. However, the latter is not a big is-
sue as we can still focus on controlling xT to a desired bandlimited
frequency content x̂∗K , and then filter out the spurious high-pass fre-
quency content of xT to obtain the desired signal in the vertex do-
main x∗ = V Kx̂

∗
K . In other words, by denoting ÂK = diag(âK)

we only focus on the dynamics of the firstK Fourier coefficients [cf.
(6)]

x̂t+1,K = ÂKx̂t,K + V H
KDV Kût,K (7)

to obtain a graph signal xT such that x̂T,K = x̂∗K , and then we
use a low-pass filter HLP = V KV

H that results in the controlled
bandlimited signal x∗T = HLPxT . The design variables in our case
are the sampling matrix D that selects M ≤ N control nodes and
the bandlimited control signals ût ∈ RN for all t = 0, . . . , T − 1.
With this in place, we claim our first contribution.

Proposition 1. Let xt be a graph signal that is being diffused over
an N -node graph G with graph Laplacian L = V ΛV H. Let also
{ut}T−1

t=0 = {V H
k ût,K}T−1

t=0 denote a sequence of bandlimited con-
trol signals acting on M ≤ N nodes as in (7) . Then, a necessary
condition to drive xt to a desired bandlimited state x∗ = V Kx̂

∗ in
the graph Fourier domain [cf. (7)] is that at least M ≥ K/T nodes
must be selected to inject the input signal into the system.
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Proof. System (7) is controllable if and only if the matrix Ĉ =

[B̂K , ÂKB̂K , . . . , Â
T−1

K B̂K ] has full row rank, where B̂K =

V H
KDV K . Differently, we can write Ĉ as

Ĉ =
[
IK , ÂK , Â

2

K , . . . , Â
T−1

K

]
(IT ⊗ B̂K), (8)

with ⊗ denoting the Kronecker product. From (8) we note that
rank(Ĉ) depends on the rank of the TK × TN matrix (IT ⊗
V H
KDV K) as the other term has full rank K. Then, as rank(IT ⊗

V H
KDV K) = T rank(V H

KDV K) ≤ Tmin{K,M}, we have that
Ĉ has full rank only if TM ≥ K. This concludes the proof.

We remark that Proposition 1 only provides a necessary condition
on the minimum number of nodes required to control a graph signal
from the graph spectral domain. Thus, in practice the controllabil-
ity performance is affected by the number of control nodes M as
Ĉ may easily lose rank depending on the selected control nodes.
In addition, as mentioned at the end of Section 2, differently from
prior art, the proposed framework highlights the role played by the
graph topology (through the dependence of (8) on V K ), the graph
signal bandwidth and the control nodes on the control matrix. Fi-
nally, we remark that the tradeoff given by the necessary condition
M ≥ K/T between the number of control nodes M and the time
horizon is reminiscent of the tradeoff studied in [14] for graph signal
reconstruction through percolation.

4. CONTROLLABILITY IN THE MEAN

We now consider the case where the underlying topology changes
over time according to the RES graph model (Def. 1). The objec-
tive is to drive the system to a desired bandlimited graph signal in
the mean over a finite time horizon T . This is to be achieved by de-
signing the control signals {ûτ,K}T−1

τ=0 to be applied at the M con-
trol nodes following the dynamics of system (7). In this instance,
the bandlimitedness of the signals is considered w.r.t. the expected
graph. We remark that for a particular Gt the signal on the vertex
domain might not be bandlimited. To quantify the performance, we
provide a mean square analysis that highlights the distance between
a particular controlled realization and the expected controlled signal.
Mean controllability. For a time-varying graph, we write the dy-
namical system (2) as

xt+1 = Atxt +But, (9)

whereAt = I − εLt accounts for the RES graph variations Gt. By
applying the expectation operator to (2) we have

µt+1 = E[xt+1] = E[At]E[xt] +But

= Āµt +But,
(10)

where in (10): i) we exploited the fact that the RES graph real-
ization at time t, At, is independent from all past history of the
signal evolution {xτ}t−1

τ=0; and ii) Ā = I − εL̄ = I − εpactL.
Then, from Sylvester’s matrix theorem Ā has the eigendecompo-
sition Ā = V (I − εpactΛ)V H = V diag(ā)V H, i.e., it shares
the same eigenvectors of the underlying graph Laplacian L and its
eigenvalues are diag(ā) = (I − εpactΛ).

Note that the mean evolution (10) is a deterministic system anal-
ogous to (2). Therefore, by proceeding in the same way as in Sec-
tion 3 we can drive the bandlimited mean signal to a desired state
µ̂T,K = µ̂∗K through a sequence of deterministic bandlimited con-
trol signals {ûτ,K}T−1

τ=0 . Once again, the bandlimtedness is now

w.r.t. the expected graph Ḡ, which for the considered case turns out
to be a scaled version of the underlying graph G. Then, we can write
the equivalent of (7) for the mean evolution as

µ̂t+1,K = diag(āK)µ̂t,K + V H
KDV Kût,K , (11)

which can be then used to obtain the mean signal µT such that
µ̂T,K = µ̂∗K . Finally, µT is filtered by the (deterministic) low-pass
filterHLP to obtain the desired control signal µ∗ = HLPµT .
Mean square analysis. Using (11) we can deterministically design
the control signals {ûτ,K}T−1

τ=0 and the choice of nodes to act upon
so that the mean signal over the mean graph Ḡ can be controlled.
However, the actual signal is controlled over a realization of the
graph Gt. Therefore, it becomes of utmost importance to study the
MSE of such an approach in order to assess its ability to actually
control the signal. In what follows, we obtain a bound on the MSE
that would later serve in the design of control strategies.
Proposition 2. Let {Gt, t ≥ 0} be a collection of graph realizations
following the RES model (Def. 1) w.r.t. the underlying graph G. Let
% > 0 be the bound on the spectral norm of this collection. Assume
that we control the signal with x0 = 0 and let µT = µ∗ be the
desired mean signal, then

E
[
‖xT − µT ‖

2
2

]
≤
T−1∑
τ=0

T−1∑
τ ′=0

tr
[
Buτu

H
τ ′B

H
]

(12)

Proof. At any given time t, the state of the system (9) can be written
as

xt =

t−1∑
τ=0

Φt−1,τ+1Buτ , (13)

where Φb,a = AbAb−1 · · ·Aa+1Aa for b ≥ a and Φb,a = IN
otherwise. Observe that (13) is similar to a FIR filter under stochas-
ticity [16, Prop. 3]. Therefore, recalling that E[‖xt − µt‖22] ≤
E[tr[xtxH

t ]] we obtain

E
[
tr[xtxH

t ]
]

=

t−1∑
τ=0

t−1∑
τ ′=0

E
[
tr[Γt−1(τ, τ ′)]

]
,

with Γt−1(τ, τ ′) = Φt−1,τ+1Buτu
H
τ ′B

HΦH
t−1,τ ′+1 ∈ RN×N .

Using the inequality tr[UV ] ≤ ‖U‖tr[V ] valid for any square ma-
trix U and any positive semidefinite matrix V [21], together with
submultiplicativity of the spectral norm, ‖UV ‖ ≤ ‖U‖‖V ‖, we
get

E
[
tr[Γt−1(τ, τ ′)]

]
≤ tr

[
Buτu

H
τ ′B

H
]
E
[
‖ΦH

t−1,τ ′+1‖‖Φt−1,τ+1‖
]
.

Then, we bound the spectral norm of At = I − εLt as ‖At‖ =
‖I − εLt‖ = 1 − ε‖Lt‖ ≤ 1. Therefore, using once again
the submultiplicativity of the norms, we also bound ‖Φt−1,τ‖ ≤∏t−1
t′=τ+1 ‖At−t′‖ ≤ 1 so that

E
[
tr[Γt−1(τ, τ ′)]

]
≤ tr

[
Buτu

H
τ ′B

H
]
.

Finally, replacing back this last inequality and evaluating at t = T
completes the proof.

As we are interested in designing bandlimited control signals on
few nodes, the following corollary relates the results of Proposition 2
to the signal bandwidth and control nodes.

Corollary 1. Under the assumptions of Proposition 2 we have that

E
[
‖xT − µT ‖

2
2

]
≤ ‖V H

Kdiag(d)V K‖ · 1T
TU

H
KUK1T (14)

where UK = [û0,K , . . . , ûT−1,K ] ∈ CK×T and 1T is the all-one
vector of size T .
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Fig. 1: NMSE averaged across 10 graphs and 100 RES realizations per graph. The error bars correspond to 1/8 of the estimated variance.
(a) Nodes selected M . There is a general drop in NMSE, especially for the greedy approach. (b) Time horizon T . The performance improves
for larger T and after T = 13 it drops below 10−3. (c) Activation probability pact. It is noted that all MSE improves as pact tends to 1.

Proof. (Sketch) The claim can be proven by substituting uτ =
V Kûτ,K and B = diag(d) into (12) and then using the idempo-
tence of diag(d) together with the inequality tr[UV ] ≤ ‖U‖tr[V ].

We observe that the first term of the bound (14) highlights the im-
portance of the tuple signal bandwidth-graph topology through V K

and that of the control nodes w.r.t. the underlying graph. The second
term of (14), on the other hand, shows the role played by the con-
trol signals, all modulated by the graph spectrum. In the sequel, we
show that bound (14) can be used to design optimal strategies that
aim bounding the MSE to a desired value. We finally remark that the
role of the graph statistics is overshadowed by the bound (14), but is
highlighted in the mean controlled signal (11).
Control strategy. We postulate that the optimal control strategy is
to jointly design d and {ûτ,K}T−1

τ=0 such that the MSE bound (14) is
minimized, subject to achieving an unbiased estimate at time horizon
T from M control nodes. Specifically, the latter writes as

minimize
d∈{0,1}N

UK∈RK×T

‖V H
Kdiag(d)V K‖ · 1T

TU
H
KUK1T (15)

subject to dT1 = M,

T−1∑
τ=0

(I − εpactL)T−1−τdiag(d)V Kûτ,K = µT .

Note that, while the objective function is not convex in (d, {ûτ,K}T−1
τ=0 ),

it is convex in each of the design variables individually, regarding
the other as fixed. We then approach (15) with a suboptimal solu-
tion, that first selects the control nodes such that (8) results in a full
rank control matrix, and then design the control signals UK . Yet,
even in the case of the proposed suboptimal solution, the problem
remains non-convex due to the binary nature of the variable d. We
thus propose to greedily select the M nodes, out of all the sets
of nodes that lead to a full rank control matrix in (8), that mini-
mize ‖V H

Kdiag(d)V K‖. Then, we solve the optimization problem
(15) only for control signals UK (which is now convex). In those
cases where unbiasedness constraint renders the problem infeasi-
ble, we can relax this constraint to a small, tuned bias δ such that
‖E[xT ]− µT ‖ ≤ δ.

5. NUMERICAL RESULTS

Setup. We consider a stochastic block model graph G of N = 300
nodes divided in four communities of 75 nodes each. The probabil-
ity of edges within the same community is 0.9 while external edges

are drawn with probability 0.4. We want to drive the system to a
bandlimited signal µ̂T,K = 1K with K = 10, using M nodes in
a time horizon T and where the RES model has activation probabil-
ity pm,n = pact for all edges. We consider four strategies to select
nodes: (i) the proposed greedy minimization of ‖V H

Kdiag(d)V K‖,
(ii) random node selection, (iii) the experimental design (EDS)
of [22], and (iv) the spectral proxies method of [23]. We measure
the performance in terms of normalized MSE (NMSE), w.r.t. the
the controlled mean signal µ̂T . Our results are averaged over 10
different graphs realizations G, where for each of them 100 RES re-
alizations Gt are considered. The average NMSE and its variance are
shown in Fig 1.
Experiments. First, we run simulations for varying number of se-
lected nodes M , with T = 10 and pact = 0.9. From the results in
Fig. 1a, we see that the NMSE generally drops as more nodes are
controlled. This is especially the case of the greedy approach. Sec-
ond, in Fig. 1b, we fixed M = 50 and pact = 0.95 and run tests
for varying time horizon T . We observe that the NMSE lowers for
increasing T and for T ≥ 13 the NMSE drops below 10−3 as the
network has more time to contrast the link losses. Finally, we fix
M = 50 and T = 10 and change the activation probability. The
results in Fig. 1c show that the performance improves as pact tends
to 1, since the realizations are more similar to the underlying graph
for which the control strategy was designed. In general, we do not
observe significant differences between the selection methods used,
although the spectral proxies approach works slightly better.

6. CONCLUSIONS

This work proposed controllability of signals that are being diffused
over random time-varying graphs. By simply relying on the statistics
of the graph, we introduced the concept of observability in the mean
to drive the graph signal to a desired state w.r.t. the expected graph.
As most of the graph signals of interest are bandlimited w.r.t. the
underlying graph, we rephrase the problem in the graph frequency
domain to i) select a fixed subset of nodes for control and ii) design
bandlimited control signals. We derive an upper bound on the MSE
performance of the controlled signal and propose a controllability
strategy that minimizes the MSE for a fixed number of control nodes.
Numerical results show that an NMSE below 10−3 can be achieved,
showing that the proposed controllability in the mean approach is
effective in driving the system to a bandlimited state in presence of
random link failures.
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