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ABSTRACT

In processing spatially distributed data, multi-agent robotic plat-
forms equipped with sensors and computing capabilities are gaining
interest for applications in inhospitable environments. In this work
an algorithm for a distributed realization of sparse bayesian learn-
ing (SBL) is discussed for learning a static spatial process with
the splitting-over-features approach over a network of intercon-
nected agents. The observed process is modeled as a superposition
of weighted kernel functions, or features as we call it, centered
at the agent’s measurement locations. SBL is then used to deter-
mine which feature is relevant for representing the spatial process.
Using upper bounding convex functions, the SBL parameter esti-
mation is formulated as `1-norm constrained optimization, which
is solved distributively using alternating direction method of mul-
tipliers (ADMM) and averaged consensus. The performance of
the method is demonstrated by processing real magnetic field data
collected in a laboratory.

Index Terms— Sparse Bayesian learning, ADMM, multi-agent
systems, learning over networks.

1. INTRODUCTION

Mobile multi-agent systems, or swarms, are very promising plat-
forms for exploration or monitoring tasks in hazardous or inhos-
pitable environments, where a human operator might be at risk. This
pertains to emergency scenarios caused by technogenic accidents, as
well as to exploration scenarios in extraterrestrial environments, to
name only a few. Through cooperation, swarms can significantly ac-
celerate reconnaissance missions, speed up mapping tasks, increase
robustness, and combine resources.

In processing spatially distributed data with a swarm of intelli-
gent agents two strategies can be distinguished. In the first strategy,
sometimes termed homogeneous or splitting-over-examples learning
[1, 2], agents collect their own measurements that are used to learn
a common model. In contrast, the second approach, sometimes re-
ferred to as splitting-over-features or heterogeneous learning [2, 3],
assumes that the observed sensor data is known to the whole sys-
tem. However, each agent only learns his own representation and
has only access to his own set of features. Individual models are
then coherently combined to form a global estimator. In this work
we will consider the second approach, because this approach scales
well with large sets of potential features and, thus, reduces the com-
putational complexity [2, Sec. 8.3].

There are two key challenges associated with a splitting-over-
features approach toward distributed learning. The first challenge is

in combining individual agent responses in a coherent fashion. In
particular, the information from individual agents should be appro-
priately combined to form a collaborative estimator. Several tech-
niques were proposed to address this problem. For instance, a resid-
ual refitting algorithm [4, 3] or expectation-maximization based ap-
proaches [5] were developed for splitting-over-features approaches
with nonlinear agent models. For generalized linear models, the
ADMM [2] has recently gained popularity in the community due
to its ability to handle non-smooth constraints on model parameters.

The second challenge associated with splitting-over-features ap-
proaches is the selection of features relevant for representing the
measured data. In recent years, there has been a surge in research
related to sparsity (see e.g., [6, 7, 8, 9]) that can be seen as a form of
feature selection. Sparsity can be enforced through appropriate pe-
nalization of an optimization problem, by either using probabilistic
approaches, known as SBL [7, 8], or non-smooth regularization in-
volving, e.g., `1-norm constraint [6], which are well exemplified by
the least absolut shrinkage operator (LASSO) [10, 11]. In this work
we will consider the SBL approach to address the feature selection.
The reason for this choice is mainly the ability of SBL to cope well
with correlated (coherent) features.

There are two main types of SBL methods: Type I and Type II
approaches (see e.g., [12]). Both are realized through a hierarchi-
cal prior over the unknown model parameters that leads to a sparse
maximum a posteriori (MAP) parameter estimate. In Type I SBL
the model weights are estimated directly by marginalizing over the
prior parameters; through an appropriate choice of the hierarchical
prior many traditional “non-Bayesian” methods for learning sparse
representations can be realized [12], e.g., basis pursuit de-noising or
re-weighted `p-norm regressions [6, 13].

In contrast, Type II SBL can be used to estimate model parame-
ters indirectly via estimation of prior parameters – hyperparameters
– latent variables that regulate the sparsity of the estimated model.
The resulting Type II objective function typically exhibits signifi-
cantly fewer local minima of the corresponding Type I estimator and
promotes greater sparsity [14]. Unfortunately, the distributed opti-
mization of the Type II approach is difficult to realize and, to the best
of our knowledge, has not been done in the literature.

Thus, our goal is to extend the SBL techniques to splitting-
over-features problems applied to learning spatial functions with the
Type II approach. To this end we model a spatial field as a superposi-
tion of radial basis functions (or kernels) centered at spatial sampling
locations; the latter plays the role of features. SBL is then used to
impose sparsity constraints on the weights of the basis functions in
the superposition. This not only regularizes the estimation problem,
but also keeps only the relevant features at each agent. With the help

3654978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018



of an approximation we realize a distributed Type II approach for
SBL.

2. SIGNAL MODEL

Let us consider a swarm withK mobile agents. Each agent k ∈ K ,
{1, . . . ,K}, is making a scalar sensor measurement yk[n] ∈ Y ⊂
R, e.g., gas concentration, magnitude of a magnetic field, terrain
height, etc., at a position xk[n] ∈ X ⊂ R2. The measurements of
agent k are identified by an index n, where n ∈ Nk , {1, . . . , Nk},
with Nk as the total number of measurements made by the k-th
agent. Thus, there areN =

∑K
k=1Nk measurements. The positions

xk[n] are assumed to be estimated with a positioning system, such
as GNSS, SLAM [15], or motion capture system (e.g., VICON).
Here we will assume that all agents are connected in a communi-
cation network such that there is a (possibly multi-hop) connection
between any two agents in the network.

The goal of the swarm is to reconstruct a spatial scalar function
f : X 7→ Y using all collected measurements. We will assume the
function f to be sufficiently smooth and model it as a superposition
of known and weighted kernel functions φk(x,x′) : X × X 7→ R,
centered at x′ as follows

f(x) =

K∑
k=1

Nk∑
n=1

wk,nφk(x,xk[n]). (1)

The role of a kernel function is to model spatial correlations of the
observed scalar field. Radial basis functions [16] exemplify well
possible kernel choices. Their distinctive feature is that they change
monotonically with distance from their central point x′, which in
our case represents a measurement location xk[n].

We now aggregate the measurements of the k-th agent into a vec-
tor yk = [yk[1], . . . , yk[Nk]]

T , k ∈ K; total measurements can then
be combined in a single vector y = [yT1 , . . . ,y

T
K ]T . Consequently,

each agent’s kernel is evaluated at all available measurement posi-
tions such that

φk,n = [φk(x1[1],xk[n]), . . . , φk(x1[N1],xk[n]), . . . ,

φk(xK [1],xk[n]), . . . , φk(xK [NK ],xk[n])]
T .

(2)

Thus, Φk = [φk,1, . . . ,φk,Nk ] is the k-th agent’s kernel matrix and
wk = [wk,1, . . . , wk,Nk ]

T the corresponding kernel weight vector.
In practice, however, the measurements will be perturbed by additive
measurement noise. To model this, we assume that measurements y
are noisy samples of the function f we intend to learn. It follows
then that y can be represented as

y = Φ1w1 + . . .+ ΦKwK + ξ = Φw + ξ, (3)

where Φ = [Φ1, . . . ,ΦK ] andw = [wT
1 , . . . ,w

T
K ]T are the aggre-

gated design matrix and weight vector, respectively, for the whole
swarm, and ξ represents an additive zero-mean Gaussian measure-
ment noise with covariance matrix Λ−1.

3. PROBLEM FORMULATION

From (3) the likelihood of the unknown weightsw can be written as

p(y|w) ∝ e−
1
2
(y−Φw)TΛ(y−Φw) = e−

1
2
‖y−Φw‖2Λ .

Maximizing this function directly often leads to overfitting. Also,
the matrix Φ can loose rank if agents make measurements at close

spatial locations; this makes numerical estimation of the weights w
challenging. This problem can be circumvented by using a regu-
larization of the optimization problem, which removes irrelevant or
superfluous features (i.e., columns of Φ with associated zero weight)
from the model.

This can be achieved with SBL [8, 7], where the weights w
are constrained with a parametric (hierarchical) prior p(w|γ) =∏N
l=1 p(wl|γl), where p(wl|γl) = N (0, γl) is a Gaussian proba-

bility density function (pdf) with zero mean and variance γl (also
called sparsity parameter). A small value of γl will drive the poste-
rior estimate of the weightwl toward zero, thus encouraging a sparse
solution [8, 14]. The hyperprior p(γ) is in general a design param-
eter, which can be chosen according to the problem (see also [12]
for possible choices for p(γ)). Yet often the hyperprior p(γ) is se-
lected to be non-informative, which was shown both empirically and
theoretically to perform well [17, 14, 12].

In the Type II estimation framework, the SBL algorithm infers
the hyperparameters γ by maximizing p(γ|y) [8, 7, 12]:

p(γ|y) ∝ p(γ)
∫
p(y|w)p(w|γ)dw

∝ p(γ)|Σγ |−
1
2 e−

1
2
yTΣ−1

γ y,

(4)

where Σγ = Λ−1 + ΦΓΦT . The estimate of the weight vec-
tor w is then found by approximating the posterior pdf p(w|y) as
p(w|y) ≈ p(w|y, γ̂) ∝ p(y|w)p(w|γ̂), where γ̂ is a hyperparam-
eter estimate that maximizes (4). Note that p(w|y, γ̂) is a Gaussian
pdf, since both, the likelihood p(y|w) as well as the prior p(w|γ̂),
are Gaussian. The mean ŵ and covariance matrix Σw of p(w|y,γ)
can be easily computed as

Σw =
(
ΦTΛΦ + Γ−1

)−1

, ŵ = ΣwΦTΛy, (5)

where Γ = diag(γ) is a diagonal matrix with sparsity parameters γ
on the main diagonal. Note that (5) is essentially a linear minimum
mean squared error estimator of the weights w conditioned on the
sparsity parameters γ̂. Also, we see that the parameters γ̂ effectively
act as regularization coefficients.

4. DISTRIBUTED SBL

As we mentioned, SBL reduces to finding the hyperparameter vector
γ̂ that maximizes p(γ|y) in (4). Here we propose a distributed al-
gorithm that solves this problem, while also estimating the weights
w in a distributed fashion for the case when p(γ) is selected to be
non-informative.

Define L(γ) = − log p(γ|y). Naturally, the posterior p(γ|y)
in (4) is maximized at [17]

γ̂ = argmin
γ
L(γ) = argmin

γ
log(|Σγ |) + yTΣ−1

γ y. (6)

In [17] the authors have shown that (6) can be upper bounded by

L(γ,z) = zTγ − g∗(z) + yTΣ−1
γ y ≥ L(γ), (7)

where g∗(z) = minγ z
Tγ − log(|Σγ |) is the concave conjugate of

log(|Σγ |). Problem (6) can then be optimized iteratively via a suc-
cessive minimization with respect to γ and z of an upper bounding
functional L(γ,z). Specifically, we minimize L(γ,z) with respect
to γ for a fixed z = ẑ; then with γ fixed at a new estimate, we
perform the minimization with respect to ẑ. However, (7) is difficult
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to optimize when columns of Φ are distributed over different agents.
To obtain L(γ,z) in a more suited form for distributed optimiza-
tion, we consider the contribution of each agent to the left-hand side
of (7).

First, we note that for a fixed γ̂, the minimum of L(γ̂,z)
along z can be found in closed form at ẑ = argminz L(γ̂,z) =
diag

(
ΦTΣ−1

γ Φ
)

[17]. Applying matrix inversion lemma [18, 19]
to Σ−1

γ we can rewrite ẑ as

ẑ = diag
(
ΦTΛΦ

)
− diag

(
ΦTΛΦΣwΦTΛΦ

)
. (8)

Now, we consider an agent k ∈ K. Both diagonal terms in (8)
can then be split according to local variables and variables of
other agents such that ẑ = [ẑT1 , . . . , ẑ

T
K ]T . It is easy to see that

diag
(
ΦTΛΦ

)∣∣
k
= ΦT

kΛΦk. Using an appropriate permutation
matrix, Σw in (8) can always be brought in the following form

Σ−1
w =

(
Σ−1
w,k ΦT

kΛΦk

ΦT
k
ΛΦk Σ−1

w,k

)
, (9)

where Σ−1
w,k = ΦT

kΛΦk + Γ−1
k , Σ−1

w,k
= ΦT

k
ΛΦk + Γ−1

k
and

subscript index k denotes a set of features belonging to all other
agents but agent k. The contribution of the k-th agent to the second
diagonal term in (8) can be computed as

diag (ΦTΛΦΣwΦTΛΦ)
∣∣∣
k
= diag

(
ΦT
kΛΦkΣw,kΦ

T
kΛΦk

+ (Σw,kΦ
T
kΛΦk − I)TΩk(Σw,kΦ

T
kΛΦk − I)

)
, (10)

with Ωk = ΦT
kΛΦk(Σ

−1

w,k
−ΦT

k
ΛΦkΣw,kΦ

T
kΛΦk)

−1ΦT
k
ΛΦk.

Observe that the second summand in (10) aggregates the cross-agent
correlations; to compute it, we need the features which are dis-
tributed among the agents. In contrast, the first term depends only
on the information of agent k. Now, using (10) we can re-write (8)
as follows

ẑk = z̃k−diag
(
(Σw,kΦ

T
kΛΦk − I)TΩk(Σw,kΦ

T
kΛΦk − I)

)
,

(11)
where

z̃k = ΦT
kΛΦk −ΦT

kΛΦkΣw,kΦ
T
kΛΦk (12)

is the term that collects the correlations between features of the agent
k only. Moreover, from (11) it is easy to see that ẑk ≤ z̃k, and
thus z̃ = [z̃1, . . . , z̃K ] upper bounds ẑ. This permits us to claim
that L(γ, z̃) ≥ L(γ, ẑ) ≥ L(γ), with the first inequality becom-
ing tight when ΦT

kΛΦk′ = 0 for any k 6= k′ and k, k′ ∈ K.
Let us stress that, when agents make measurements at spatially dis-
tinct locations, the features will be uncorrelated, which will ensure
L(γ, z̃) = L(γ, ẑ). This motivates us to approximate ẑ with z̃,
where the latter can be computed from (12) using only local infor-
mation available at the agent k.

Now we consider a distributed estimation of γ̂ using L(γ, z̃).
Following [17, Lemma 2], we can upper bound L(γ, z̃) as follows

L(γ, z̃) ≤γT z̃ + ‖w‖2Γ−1 + ‖y −Φw‖2Λ = L(γ,w; z̃), (13)

which is jointly convex in both γ and w. Due to this, L(γ,w; z̃)
can be interchangeably minimized with respect to γ and w. Note
that for a fixed γ the minimum of L(γ,w; z̃) with respect to w is
obtained at the maximum of the weight posterior p(w|y,γ). Now,

for anyw, the bound L(γ;w; z̃) is minimized at value

γ̂ = argmin
γ
L(γ,w; z̃) =

[
|wk,n|√
z̃k,n

;
∀k ∈ K
n ∈ Nk

]T
. (14)

By inserting (14) in (13), we can see that the bound L(γ̂,w; z̃) can
be made tight by finding w as a solution to the following optimiza-
tion problem

ŵ =argmin
w

∥∥∥∥∥y −
K∑
k=1

Φkwk

∥∥∥∥∥
2

Λ

+ 2

K∑
k=1

Nk∑
l=1

√
z̃k,l|wk,l| (15)

The optimization problem (15) can be solved distributively using
ADMM [2, Sec. 8.3]. The method introduces additional variables ζ
and u that can be used to split the optimization into individual prob-
lems that can be solved by each agent and stabilize the convergence.
The scaled form of the ADMM for our problem and a single agent k
can be formulated as [2]

w
[i+1]
k = argmin

wk

2

Nk∑
n=1

√
z̃k,n|wk,n|

+
ρ

2
‖Φkwk −Φkw

[i]
k − ζ

[i]
k + Φw

[i]
+ u

[i]
k ‖

2
2 (16)

ζ
[i+1]
k = argmin

ζk

‖y − ζk‖
2
Λ +

ρ

2
‖Φw[i] − ζk + u

[i]
k ‖

2
2

=
1

K|Λ|+ ρ

(
Λy + ρ

(
Φw

[i]
+ u

[i]
k

))
(17)

u
[i+1]
k = u

[i]
k + Φw

[i] − ζ[i+1]
k . (18)

Here Φw
[i]

= 1
K

∑
k Φkw

[i]
k is an averaged response of the agents

that can be efficiently computed in a distributed fashion using aver-
aged consensus algorithm [20, 21]. Thus, each agent k has to com-
municate Φkw

[i]
k over the network. Additionally, all agents must

have the same measurements y, hence this needs to be coordinated
as well. Regarding the optimization of (16) a threshold operator is
introduced, which sets “irrelevant” weights in wk to 0. The cor-
responding features can then be removed from the model, i.e., the
number of columns in Φk is reduced, which keeps the algorithm’s
computational complexity low.

One downside of ADMM is the introduced parameter ρ of the
augmented Lagrangian; when its value is too high, the resulting es-
timate can become significantly biased; when it is too small, the
algorithm might experience convergence problems. Therefore, we
propose to use an adaptive approach to estimate ρ as mentioned in
[2, Sec. 3.4].

Now, let us summarize the whole algorithm. Its pseudocode is
given in Alg. 1. The parameters c1 = c2 = 1e−6 in Alg. 1 are used
as thresholds to check for convergence and (·)† is the Moore-Penrose
Pseudo inverse [19].

5. SIMULATIONS

Since we neglect the cross correlation terms in (11) and therefore
only use z̃k for obtaining a local solution on agent k, it is neces-
sary, to show the convergence compared to the exact solution of (8).
Thus, we show in Fig. 2(a) the qualitative convergence of the new
distributed SBL - approx - compared to the exact solution. We ar-
tificially generated a scenario with two γ values such that we can
actually compute (6) and the trace of the iteratively estimated γ for
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Fig. 1. (a) The magnetic field of our laboratory used for the simulations in this paper. (b) Difference between exact ẑk and approximated z̃k.
(c) NMSE in dependence of SBL iterations. Iteration 0 is the iteration after initialization.

Algorithm 1 Distributed SBL for agent k
Require: y ∈ Y,Φk, ρ > 0

1: Init z̃[0]
k ← diag

(
ΦT
kΛΦk

)
;w[0]

k ←
(
ΦT
kΦk

)†
ΦT
kΛy

2: while j < max Iteration1 do
3: while i < max Iteration2 do
4: Φw

[i] ← 1
K

∑
k Φkw

[i]
k using averaged consensus

5: w
[i+1]
k , ζ

[i+1]
k ,u

[i+1]
k ← (16), (17), (18)

6: Update ρ (optional)
7: if ‖u[i+1]

k − u[i]
k ‖ < c2 then

8: stop
9: end if

10: i← i+ 1
11: end while
12: w

[j+1]
k ← w

[i+1]
k

13: Remove zero entries inw[j]
k ; update Φk,z

[j]
k ,γ

[j]
k

14: γ[j+1] ← (14)
15: if ‖γ[j+1]

k − γ[j]
k ‖ < c1 then

16: stop
17: end if
18: z̃

[j+1]
k ← (12); j ← j + 1

19: end while
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Fig. 2. (a) This figure shows the convergence of γ. For the dis-
tributed case the convergence is the same as for the exact solution.
(b) Difference between the exact and approximated objective func-
tion.

ẑ and z̃.
The difference between both trajectories is marginal, as shown

in Fig. 2(b), and the algorithm with the approximated z̃k gives the
same results for this scenario. Thus, we use this approach in the
following.

In the next scenario we use real obtained data of the magnetic
field in our laboratory. For this we take spatially uniform distributed
samples from the dataN = 500 and distribute the estimation among
K = 5 agents. The magnetic field is shown in Fig. 1(a). Each es-
timation is repeated 50 times with different measurement locations.
Each measurement is perturbed with additive white Gaussian noise.
We further assume that the noise power is constant, i.e. Λ = λI . For
the estimation of ŵ we use fast iterative shrinkage-thresholding al-
gorithm (FISTA) [22] as a solution to (16). The difference ‖z̃k−ẑk‖
is shown in Fig.1(b) for different signal-to-noise ratios (SNRs). It
is observed that the difference decreases with increasing number of
SBL iterations. This is explained by the consensus in Alg. 1 line
4, which resolves the correlation between other agents. In the case
of very low SNR the model contains only of few kernel with values
close to zero such that the difference results in low values.

At the end we also investigated the NMSE of the algorithm for
different SNR. For evaluation we compared the proposed approxi-
mated algorithm with the exact algorithm. As already shown with
the qualitative convergence, the performance of the proposed algo-
rithm is almost the same as is shown in Fig. 1(c).

6. CONCLUSION

This paper shows a novel algorithm for distributed SBL with a
splitting-over-features or heterogeneous learning approach for multi-
agent systems. The algorithm yields the same results as its central-
ized counterpart by only exchanging the agent’s estimates. Due
to splitting-over-features, we are able to reduce the computational
complexity of the algorithm with respect to the number of features.
Additionally, the model size is further reduced by SBL techniques.

We have also shown that the algorithm converges to the same
results, although we neglect the inter-agent correlations in (12). This
opens the way for other faster versions of distributed optimization for
SBL.

In the future we would like to test the algorithm with other data
sets and in experiments. Also this algorithm might by interesting for
data processing on graphic cards, where the hardware structure, i.e.
the cache memory, facilitates the processing.
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