
GRAPH SAMPLING WITH AND WITHOUT INPUT PRIORS

Sundeep Prabhakar Chepuri†, Yonina C. Eldar‡, and Geert Leus†

†Delft University of Technology (TU Delft), The Netherlands
‡Technion - Israel Institute of Technology, Israel

ABSTRACT

In this paper the focus is on sampling and reconstruction of signals
supported on nodes of arbitrary graphs or arbitrary signals that may
be represented using graphs, where we extend concepts from gener-
alized sampling theory to the graph setting. To recover such signals
from a given set of samples, we develop algorithms that incorpo-
rate prior knowledge on the original signal when available such as
smoothness or subspace priors related to the underlying graph. For
reconstructing arbitrary signals, we constrain the reconstruction to
the graph, and provide a consistent reconstruction method, in which
both the reconstructed signal and the input yield exactly the same
measurements. Given a set of graph frequency domain samples,
the sampling and interpolation operations may be efficiently imple-
mented using linear shift-invariant graph filters.

Index Terms— Graph sampling, graph signal processing, con-
sistent reconstruction, subspace prior, frequency domain sampling.

1. INTRODUCTION

Graph signal processing is an emerging research area that is recently
gaining a lot interest as it can be used to process datasets supported
on irregular domains. Such complex datasets often appear in modern
data analysis, e.g., brain networks [1], transportation networks [2],
socio-economic networks [3], to list a few. Similar to how filter-
ing, sampling, and compression play a fundamental role in tradi-
tional signal processing, these operations also form the basic build-
ing blocks of graph signal processing [4, 5].

Sampling and recovery of signals on graphs have been studied in
the context of graph signal processing under the assumption that the
graph signal is bandlimited; see [6–12]. The sampling functions that
have been mostly considered in [6, 7] are node selection operators,
which are typically designed using sparse sensing techniques [13–
15]. Instead of observing a subset of nodes, aggregation sampling is
suggested in [16], in which the graph signal is observed at a single
node and the observations correspond to linear combinations of the
information gathered by the neighbors of that node. When only the
second-order statistics of the graph signals are to be recovered from
the samples, the bandlimited assumption may be relaxed [17].

In this paper, the aim is to extend some of the concepts from
generalized sampling theory [18–21] to the graph setting. A signal
x 2 CN is sampled by taking inner products with a set of vectors
that span a subspace S in CN , which is referred to as the sampling
space.

To reconstruct x from these samples we use knowledge on the
original signal that it lies on a graph and translate this fact into a
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prior for sampling, such as smoothness or that the signal is known
to lie in a subspace. To begin with, we focus on a least squares re-
covery method that recovers x from the acquired samples under the
assumption that x lies in a subspace A (e.g., a subspace of the graph
Laplacian). The subspace A is referred to as the input space. For this
case, we show that existing works (e.g., [6, 7, 16]) specialize to the
generalized sampling formulation used in this paper. In many cases,
a subspace prior (i.e., information about A) might not be available.
Instead we might know that the signal is smooth with respect to the
underlying graph, where the extent of smoothness is quantified by
the graph Laplacian quadratic form. In this setting, the focus will be
to develop a linear estimator that reconstructs a smooth signal from
the given samples.

To recover arbitrary input signals, not necessarily supported on
the graph, we will seek a reconstruction, call it x̂, which is consistent
in the sense that x̂ might not be equal to x, but both x and x̂ produce
the same measurements. To do so, we force the reconstruction to be
linear combinations of a set of vectors that span a subspace R (e.g., a
subspace of a graph Laplacian). The subspace R is referred to as the
reconstruction space. If the input signal also lies in R (e.g., A ✓ R),
then the reconstruction will be exact, thus including the least squares
recovery with the subspace prior as a special case. The concept of
consistent recovery is reasonable when we do not have prior infor-
mation about the underlying signal and we are interested in a data
representation that takes into account the hidden geometric structure
as it allows us to consider different reconstruction subspaces R that
fits for our needs while being consistent.

The contributions of this paper are (a) to extend the general-
ized sampling theory with and without input priors (e.g., subspace
or smoothness) to the graph setting and (b) the interpretation of
the sampling and reconstruction operations as linear shift-invariant
graph filters, for which we introduce a sparse sampler in the graph
spectral domain.

2. GRAPH SIGNALS

Consider an undirected graph G = {V, E}, which consists of a finite
set of vertices V with |V| = N and a set of edges E . If there is
an edge connecting vertices i and j, then (i, j) 2 E . A signal or
function x : V ! C defined on the vertices of the graph can be
collected in a length-N vector x = [x1, x2, . . . , xN ]T , where the
nth element of x represents the function value at the nth vertex in
V . Since x resides on the graph, we refer to the function x as a
graph signal.

2.1. Graph filtering

Let us introduce an operator G 2 CN⇥N , where the (i, j)th entry
of G denoted by gi,j can only be nonzero if (i, j) 2 E or i = j.
The pattern of G captures the structure of the graph and for a graph
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signal x, the signal Gx denotes the unit shifted version of x. Thus
the operator G is commonly referred to as the graph-shift opera-
tor [22]. Typical choices for G include the adjacency matrix [22],
the graph Laplacian [4], or their respective variants. For undirected
graphs, G is Hermitian, and thus it admits the following eigenvalue
decomposition

G = U⇤UH = [u1, · · · ,uN ] diag[�1, · · · ,�N ] [u1, · · · ,uN ]H ,

where the eigenvectors {un}Nn=1 and the eigenvalues {�n}Nn=1 of
G provide the notion of frequency in the graph setting [4,5]. Specif-
ically, {un}Nn=1 forms an orthonormal Fourier-like basis for graph
signals with the graph frequencies denoted by {�n}Nn=1. The graph
Fourier transform of x, denoted by xf , is given by

xf = UHx , x = Uxf . (1)

The frequency content of graph signals may be modified using
linear shift-invariant graph filters [22], denoted by H 2 CN⇥N .
Such a shift-invariant graph filter can be expressed as a polynomial
in G [22]:

H =
L�1X

l=0

hlG
l = UHfU

H
, (2)

where the filter H is of degree L�1 with filter coefficients {hl}L�1
l=0

and the diagonal matrix Hf =
PL�1

l=0 hl⇤
l is the frequency re-

sponse of the graph filter. Here, L  N as N � 1 is the maximum
degree of any polynomial of G [22].

2.2. Representation subspace

The class of bandlimited graph signals may be viewed as signals
that lie in a subspace. If the signal is bandlimited, then its frequency
domain will be sparse. Suppose xf is sparse with known support,
and also assume, without loss of generality, that the first P entries
are nonzero. Then the bandlimited signal x can be expressed as a
linear combination of the first few modes as

x =
PX

i=1

uixf,i = UPxf,P . (3)

The above model for the graph signal places x in a P -dimensional
linear subspace A known as the input space and spanned by the
columns of UP = [u1, · · · ,uP ], i.e., A = range(UP ).

2.3. Laplacian smoothness

Smoothness of a graph signal depends on the underlying graph
topology. Typically, the Laplacian quadratic form given by xTGx,
where G is the graph Laplacian can be used to quantify the extent of
smoothness of x with respect to the underlying graph [4]. We will
say that the signal x is smooth with respect to the graph G for low
values of xTGx.

3. THE SAMPLING PROBLEM

Suppose we are given samples of x 2 CN obtained by taking inner
products of x with a set of K sampling functions {sk, 1  k  K}
as

yk = sH
k x, k = 1, 2, . . . ,K.

The sampling functions {sk, 1  k  K} span an M -dimensional
linear subspace S in CN , which is referred to as the sampling space.

If K = M , then the measurements are nonredundant, whereas when
K > M , the measurements are redundant. Collecting these samples
in a K-dimensional vector y = [y1, y2, . . . , yK ]T and defining an
operator S 2 CN⇥K that maps x into y, the sampling scheme can
be equivalently expressed as

y = SHx. (4)

Given y and S, the sampling problem boils down to finding a
reconstruction x̂ that is close to x is some sense. We wish to address
this problem by incorporating our knowledge about the input signal
when available. When no input priors are available, we seek an ap-
proximation that is consistent in the sense that it produces exactly
the same measurements as the input to the sampling function.

4. RECOVERY WITH INPUT PRIORS

In this section, the focus will be on developing reconstruction meth-
ods that take into account the available input prior on the signal. We
will first discuss the minimum squared error (i.e., least squares) re-
covery technique from [6, 7, 16], in which the signal is known to lie
in a subspace of the graph Laplacian. Then, we will consider a re-
covery method, in which we assume that the signal is smooth on the
known graph. Using simple examples, we show that the sampling
and reconstruction operations have an elegant graph filter interpreta-
tion.

4.1. Subspace prior

Let us assume that the graph signal x lies in a known P -dimensional
subspace A spanned by the columns of an N ⇥ P matrix A, but its
precise location is unknown. For example, A could be the subspace
of bandlimited graph signals as detailed in Section 2.2.

Since x 2 A, it can be decomposed as x = Ad for some
nonzero length-P vector d. Now, we may find an estimate of d by
minimizing the squared norm of the residual:

minimize
d

ky � SHAdk22. (5)

Suppose K � P and the matrix SHA has full column rank, i.e.,
A \ S? = {0}. Then the unique reconstruction minimizing (5) is
d̂ = (SHA)†y, and x̂ = Ad̂ = A(SHA)†y. Substituting (4) we
have

x̂ = A(AHSSHA)�1AHSSHx = EAS?x. (6)

In other words, the reconstruction of x is given by its oblique pro-
jection onto the range A and along the null space S?, denoted by
EAS? . By assumption, since x 2 A, x̂ = EAS?x = x. In the
special case, in which A = S, the oblique projector EAS? simpli-
fies to an orthogonal projector P S = S(SSH)�1SH .

This approach specializes to the recovery methods proposed
in [6,7,16]. For the vertex-domain sample selection approach [6,7],
SH reduces to a selection matrix and the input prior is A =
range(UP ), for which d corresponds to xf,P . In the aggrega-
tion sampling [16] approach based on observations gathered at a
single node, SH again corresponds to a selection matrix and the
input prior specializes to A = range(V P ), where V P is an N ⇥P

Vandermonde matrix with the (i, j)th entry �

j�1
i (recall that �i is

the ith eigenvalue of the graph-shift G). It should be noted that in
the vertex-domain and aggregation sampling approaches the sam-
pling function is not related to the graph, but the reconstruction
function depends on the graph.
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We next show that the oblique projector EAS? can be expressed
as a graph filter by using a specific sampling function which de-
pends on the graph. Suppose A = UP with AAH = HP being
a graph filter. Also, let us choose a sampling function of the form
SH = �UH , where � = [eT

1 , . . . , e
T
K ]T 2 {0, 1}K⇥N is the

selection matrix with ei being the ith column of the identity matrix
so that K = M . This sampling function essentially collects, with-
out loss of generality, the first K contiguous frequencies. In fact,
SSH = Hsamp is a shift-invariant graph filter with frequency re-
sponse Hf,samp = �T�.

With this sampling function, it is easy to see that the term
A(AHSSHA)�1AH in (6) is a graph filter of the form H interp =
UPHf,interpU

H
P , where the diagonal matrix Hf,interp is related to

the portion of the sampling filter that overlaps with A and is given by
H�1

f,interp = UH
P HsampUP . The oblique projector is then simply

given by EAS? = H interpHsamp. This means that

x̂ = H interpHsampx.

4.2. Smoothness prior

We now shift our focus to smoothness priors (cf. Section 2.3), where
we assume that the signal x is smooth with respect to the underlying
graph. With only the smoothness prior, we cannot achieve a perfect
reconstruction, in general. In such cases, we can only obtain a con-
sistent reconstruction. Therefore, we seek a reconstruction x̂ that is
consistent in the sense that x̂ produces exactly the same measure-
ments as x when “reapplied” as an input to the sampling function.
In other words, the reconstruction x̂ should satisfy:

SH x̂ = SHx. (7)

The reconstruction problem that takes into account the smoothness
prior then becomes

minimize
x

1
2
xHGx subject to SHx = y (8)

which is an equality constrained quadratic program. The graph
Laplacian matrix G is positive semidefinite.

The solution to the above problem can be computed in closed
form using Lagrange multipliers. The Lagrangian of (8) is given by

J(x,�) = xHGx+ �T (SHx� y)

where � 2 RK is a Lagrange multiplier corresponding to the mea-
surement equation. Setting the derivative of J(x,�) with respect to
x and � to zero, we get

@J(x,�)
@x

= Gx� S� = 0;
@J(x,�)

@�
= SHx� y = 0.

To handle cases with a singular G, the above system is rewritten as


G+ SSH S
SH 0

� 
x
�

�
=


Sy
y

�
. (9)

Suppose the coefficient matrix in (9) is nonsingular, i.e., G +
SSH is positive definite, which requires G? \ S? = {0}. (The
nullspace of G is denoted by G?.) Then the solution to (9) is

x̂ = Ã(SHÃ)�1y = Ã(SHÃ)�1SHx, (10)

where Ã = (G + SSH)�1S. In general, x̂ 6= x, except for the
special case, in which x lies in range(Ã).

Consider the sampling function SH = �UH that was used
before. Using the graph-shift operator G = U⇤UH , we can ex-
press the term S(SHÃ)�1SH in (10) as a graph filter H̃samp =
UH̃f,sampU

H with frequency response

H̃f,samp = �T [�(⇤+�T�)�1�T ]�1� (diagonal).

Thus, the reconstruction may be expressed as

x̂ = H̃ interpH̃sampx,

where H̃ interp = U(⇤+�T�)�1UH .

5. CONSISTENT RECOVERY WITHOUT INPUT PRIORS

In this section, we provide a reconstruction method that allows arbi-
trary inputs, which are not necessarily defined on a graph. In order
to incorporate the geometric structure of the data that might be used
to further process the data, we restrict ourselves to reconstruction
spaces that are related to a graph. Since no input priors are available,
we cannot recover the input exactly, in general. Nonetheless, we can
obtain a consistent estimate [cf. (7)] that fits our needs.

The reconstructed signal x̂ is constrained to lie in an M -
dimensional linear subspace R known as the reconstruction space
and spanned by the columns of an N ⇥ M matrix R. Recall that
the sampling space is also of dimension M . Since x̂ 2 R, it can be
decomposed as

x̂ = Rc; R 2 CN⇥M
, c 2 CM

. (11)

Now define an operator M 2 CM⇥K that maps y to c as

My = c. (12)

Then the sampling and reconstruction schemes in (4) and (11), re-
spectively, can be summarized as

x̂ = RMy = RMSHx. (13)

Given S and R, finding a consistent reconstruction of any x 2 CN

amounts to finding the correction transform M , which may be ob-
tained by solving

find M such that SHRMSHx = SHx.

Suppose the sampling and the reconstruction spaces (which are
of the same dimension) satisfy the condition R \ S? = {0}. Then
x̂ will be a unique consistent reconstruction of x if and only if x̂ and
x have the same orthogonal projection onto S [23]. Specifically, a
consistent reconstruction of x is given by its oblique projection onto
the range R and along the null space S?, denoted by ERS? with
ERS? = R(SHR)†SH . That is,

x̂ = ERS?x = R(SHR)†SHx = R(SHR)†y (14)

with M = (SHR)†. Since x̂ always lies in R, if x is not in R,
then x̂ 6= x. Nonetheless, as a special case, when x 2 R, consistent
reconstruction (in fact, also a perfect reconstruction) reduces to the
solution derived with the subspace prior in Section 4.1.

We show that the oblique projector ERS? can be interpreted as
a graph filter the special case when S is equal to R. Consider the
sampling function SH = �UH with M = K that was introduced
before. Suppose we use a reconstruction function of the form R =
U�H so that RRH is also a shift-invariant graph filter (in fact,
the sampling and the reconstruction functions are the same in this
example). Then the oblique projector R(SHR)†SH simplifies to
R(SHR)�1SH , which is a graph filter with frequency response
�H�.
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(a) (b) (c)

(d) (e) (f)

Fig. 1: Zachary’s Karate club network with N = 34. Top row consists of the true signals, while the bottom row consists of the reconstructed
signals. (a) and (d) Least squares recovery with the subspace prior. True graph signal in A = range(UP) with P = 5, and K = M = 5. (b)
and (e) Consistent recovery with the smoothness prior. (c) and (f) Consistent recovery forced to R, where R is the space of graph signals xn

such that xn = 0 for n 2 M ⇢ N .

6. NUMERICAL EXPERIMENTS

In this section, we perform numerical experiments1 to test the de-
veloped reconstruction methods. For experiments, we consider the
Zachary’s Karate club network [24]. This graph consists of 34 nodes
representing members of the club.

To begin with, we focus on reconstruction with the sub-
space prior. We generate a signal that lies in the subspace A =
range(UP ) of dimension P = 5, where UP = [u1, · · · ,uP ].
This means that, the input is a bandlimited graph signal. The true
signal can be seen in Fig. 1a. We observe K = 5 graph domain
observations, i.e., we sample nodes {1, 2, · · · , 5} using SH with
SH being the first 5 rows of the identity matrix of size 34 ⇥ 34.
Since we precisely known the input subspace, the reconstruction is
exact as can be seen in Fig. 1d.

Next, we consider reconstruction with the smoothness prior, for
which we consider a smooth graph signal (generated based on the
coordinates of the nodes); see the true signal in Fig. 1b. We observe
K = 15 nodes, i.e., we sample nodes {20, 21, · · · , 34} such that
G + SSH is positive definite with SH being the last 15 rows of
the identity matrix of size 34 ⇥ 34. Although we do not explicitly
use any information about the input subspace in this setting, the re-
construction is similar (not exact) to that of the true signal and it is
consistent [cf. (7)].

Finally, we consider an example of recovering a graph-domain
limited signal (i.e., a sparse graph signal) using bandlimited sam-
pling. The true signal shown in Fig. 1c has four non-zero compo-
nents at vertices {15, 16, 19, 21} and is not bandlimited. We force
the recovery to R, where R is the space of graph signals xn such

1Software to reproduce results of this paper may be downloaded from
http://cas.et.tudelft.nl/⇠sundeep/sw/GsampConf.zip

that xn = 0 for n 2 M ⇢ N . In this example, we use M =
{14, 15, · · · , 21} and for R we use a binary matrix composed of the
columns of the identity matrix of size N ⇥N defined by the set M.
We gather K = 7 frequency domain observations such that SHR is
full rank. Since R contains the input subspace, we can see in Fig. 1f
that the reconstruction is exact. In contrast, if R does not contain
the input subspace, the reconstruction will only be consistent, but
not exact.

7. CONCLUDING REMARKS

We discussed sampling and recovery of signals supported on graphs
in this paper. It is possible to unambiguously recover the graph signal
from its samples when we restrict ourselves to a subclass of graph
signals, namely, signals that lie in a subspace related to the graph. To
allow arbitrary signals or signals that are smooth with respect to the
graph, we discussed consistent sampling and recovery, in which the
input and the reconstruction yield exactly the same measurements.
By choosing a sampling function, which essentially performs sample
selection in the graph spectral domain, we can interpret the sampling
and recovery operations as graph filters. Although we have provided
an interpretation of the graph sampling and reconstruction operations
as graph filtering operations, it will be interesting to study, as future
work, the implementation details (e.g., filter order, polynomial fitting
method) of the discussed graph filters.
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