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12.1 RANDOM GRAPH PROCESSES
12.1.1 INTRODUCTION
Most of the tools in graph signal processing are deterministic in nature, e.g., graph signal denoising
using diffusion [1], sampling and reconstruction of graph signals [2–7], graph filter design [8–11],
and so on. Only recently, statistical signal processing methods tailored to graph signals have been
introduced. As we know from classical signal processing focusing on spatiotemporal signals, statistical
methods allow one to take statistical information into account when designing optimal sampling and
reconstruction schemes, e.g., Wiener filtering for denoising, interpolation, prediction, and so on [12].
This generally leads to a better average performance compared to deterministic methods. Key to the
majority of statistical methods is the concept of weak stationarity, which means that the first- and
second-order statistics of the random process do not change over space and/or time. The extension of
this concept to graph signals is not trivial due to the fact that these signals have an irregular structure,
which is generally characterized by a so-called graph shift (a generalization of the shift in time and/or
space). This is what will be discussed in the current chapter.

The first works discussing stationary graph processes observe that in contrast to a shift in time
and/or space, a graph shift is not energy preserving [13,14]. Hence, these papers base their definition
of a weakly stationary graph process on a new isometric graph shift. However, this new shift cannot
be carried out by means of local operations and hence the connection between stationarity and locality
is lost. Therefore, in this chapter, we present definitions based on the original graph shift, allowing for
stationarity tests and estimation schemes based on local information. Stationary graph processes are
also characterized by a power spectral density (PSD) and this chapter provides a rigorous treatment of
various PSD estimators, including nonparametric and parametric methods. Our treatment of stationary
graph processes is based on the comprehensive study presented in [15]. Graph stationarity was also
studied in [16], where the analysis is carried out using the Laplacian matrix as the graph shift operator.
In this chapter, the proposed framework is also extended to random processes that are jointly stationary
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in the time and vertex domain [17]. This paves the way for statistical tools for random processes over
two domains: the regular time domain and the irregular graph domain.

The field of compressive sensing has recently been extended to compressive covariance sens-
ing [18], which is based on the idea that the covariance matrix or PSD of a spatiotemporal process
can be estimated from compressed measurements without any prior assumptions on sparsity or
smoothness. A special case of compressive covariance sensing occurs when the compression is realized
by subsampling (below the Nyquist rate), also known as sparse covariance sensing. This allows one to
design statistical signal processing tools from only a subset of measurements. The last part of the
chapter explains how these ideas can be extended to random graph processes, where the covariance
matrix does not have any apparent structure, as for spatiotemporal processes [19]. We demonstrate how
the covariance matrix—and thus the PSD—of a graph process can be estimated from a subset of the
nodes without the use of priors. Again, nonparametric as well as parametric methods are considered
and we additionally show how to select the nodes in a greedy fashion.

12.1.2 CHAPTER ORGANIZATION
The definition of weakly stationary graph processes is presented in Section 12.2 along with discussions
about the relation with the classical definition in time. Section 12.2.1 introduces the notion of
power spectral density (PSD) followed by a recollection of relevant examples and useful properties.
The characterization of stationarity for graph processes that also vary over time is presented in
Section 12.2.2. Because stationary processes are easier to understand in the frequency domain,
Section 12.3 is devoted to the study of different methods for spectral estimation, which can also
be used to improve the estimate of the covariance matrix itself. These include both nonparametric
and parametric approaches. Finally, in Section 12.4 we discuss methods to estimate the PSD and the
covariance of random graph processes using only observations from a subset of nodes. We also develop
a low-complexity and near-optimal method to select the nodes in a greedy manner.

12.1.3 NOTATION
Let G = (N , E) be a directed graph or network with a set of N nodes N and directed edges E such
that (i, j) ∈ E if there exists an edge from node i to node j. We associate with G the graph shift operator
(GSO) S, defined as an N × N matrix whose entry Sj,i �= 0 only if i = j or if (i, j) ∈ E [9,20]. The
sparsity pattern of S captures the local structure of G, but we make no specific assumptions on the
values of the nonzero entries of S; hence the GSO can represent the adjacency matrix, the Laplacian,
or other graph-related matrices. In this chapter we assume that S is normal to guarantee the existence
of a unitary matrix V = [v1, v2, . . . , vN] and a diagonal matrix � such that S = V�VH . We use
x = [x1, . . . , xN]T ∈ R

N to denote a generic graph signal and x̃ := VHx to denote its frequency
representation, with VH being the graph Fourier transform (GFT) [9]. Finally, we use H : RN → R

N

to denote a linear shift-invariant graph filter of the form

H =
L−1∑
l=0

hlS
l = Vdiag(h̃)VH = Vdiag

(
�Lh

)
VH , (12.1)
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where h̃ denotes the frequency response of the filter H, �L is an N × L Vandermonde matrix with
entries �k,l = λl−1

k , and h is a vector collecting the polynomial coefficients. The notation ◦, ⊗, and
� denote the elementwise, Kronecker, and Khatri-Rao matrix products, respectively. The notation ⊕
stands for the Kronecker sum.

12.2 WEAKLY STATIONARY GRAPH PROCESSES
We extend three equivalent definitions of weak stationarity in time to the graph domain, the most
common being the invariance of the first and second moments to time shifts. We will see that under
certain conditions those definitions can be rendered equivalent for the graph domain as well. Intuitively,
stating that a graph process is stationary is an inherently incomplete assertion because we need to
declare which graph we are referring to. Hence, the proposed definitions depend on the GSO S, so that
a process x can be stationary in S but not in S′ �= S.

Defining a standard zero-mean white random process n as one with mean E [n] = 0 and covariance
E

[
nnH

] = I, we state our first definition of graph stationarity.
Definition 12.1. Given a normal shift operator S, a zero-mean random process x is weakly

stationary with respect to S if it can be written as the response of a linear shift-invariant graph filter
H = ∑N−1

l=0 hlSl to a zero-mean white input n. �
The definition states that stationary graph processes can be written as the output of graph filters

when excited with a white input. This generalizes the well-known fact that stationary processes in time
can be expressed as the output of linear time-invariant systems with white noise as input. If we write
x = Hn, the covariance matrix Cx := E

[
xxH

]
of the process x is given by

Cx = E

[
(Hn)(Hn)H

]
= HE

[
nnH

]
H = HHH , (12.2)

which shows that the color of x is determined by the filter H. We can think of Definition 12.1 as a
constructive definition of stationarity because it describes how a stationary process can be generated.
Alternatively, one can define stationarity from a descriptive perspective by imposing requirements on
the moments of the random graph process in either the vertex or the frequency domain.

Definition 12.2. Given a normal shift operator S, a zero-mean random process x is weakly
stationary with respect to S if the following two equivalent properties hold

(a) For any set of nonnegative integers a, b, and c ≤ b it holds that

E

[(
Sax

)((
SH

)b
x
)H

]
= E

[(
Sa+cx

)((
SH

)b−c
x
)H

]
. (12.3)

(b) Matrices Cx and S are simultaneously diagonalizable. �

The statements in Definition 12.2a and b can indeed be shown to be equivalent [15]. These
two statements generalize known definitions of stationarity in time. Definition 12.2a generalizes the
requirement that the second moment of a stationary process must be invariant to time shifts whereas
Definition 12.2b extends the requisite that the covariance of time stationary processes must be circulant.
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In Definition 12.2a we require the correlation to be invariant to how we shift our signal—namely,
forward Sx or backward SHx—as long as the total number of shifts remains constant. Indeed, in both
the left and right hand sides of Eq. (12.3) the signal is shifted a total of a + b times. This generalizes
what happens to stationary signals in time, where correlation depends on the total number of shifts but
not on the particular time instants. More specifically, when S is a directed cycle we have that SH = S−1.
Also, notice that for the directed cycle SN = I. Then, if we set a = 0, b = N and c = l, Eq. (12.3) boils
down to E

[
xxH

] = E
[
Slx(Slx)H

]
, which is the definition of a stationary signal in time. Intuitively,

accumulating the same number of shifts in both sides of Eq. (12.3) is necessary because the operator S,
in general, does not preserve the energy. Thus, requiring E

[
xxH

] = E
[
Slx(Slx)H

]
for stationarity with

respect to a general GSO would be infeasible. Definition 12.2a strikes the right balance of being valid
for general normal GSOs while particularizing to the accepted classical definition when S represents
the domain of time signals.

Definition 12.2b characterizes stationarity from a graph frequency perspective by requiring the
covariance Cx to be diagonalized by the GFT matrix V. When particularized to time, Definition 12.2b
requires Cx to be diagonalized by the Fourier matrix and, therefore, must be circulant. This fact is
exploited in classical signal processing to define the PSD of a stationary process as the eigenvalues of
the circulant covariance matrix, motivating the PSD definition in Section 12.2.1.

Thus far, we have presented three extensions of the concept of stationarity into the realm of graph
processes, two of which are equivalent and, hence, grouped in Definition 12.2. At this point, the
attentive reader might have a natural inquiry. Are Definitions 12.1 and 12.2 equivalent for general
graphs, as they are for stationarity in time? In fact, it can be shown that Definitions 12.1 and 12.2 are
equivalent for any graph S that is normal and whose eigenvalues are all distinct [15]. Fig. 12.1 presents
a concise summary of the definitions discussed in this section.
Coexisting approaches. Stationary graph processes were first defined and analyzed in [13]. The
fundamental problem identified there is that GSOs do not preserve energy in general and therefore
cannot be isometric [21]. This problem is addressed in [14] with the definition of an isometric
graph shift that preserves the eigenvector space of the Laplacian GSO but modifies its eigenvalues.

FIG. 12.1

Equivalent definitions of a weakly stationary graph process. Three equivalent definitions for weak stationarity in
time and their corresponding extensions to the graph domain. In graphs, two of the definitions are always
equivalent and the third one is equivalent for shifts with distinct eigenvalues.
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A stationary graph process is then defined as one whose probability distributions are invariant with
respect to multiplications with the isometric shift. One drawback of this approach is that the isometric
shift is a complex-valued operator and has a sparsity structure (if any) different from S. By contrast, the
vertex-based definition in Eq. (12.3) is based on the original GSO S, which is local and real-valued. As
a result, Eq. (12.3) provides intuition on the relations between stationarity and locality, which can
be leveraged to develop stationarity tests or estimation schemes that work with local information.
Graph stationarity was also studied in [16] where the requirement of having a covariance matrix
diagonalizable by the eigenvectors of the Laplacian GSO is adopted as a definition. This condition
is shown to be equivalent to statistical invariance with respect to the translation operator introduced
in [22]. When the shift S coincides with the Laplacian of the graph and the eigenvalues of S are all
distinct, Definitions 12.1 and 12.2 are equivalent to those in [13,16]. Hence, the definitions presented
here differ from [16] in that we consider general normal shifts instead of Laplacians and that we see
Definition 12.1 as a definition, not a property. These are mathematically minor differences that are
important in practice though; see [15,23] for more details.

12.2.1 POWER SPECTRAL DENSITY
Stationarity reduces the degrees of freedom of a random graph process, thus facilitating its description
and understanding. It follows from Definition 12.2b that one can express the remaining degrees of
freedom in the frequency domain via the notion of PSD, as defined next.

Definition 12.3. The PSD of a random process x that is stationary with respect to S = V�VH is
the nonnegative N × 1 vector p

p := diag
(

VHCxV
)

. (12.4)

�
Observe that because Cx is diagonalized by V (see Definition 12.2b) the matrix VHCxV is diagonal

and it follows that the PSD in Eq. (12.4) corresponds to the eigenvalues of the positive semidefinite
covariance matrix Cx. Thus, Eq. (12.4) is equivalent to

Cx = Vdiag(p)VH . (12.5)

Zero-mean white noise is an example of a random process that is stationary with respect to any
graph shift S. The PSD of white noise with covariance E[nnH] = σ 2I is p = σ 21. Also notice that, by
definition, any random process x is stationary with respect to the shift S = Cx defined by its covariance
matrix, with corresponding PSD p = diag(�). This can be exploited in the context of network topology
inference. Given a set of graph signals {xr}R

r=1 it is common to infer the underlying topology by building
a graph Gcorr whose edge weights correspond to cross-correlations among the entries of the signals. In
that case, the process generating those signals is stationary in the shift given by the adjacency of Gcorr;
see [23] for details. A random process x is also stationary with respect to the shift given by its precision
matrix, which is defined as the (pseudo-)inverse � = C†

x. The PSD, in this case, is p = diag(�)†.
This is particularly important when x is a Gaussian Markov Random Field (GMRF) whose Markovian
dependence is captured by the unweighted graph GMF . It is well known [24, Ch. 19] that in these cases
�i,j can be nonzero only if (i, j) is either a link of GMF , or an element in the diagonal. Thus, any GMRF
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is stationary with respect to the sparse shift S = �, which captures the conditional dependence between
the elements of x.

Two important properties that hold for random processes in time can be shown to be true as well for
the PSD of graph processes.

Property 12.1. Let x be stationary in S with covariance Cx and PSD px. Consider a filter H with
frequency response h̃ and define y := Hx. Then, the process y:

(a) Is stationary in S with covariance Cy = HCxHH .
(b) Has a PSD given by py = |h̃|2 ◦ px, where | · |2 is applied elementwise. �

Property 12.2. Given a process x stationary in S = V�VH with PSD p, define the GFT process as
x̃ = VHx. Then, it holds that x̃ is uncorrelated and its covariance matrix is

Cx̃ := E

[
x̃x̃H

]
= E

[
(VHx)(VHx)H

]
= diag(p). (12.6)

�

Property 12.1 is a statement of the spectral convolution theorem for graph signals. Property 12.2
is fundamental to motivate the analysis and modeling of stationary graph processes in the frequency
domain, which we undertake in the remainder of this chapter. It also shows that if a process x is
stationary in the shift S = V�VH , then the GFT VH provides the Karhunen-Loève expansion of the
process.

The concept of stationarity and, consequently, that of PSD can be extended to processes defined
jointly in a graph and over time. Before we review this extension in the ensuing section, we discuss
requirements on the first moment of stationary graph processes.
The mean of stationary graph processes. While Definitions 12.1 and 12.2 assume that the random
process x has mean x̄ := E [x] = 0, traditional stationary time processes are allowed to have a (nonzero)
constant mean x̄ = α1, with α being an arbitrary scalar. Stationary graph processes, by contrast, are
required to have a first-order moment of the form x̄ = αvk, i.e., a scaled version of an eigenvector of
S. This choice: (i) takes into account the structure of the underlying graph; (ii) maintains the validity
of Property 12.1; and (iii) encompasses the case vk = 1 when S is either the adjacency matrix of a
directed cycle or the Laplacian of any graph, recovering the classical first-order requirement for weak
stationarity.

12.2.2 JOINT TIME AND GRAPH STATIONARITY
In many real-world network applications, observations are taken periodically, giving rise to a sequence
X = [x1, x2, . . . , xT ] ∈ R

N×T of graph signals. Each signal has size N the number of nodes in the
network and there are T of those signals. Up to this point, we have been focusing on the statistical
variation across the vertices of the network. That is, we took one particular column of X and analyzed
the statistical relations between the signal values at different vertices. The purpose of this section is
to carry out this analysis jointly across rows and columns of X. The ultimate goal is to present the
conditions under which a random process is considered to be jointly stationary in both the vertex and
the time domain [17].

The first step to analyze the statistical properties of the vertex-time process X, which whenever
convenient will be represented as x = vec(X), is to identify its graph support. As shown in Fig. 12.2,
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FIG. 12.2

Support of a vertex-time process. The shift SV captures the dependence across the nodes of the underlying
network. Solid lines represent the edges in SV . Dashed lines represent connections between the same node at
two consecutive time instants.

for every time instant one can plot a graph that accounts for the graph support of the corresponding
column of X. With this representation, a horizontal path in the picture represents a particular node at
different time instants. To account for the time variation, node n at time t is the origin of a link toward
its successor (node n at time t + 1) as well as the destination of a link from its predecessor (node n
at time t − 1). Suppose that the spatial graph SV = VV�VVH

V is the same for all columns, as is the
case in Fig. 12.2, and let us use ST = VT �T VH

T , the adjacency of the directed cycle, to denote the
support of the time domain. Then, it holds that the graph support of X, which will be denoted as SJ ,
is given by the Cartesian product [25] of SV and ST . Mathematically, this implies that the joint shift
SJ ∈ R

NT×NT can be written as

SJ = ST ⊕ SV = IT ⊗ SV + ST ⊗ IV , (12.7)

where IT and IV are identity matrices of appropriate size. Using basic properties of the Kronecker
product, it follows from Eq. (12.7) that the eigendecomposition of the joint shift is given by SJ =
(VT ⊗ VV )(�T ⊕ �V )(VT ⊗ VV )H , revealing that the GFT associated with SJ is VT ⊗ VV , the
Kronecker product of the GFTs associated1 with ST and SV [26].

Once the graph support of the joint process and its corresponding GFT have been identified, for X
to be jointly stationary in SV and ST it suffices to particularize the definitions presented in the previous
section for the shift SJ , giving rise to the following result.

Definition 12.4. A process X is jointly stationary in SV and ST if the covariance matrix Cx =
E[vec(X)vec(X)T ] can be written as Cx = (VT ⊗ VV )diag(px)(VT ⊗ VV )H . �

Clearly, the nonnegative vector px of length NT stands for the PSD of X. If the eigenvalues of SJ
are nonrepeated, the definition is equivalent to requiring Cx to be written as a (positive semidefinite)
graph filter on the shift operator SJ .

While Definition 12.4 describes the spectral properties of the covariance of a jointly stationary
process, it is also of interest to understand its implications in the vertex and time domains. To that end,
recall that ei represents the ith canonical vector, the signal xt = Xet ∈ R

N collects the values of the
process at time instant t, and the signal χn = XTen ∈ R

T collects the values of the process at node n

1Recall that the fact of ST being the directed cycle implies that the GFT VH
T is the T × T DFT matrix so that [VT ]k,k′ =

1√
T

exp(j 2π
T kk′).
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for the different time instants. Noting that submatrices of Cx will describe how subsets of the elements
of X are correlated, the result stated next follows from Definition 12.4.

Property 12.3. If X is jointly stationary in SV and ST , then it holds that:

1. Any submatrix of Cx of the form CV
t,t′ = E[xtxT

t′ ] = E[XeteT
t′ X

T ] ∈ R
N×N is jointly diagonalizable

with SV .
2. Any submatrix of Cx of the form CT

n,n′ = E[χnχ
T
n′ ] = E[XTeneT

n′X] ∈ R
T×T is jointly

diagonalizable with ST and, hence, it is circulant. �
The statement in Property 12.3.2 is equivalent to saying that E[Xn,tXn′,t′ ] = E[Xn,t+aXn′,t′+a], which

is the classical requirement for a multivariate time series to be considered stationary [27, Sec. 2.1.3].
Particularizing the results in Property 12.3 for t = t′ and n = n′ yields the subsequent property.

Property 12.4. If X is jointly stationary in SV and ST , then it holds that:

1. All the graph signals xt = Xet are stationary in SV
2. All the time-varying signals χn = XTen are stationary in ST . �

The result above is not an equivalence. That is, there may be processes that satisfy the two conditions
stated in Property 12.4 but do not possess the structure in Definition 12.4. Even if those processes
cannot be considered jointly stationary, they are likely to arise in practice, so that the design of signal
processing schemes that leverage their structure is of interest.
Remark. Definition 12.4 is also valid if the joint shift SJ is defined as either the Kronecker product
or the strong product [25] between graphs SV and ST . The reason is that for any of these three graph
products, the eigenbasis of the joint shift is VT ⊗ VV [25,26].

Jointly stationary and separable processes
We close this section by elaborating on a subclass of jointly stationary processes of particular relevance.
To that end, let matrix HV be a generic graph filter in the shift SV and, similarly, HT a generic linear
time-invariant filter. Those filters are used in the following definition.

Definition 12.5. Let X be a process jointly stationary in SV and ST . Then, the process X is called
separable if it can be written as X = HVWHT

T , where W ∈ R
N×T is a zero-mean white process with

E[Wi,jWi,j] = 1 and E[Wi,jWi′, j′ ] = 0 for all (i, j) �= (i′, j′). �
From the previous definition one can view the jointly stationary and separable process X as one

generated by processing each of the columns of W with the same graph filter and, then, each of the
resultant rows with the same linear time-invariant filter. Note that one can also apply first the time-
invariant filter HT and then the graph filter HV . Upon defining Cx,V = HVHT

V , Cx,T = HT HT
T ,

px,V = diag(VH
VCx,VVV ) and px,V = diag(VH

VCx,T VT ), it is easy to show that the following properties
hold.

Property 12.5. Let X = HVWHT
T be a jointly stationary and separable process in SV and ST .

Then, it holds that:

1. The correlation of X can be factorized as Cx = Cx,T ⊗ Cx,V .
2. The PSD of x can be written as px = px,T ⊗ px,V . �

The factorable structure of the correlation implies that, for any given (t, t′), the covariance
CV

t,t′ = E[xtxT
t′ ] is a scaled version of Cx,V . In other words, after a trivial scaling, the covariance of
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any of the columns of the separable process X is the same. Similarly, it holds that CV
n,n′ = E[χnχ

T
n′ ]

is a scaled version of Cx,T for all (n, n′). The fact of the PSD being factorable reveals that the
number of degrees of freedom of the PSD of a jointly stationary and separable process is N + T ,
which contrasts with the NT degrees of freedom of a generic jointly stationary process. This more
parsimonious description of the PSD vector—equivalently, of the covariance matrix—can be exploited
when designing spectral (covariance) estimation schemes for processes obeying Definition 12.5.

12.3 POWER SPECTRAL DENSITY ESTIMATORS
We can exploit the fact that x is a stationary graph process in S = Vdiag(�)VH to design efficient
estimators of the covariance Cx. In particular, instead of estimating Cx directly, which has N(N + 1)/2
degrees of freedom, one can estimate p first, which only has N degrees of freedom, and then leverage
that Cx = Vdiag(p)VH .

Motivated by this, the focus of this section is on estimating p, the PSD of a stationary random graph
process x, using as input either one or a few realizations {xr}R

r=1 of x. To illustrate the developments in
Sections 12.3 and 12.4, we will use as a running example a random process defined on the well-known
Zachary’s Karate club network [28] (Figs. 12.3 and 12.4). As shown in Fig. 12.4, this graph consists of
34 nodes or members of the club and 78 undirected edges symbolizing friendships among members.2

12.3.1 NONPARAMETRIC PSD ESTIMATORS
Nonparametric estimators—as opposed to their parametric counterparts—do not assume any specific
generating model on the process x. This more agnostic view of x comes with the price of needing, in
general, to observe more graph signals to achieve satisfactory performance. In this section, we extend
to the graph setting the periodogram, the correlogram, and the least-squares (LS) estimator, which are
classical unbiased nonparametric estimators. Moreover, for the special case where the observations are
Gaussian, we derive the Cramér-Rao lower bound. We also discuss the windowed average periodogram,
which attains a better performance when a few observations are available by introducing bias in a
controlled manner while drastically reducing the variance.

Periodogram, correlogram, and LS estimator
From Eq. (12.6) it follows that one may express the PSD as p = E

[|VHx|2]. That is, the PSD is given
by the expected value of the squared frequency components of the random process. This leads to a
natural approach for the estimation of p from a finite set of R realizations of the process x. Indeed, we
compute the GFT x̃r = VHxr of each observed signal xr and estimate p as

p̂pg := 1

R

R∑
r=1

∣∣x̃r
∣∣2 = 1

R

R∑
r=1

∣∣∣VHxr

∣∣∣2 . (12.8)

2The process to assess the performance of the different PSD estimators was created using the generating filter H = ∑3
l=0 hlSl

where S was set as the Laplacian matrix and the filter coefficients as h = [1, −0.15, 0.075, −10−4]T (cf. Definition 12.1).
The coefficients were chosen for the filter to be of low order and to have a low pass behavior, as can be appreciated from the
“True PSD” curves in Fig. 12.3, where most of the energy is concentrated in the low frequencies.
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FIG. 12.3

Power spectral density estimation. All estimators are based on the same random process defined on the Karate
club network [28]. (A) Periodogram estimation with different numbers of observations. (B) Windowed average
periodogram from a single realization and a different number of windows. (C) Windowed average periodogram
for four windows and a varying number of realizations. (D) Parametric MA estimation for 1 and 10 realizations.

The estimator in Eq. (12.8) is termed periodogram due to its evident similarity with its homonym in
classical estimation. It is simple to show that p̂pg is an unbiased estimator, that is, E

[
p̂pg

] = p. A more
detailed analysis of the performance of p̂pg, for the case where the observations are Gaussian, is given
in Proposition 12.1.

An alternative nonparametric estimation scheme, denominated correlogram, can be devised by
starting from the definition of p in Eq. (12.4). Namely, one may substitute Cx in Eq. (12.4) by the
sample covariance Ĉx = (1/R)

∑R
r=1 xrxH

r computed based on the available observations to obtain

p̂cg := diag
(

VHĈxV
)

:= diag

⎡
⎣VH

⎡
⎣ 1

R

R∑
r=1

xrxH
r

⎤
⎦ V

⎤
⎦ . (12.9)

Notice that the matrix VHĈxV is in general, not diagonal because the eigenbasis of Ĉx differs from
V, the eigenbasis of Cx. Nonetheless, we keep only the diagonal elements vH

i Ĉxvi for i = 1, . . . , N as
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our PSD estimator. It can be shown that the correlogram p̂cg in Eq. (12.9) and the periodogram p̂pg in
Eq. (12.8) lead to identical estimators, as is the case in classical signal processing.

The correlogram can also be interpreted as an LS estimator. The decomposition in Eq. (12.5) allows
a linear parameterization of the covariance matrix Cx as

Cx(p) =
N∑

i=1

piviv
H
i . (12.10)

This linear parameterization will also be useful for the sampling schemes developed in Section 12.4.
Vectorizing Cx in Eq. (12.10) results in a set of N2 equations in p

cx = vec(Cx) =
N∑

i=1

pivec(viv
H
i ) = Gnpp, (12.11)

where vec(vivH
i ) = v∗

i ⊗ vi. Relying on the Khatri-Rao product, we then form the N2 × N matrix Gnp
as

Gnp := [v∗
1 ⊗ v1, . . . , v∗

N ⊗ vN] = V∗ � V.

Using the sample covariance matrix Ĉx as an estimate of Cx, we can match the estimated covariance
vector ĉx = vec(Ĉx) to the true covariance vector cx in the LS sense as

p̂ls = argmin
p

‖ĉx − Gnpp‖2
2 = (GH

npGnp)−1GH
npĉx. (12.12)

In other words, the LS estimator minimizes the squared error tr[(Ĉx − Cx(p))T (Ĉx − Cx(p))]. From
expression (12.12) it can be shown that the ith element of p̂ls is vH

i Ĉxvi. Combining this with Eq. (12.9),
we get that the LS estimator p̂ls and the correlogram p̂cg—and hence the periodogram as well—are all
identical estimators.

The estimators derived in this subsection do not assume any data distribution and are well suited
for cases where the data probability density function is not available. In what follows, we provide
performance bounds for these estimators under the condition that the observed signals are Gaussian.

Mean squared error and the Cramér-Rao bound
Suppose that the data consists of realizations from a sequence of independent and identically distributed
(i.i.d.) Gaussian random vectors {xr}R

r=1, where for each r, the vector xr ∼ N (0, Cx(p)). Under this
setting, we can characterize the variance, hence the mean squared error (MSE), of the periodogram
estimator (as well as the equivalent correlogram and LS estimators). In the following proposition, we
present expressions for its bias and variance.

Proposition 12.1. Let {xr}R
r=1 be independent samples of the process x stationary in S with PSD p.

Then, the bias bpg of the periodogram estimator in Eq. (12.8) is zero,

bpg := E

[
p̂pg

]
− p = 0. (12.13)
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Further define the covariance of the periodogram as �pg := E
[
(p̂pg − p)(p̂pg − p)H

]
. If the process x

is Gaussian and S is symmetric, then �pg can be written as

�pg := E

[
(p̂pg − p)(p̂pg − p)H

]
= (2/R)diag2(p). (12.14)

�
As was mentioned before, Proposition 12.1 states that the periodogram is an unbiased estimator, i.e.,

E
[
p̂pg

] = p, as expected given its classical counterpart. While Eq. (12.13) is valid for any distribution,
observe that the covariance expression in Eq. (12.14) requires the process x to be Gaussian. This
requirement stems from the fact that the derivation of �pg involves fourth-order moments of x. This is
natural because an analogous limitation arises for time signals [29, Sec. 8.2]. Notice also that the PSD
estimates of different frequencies are uncorrelated, because Eq. (12.14) reveals that �pg is a diagonal
matrix. A proof of the above result along with generalizations for the cases in which S is not necessarily
symmetric (but normal) can be found in [15].

The MSE of the periodogram, defined as MSE(p̂pg) := E
[‖(p̂pg − p)‖2

2

]
, can be readily computed

using the result in Proposition 12.1

MSE(p̂pg) = ‖bpg‖2
2 + tr[�pg] = (2/R)‖p‖2

2. (12.15)

As becomes apparent from Eq. (12.15), the periodogram is expected to yield large relative errors when
only a few observations R are available. In Fig. 12.3A we show the periodogram estimation for different
numbers of observations R. Notice that, indeed, when R = 1 the estimation is very poor. Nonetheless,
when increasing R the estimation tends to the true PSD. A method that can achieve better performance
for lower values of R—windowed average periodogram—will be introduced after showing that the
periodogram is an efficient estimator.

The Cramér-Rao bound provides a lower bound on the covariance of unbiased estimators when the
available data records are finite. The Cramér-Rao bound matrix is equal to the inverse of the Fisher
information matrix, F, and it is given by F = (R/2) diag−2(p); see, e.g., [30, Ch. 6.13]. The efficiency
of the periodogram follows readily by comparing F−1 with Eq. (12.14).

Windowed average periodogram
When only one or just a few observations of the process x are available, the periodogram and
correlogram yield large errors [cf. Eq. (12.15)]. A way to overcome this roadblock is to artificially
generate multiple signals from the few available ones. Bartlett and Welch methods are classical
examples of this procedure because they utilize windows to generate multiple samples of the process,
even if only a single realization is given [31, Sec. 2.7]. Intuitively, a long signal is partitioned into pieces
where each piece can be considered as a different signal. This operation introduces bias in the estimator
but reduces variance to the point that the overall MSE can be improved. The frequency counterparts
of such classical methods are filter banks, where the signal is partitioned in the Fourier domain. Both
the windowed average periodogram—including Bartlett and Welch methods—and the filter banks can
be extended for the estimation of graph processes. In this section, we only focus on the former, but
extensions of this analysis as well as a full derivation of filter-bank estimators can be found in [15].
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The application of a window w to a signal3 x entails a component-wise multiplication to produce
the signal xw = diag(w)x, where we assume that windows are normalized to have energy ‖w‖2

2 = N.
We may leverage the definition of the GFT to write

x̃w = VHxw = VHdiag(w)x = VHdiag(w)Vx̃ =: W̃x̃, (12.16)

where we implicitly defined W̃ := VHdiag(w)V as the dual of the windowing operator in the frequency
domain. For time signals the frequency representation of a window is its Fourier transform and the
dual operator of windowing is the convolution between the spectra of the window and the signal. This
parallelism is lost for graph signals. Nonetheless, Eq. (12.16) can be used to design windows with
small spectral distortion, i.e., windows for which W̃ ≈ I. Recall that our objective is to generate
multiple signals from only one, thus instead of focusing on a single window we consider a bank of M
windows W = {wm}M

m=1 and use it to construct the windowed signals xm := diag(wm)x. Based on
these windowed signals, we build the windowed average periodogram as

p̂W := 1

M

M∑
m=1

∣∣∣VHxm

∣∣∣2 = 1

M

M∑
m=1

∣∣∣VHdiag(wm)x
∣∣∣2 . (12.17)

The name given to p̂W becomes apparent when comparing Eq. (12.17) with Eq. (12.8). Indeed, the
former is almost equivalent to the latter with the caveat that the M signals considered in Eq. (12.17)
are not independent. As a consequence, the variance decreases slower than 1/M with the number of
windows, this being the rate found in Proposition 12.1 for the averaging of R independent signals.
Moreover, the dependence between the different xm introduces a distortion (bias) in the estimator.
To state these effects more formally, we construct the dual operators associated with each window
W̃m := VHdiag(wm)V [cf. Eq. (12.16)], and use them to define the power spectrum mixing matrix of
windows m and m′ as the componentwise product W̃m,m′ := W̃m ◦ W̃

∗
m′ . Based on the spectrum mixing

matrices, the following proposition presents the bias and covariance of p̂W .
Proposition 12.2. Let p̂W be the windowed average periodogram computed based on a window

bank W = {wm}M
m=1 and single observation x of a stationary process in S. Then, the bias of p̂W is

given by

bW := E
[
p̂W

] − p =
⎛
⎝ 1

M

M∑
m=1

W̃m,m − I

⎞
⎠ p. (12.18)

Furthermore, if x is Gaussian and S is symmetric, the trace of the covariance
�W := E

[
(p̂W − E

[
p̂W

]
)(p̂W − E

[
p̂W

]
)H

]
is given by

tr[�W ] = 2

M2

M∑
m=1, m′=1

tr
[(

W̃m,m′p
)(

W̃m,m′p
)H

]
. (12.19)

�
Expression (12.18) reveals that the bias of p̂W is given by the discrepancy between the average

spectrum mixing of the windows—depending on both the window silhouette wm and the underlying

3To keep notation simple, in this subsection we use x to denote a realization of process x.
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graph through V—and the identity matrix. Notice that even if the individual spectrum mixing matrices
W̃m,m are far from the identity, a small bias can still be achieved by controlling their average. The
covariance expression in Eq. (12.19) can be further decomposed into a term akin to Eq. (12.14) plus
another one that quantifies the added effect of dependency between the windowed signals; see [15]
for more details. Furthermore, as done in Eq. (12.15), we can use Proposition 12.2 to obtain a closed-
form expression for the MSE of p̂W that can then guide the design criteria for optimal window banks.
However, the associated optimization problems are nonconvex. Although some basic developments in
this area are presented in [15], the efficient design of optimal windows is still an open problem.

In Fig. 12.3B we illustrate the windowed average periodogram estimation for M = 4 random
windows for a single observation of the random process on the Karate club network. Notice that the
estimation is better than the one obtained by the (regular) periodogram, i.e., M = 1. In Fig. 12.3C
we present the windowed average periodogram estimation for M = 4 but with an increasing number
of observations. Notice that for a low number of observations (R = 1 and R = 10) the estimation
improves that of the periodogram [cf. Fig. 12.3A]. Nonetheless, it can be seen that this estimator is
biased because there is still a residual error, even for large values of R.

12.3.2 PARAMETRIC PSD ESTIMATORS
A stationary graph process x can always be represented as the response of a graph filter H when applied
to a white input [cf. Definition 12.1]. The cases where H depends on just a few parameters—much less
than N—ultimately result in a further reduction of the degrees of freedom of the process x. In particular,
we may obtain a parametric description of the PSD of x as a function of the few coefficients of H. In
this section, we leverage this reduction in degrees of freedom to design PSD estimators. We discuss
in detail the case where H corresponds to a moving average (MA) model, and then briefly review the
constructions for an autoregressive (AR) model. For the combined ARMA model, the developments
for the MA and AR processes can be mimicked; see [15] for more details on the ARMA model.

Moving average graph processes
Consider a vector of coefficients β = [β0, . . . , βL−1]T , for L � N, and assume that the stationary
process x is generated as x = H(β)n where n is white and H(β) = ∑L−1

l=0 βlSl. From this generative
model, it immediately follows that the covariance of x can be written as a function of β, i.e.,
Cx(β) = H(β)HH(β). Regarding the PSD of x, from the definition in Eq. (12.4) we have that
p(β) = diag

(
VHCx(β)V

)
, from where it follows that the PSD of x is equal to the squared magnitude of

the frequency representation of the filter. The dependence of Cx and p on β are explicitly stated below

Cx(β) =
L−1∑

l=0,l′=0

βl Sl βl′ (SH)l′ , p(β) = |h̃(β)|2 = |�Lβ|2. (12.20)

The covariance and PSD expressions in Eq. (12.20) correspond to the natural graph counterparts of MA
time processes generated by FIR filters; see [15] for discussions on the relevance of these processes.

The estimation of β can now be pursued in either the graph or frequency domain through covariance
or PSD fitting, respectively. More specifically, in the graph domain, we compute the sample covariance
Ĉx and use a matrix distortion function DC(Ĉx, Cx(β)) to measure the dissimilarity between Ĉx and
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Cx(β). Alternatively, in the frequency domain, we compute the periodogram p̂pg as in Eq. (12.8) and
use a vector distortion function Dp(p̂pg, |�Lβ|2) to compare the periodogram p̂pg with the PSD |�Lβ|2.
We then select the coefficients β that lead to the minimal distortion, as specified below, for either the
graph or the frequency domain

β̂ := argmin
β

DC(Ĉx, Cx(β)), β̂ := argmin
β

Dp(p̂pg, |�Lβ|2). (12.21)

Notice that both the functional forms of Cx(β) and p(β) in Eq. (12.20) are indefinite quadratics in β.
Hence, the optimization problems in Eq. (12.21) will not be convex in general. In the particular case
where the distortion Dp is given by the squared 	2 norm of the difference, i.e., Dp(p̂pg, |�Lβ|2) =
‖p̂pg − |�Lβ|2‖2

2, efficient (phase-retrieval) solvers with probabilistic guarantees are available [32,33].
Alternative tractable formulations of Eq. (12.21) are discussed in [15], one of which is described next.

When S is symmetric, the expression (12.20) reduces to

Cx =
Q−1∑
k=0

bkSk, pn =
Q−1∑
k=0

bkλ
k
n. (12.22)

Here, Q := min{2L − 1, N} unknown expansion coefficients {bk}Q−1
k=0 are collected in the vector

b = [b0, b1, . . . , bQ−1]T ∈ R
Q. By ignoring the structure in b, i.e., the relation between b and β,

we arrive at a linear parameterization of Cx using the set of Q symmetric matrices {S0, S, . . . , SQ−1} as
a basis. Vectorizing Cx in Eq. (12.22), we obtain

cx = vec(Cx) =
Q−1∑
k=0

bkvec(Sq) = Gmab, (12.23)

where we implicitly defined the matrix Gma := [
vec(S0), . . . , vec(SQ−1)

]
. Because Cx depends linearly

on b—as opposed to quadratically on β—we may efficiently solve Eq. (12.21) for some choices of DC.
For example, the LS estimate of b is given by b̂ = (GH

maGma)−1GH
maĉx. We illustrate the implementation

of this relaxation in Fig. 12.3D. Notice that the PSD estimation is quite faithful even for R = 1, and it
slightly improves for R = 10.

Autoregressive graph processes
A stationary process can be better and better approximated as an MA process by increasing the
order of the associated FIR filter. However, the merits of the parametric estimators depend on having
a small number of parameters describing the generating process. For some stationary processes,
an AR model using an infinite impulse response filter leads to a more parsimonious description.
For example, consider the diffusion process driven by the graph filter H = ∑∞

l=0 αlSl, where α

represents the diffusion rate. For small enough α, the filter can be rewritten as H = (I − αS)−1,
with frequency response h̃ = diag(I − α�−1). Thus, H can be viewed as a single-pole AR filter,
leading to a more meager description. More generally, an AR filter of order M can be described as
H = α0

∏M
m=1(I − αmS)−1 for some vector of parameters α = [α0, . . . , αM]T . Correspondingly, the

frequency response of this filter is given by h̃ = α0 diag
(∏M

m=1(I − αm�)−1
)
. If we define the graph
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process x = Hn with n white, we may leverage the previous expressions to obtain explicit formulas for
the covariance and PSD of x as a function of the parameters α,

Cx(α) = α2
0

M∏
m=1

(I − αmS)−1(I − αmS)−H , p(α) = α2
0 diag

⎛
⎝ M∏

m=1

|I − αm�|−2

⎞
⎠ . (12.24)

The mechanism to obtain the corresponding parametric PSD estimator is equivalent to the one explained
for MA processes, where Cx(β) and p(β) in Eq. (12.20) are replaced by Cx(α) and p(α) in Eq. (12.24).
The associated optimization problems [cf. Eq. (12.21)] will be nonconvex in general and become
intractable for large orders M.

Yule-Walker schemes [31, Sec. 3.4] tailored to graph signals may be of help, as discussed next. The
all-pole filter H−1(α) = ∏M

k=1(I − αkS) can be alternatively expressed as H−1(a) = I − ∑M
k=1 akSk,

where a = [a1, a2, . . . , aM]T . Thus, the AR signal satisfies the equations

x =
M∑

k=1

akSkx + n. (12.25)

In other words, the graph signal x depends linearly on the M shifted graph signals {Skx}M
k=1 according

to the above AR model. As a result, the covariance matrix of x and its vectorized form can be expressed
as

Cx =
M∑

k=1

akSkCx+Cnx, cx = vec(Cx) =
M∑

k=1

akvec(SkCx) + vec(Cnx) ≈ Gara, (12.26)

where we have defined Gar := [vec(SCx), . . . , vec(SMCx)] and where we have assumed that
Cnx = E[nxH] is a small error term. Note that in contrast to the previous linear equations for
the nonparametric (12.11) and MA (12.23) models, the system matrix Gar now explicitly depends
on the unknown covariance Cx. Still, when the sample covariance matrix Ĉx is available, we can

solve Eq. (12.26) through LS as â = (Ĝ
H
arĜar)−1Ĝ

H
arĉx, where Ĝar is defined as Gar replacing Cx

by Ĉx.

12.4 NODE SUBSAMPLING FOR PSD ESTIMATION
Compression or data reduction is preferred for large-scale graph processes as the size of the datasets
often inhibits a direct computation of the second-order statistics. In this section, we focus on recovering
the second-order statistics of stationary graph processes from subsampled graph signals. We refer to this
problem as graph covariance sampling [19].

The fact that we reconstruct the power spectrum instead of the graph signal itself enables us to
sparsely sample the nodes, even in the absence of any spectral priors such as smoothness, sparsity,
or band-limitedness with known support. The proposed concept basically generalizes the field of
compressive covariance sensing [18] to the graph setting, which is not trivial. This is because,
for weakly stationary signals with a regular support or signals supported on a circulant graph, the
covariance matrix has a clear structure (e.g., Toeplitz, circulant) that enables an elegant subsampler
design. However, for second-order stationary graph signals residing on arbitrary graphs, the covariance
matrix in general does not admit any clear structure that can be easily exploited.
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12.4.1 THE SAMPLING PROBLEM
Consider the problem of estimating the graph power spectrum of the weakly stationary graph signal
x ∈ R

N from a set of K � N linear observations stacked in y ∈ R
K , given by

y = 	x, (12.27)

where 	 is a known K ×N selection matrix with Boolean entries, i.e., 	 ∈ {0, 1}K×N and where several
realizations of y may be available. The matrix 	 is referred to as the subsampling or sparse sampling
matrix. Such a sparse sampling scheme generally results in a reduction in the storage and processing
costs. Moreover, for applications where nodes correspond to sensing devices—such as weather stations
in climatology and electroencephalography probes in brain networks—it also leads to smaller hardware
and communications costs.

The covariance matrices Cx = E[xxH] ∈ R
N×N and Cy = E[yyH] ∈ R

K×K contain the second-
order statistics of x and y, respectively. In practice, a sample covariance matrix is computed based on R
signal observations. More precisely, suppose that R observations of the uncompressed and compressed
graph signals are available, denoted by the vectors {xr}R

r=1 and {yr}R
r=1, respectively. Then forming the

sample covariance matrix, Ĉx = (1/R)
∑R

r=1 xrxH
r , from R snapshots of x costs O(N2R) while forming

the sample covariance matrix, Ĉy = (1/R)
∑R

r=1 yryH
r , from R snapshots of y only costs O(K2R).

Therefore, when K � N, there will clearly be a significant reduction in the storage and processing
costs due to compression.

12.4.2 COMPRESSED LS ESTIMATOR
In this section, we will extend the previously derived LS estimators (for nonparametric as well as
parametric PSD estimation) to the case where only compressed graph signals are available. The reason
we only focus on those estimators is not because they lead to the best performance, but because they
can be used to design the best subset of nodes to sample.

Let us condense the linearly structured covariance matrix Cx for the nonparametric case
(see Eq. 12.10), the parametric MA case with symmetric shifts (see Eq. 12.22), and the parametric
AR case (see Eq. 12.26), in a single expression as

Cx(θ) =
L∑

i=1

θiQi; θ = [θ1, . . . , θL]T , (12.28)

where for the nonparametric case, we have L = N, θ := p, and Qi := vivH
i , for the MA case with

symmetric shifts, we have L = Q, θ := b, and Qi := Si−1, and for the AR case, we have L = M,
θ := a, and Qi := Si−1Cx.

Using the compression scheme described in Eq. (12.27), the covariance matrix Cy of the subsampled
graph signal y can be related to Cx as

Cy(θ) = 	Cx	T =
L∑

i=1

θi	Qi	
T . (12.29)
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This means that the expansion coefficients of Cy with respect to the set {	Q1	
T , . . . , 	QL	T}

are the same as those of Cx with respect to the set {Q1, . . . , QL}, and they are preserved under
linear compression. It is not clear at this point whether these expansion coefficients, which basically
characterize the graph power spectrum, can be uniquely recovered from Cy(θ ).

Vectorizing Cy as cy = vec(Cy) = (	 ⊗ 	)vec(Cx) ∈ R
K2

we obtain

cy = (	 ⊗ 	)Gθ , (12.30)

where G = [vec(Q1), . . . , vec(QL)]. When only a finite number of observations are available, we use
the compressed sample data covariance matrix Ĉy instead of Cy, leading to the approximation ĉy ≈
(	 ⊗ 	)Gθ .

The parameter θ is identifiable from this system of equations if (	 ⊗ 	)G has full column rank,
which requires K2 ≥ L. Assuming that this is the case, the graph power spectrum (thus the second-order
statistics of x) can be estimated in closed form via LS as

θ̂ = [(	 ⊗ 	)G]†ĉy. (12.31)

It can be shown that a full row rank (wide) matrix 	 ∈ R
K×N yields a full column rank matrix

(	 ⊗ 	)G if and only if the matrix (	 ⊗ 	)G is tall, i.e., K2 ≥ L, and null(	 ⊗ 	) ∩ range(G) = {0}.
When this is the case, we can recover the graph power spectrum by observing only O(

√
L) nodes.

An important remark is required at this point with respect to the parametric AR model. Note
from Eq. (12.26) that in this case the matrix G depends itself on the uncompressed covariance matrix
Cx, which is unknown. Hence, Eq. (12.31) cannot be directly applied. One option is to simply assume
we roughly know it and although this is not going to lead to a good estimate, it might be good enough for
designing a suboptimal sampling scheme (see Section 12.4.3). Another option is to restrict ourselves to
particular subsampling schemes that preserve the linear structure in Eq. (12.26) but for the compressed
data instead of the uncompressed data; see [19] for more details.

12.4.3 SPARSE SAMPLER DESIGN
We have seen so far that the design of the subsampling matrix 	 is crucial for the reconstruction of the
covariance of the random graph process. In this subsection, we design a sparse subsampling matrix 	

to ensure that the observation matrix (	 ⊗ 	)G has full column rank and the solution for θ has a small
error.

Algorithm 12.1 GREEDY ALGORITHM
1. Require X = ∅, K.
2. for k = 1 to K
3. s∗ = argmax

s/∈X
f (X ∪ {s})

4. X ← X ∪ {s∗}
5. end
6. Return X

Consider a structured sparse sampling matrix 	(z) ∈ {0, 1}K×N , such that the entries of this matrix
are determined by a binary component selection vector z = [z1, . . . , zN]T ∈ {0, 1}N , where zi = 1
indicates that the ith node is selected by 	(z).
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Uniqueness and sensitivity of the LS solution developed in the previous subsection depends on the
spectrum (i.e., the set of eigenvalues) of the matrix

T(z) = [(	(z) ⊗ 	(z))G]T [(	(z) ⊗ 	(z))G] = GT (diag(z) ⊗ diag(z)) G.

More specifically, the performance of LS is better if the spectrum of the matrix (	 ⊗ 	)G is more
uniform, i.e., its condition number is close to unity [34]. Thus, a sparse sampler z can be obtained by
solving

argmax
z∈{0,1}N

f (z) s.t. ‖z‖0 = K, (12.32)

with either f (z) = −tr[T−1(z)], f (z) = λmin (T(z)), or f (z) = log det [T(z)]. These functions balance
the spectrum of T(z).

Although the above problem can be solved using standard convex relaxation techniques [35], due
to the involved complexity of solving the relaxed convex problem and keeping in mind the large-scale
problems that might arise in the graph setting, we will now focus on the optimization problem (12.32)
with f (z) = log det [T(z)] as it can be solved near optimally using a low-complexity greedy algorithm.
To do so, we introduce the concept of submodularity, a notion based on the property of diminishing
returns. This is useful for solving discrete combinatorial optimization problems of the form (12.32)
(see e.g., [36]). Submodularity can be formally defined as follows.

Definition 12.6. Given two sets X and Y such that for every X ⊆ Y ⊆ N and s ∈ N \Y , the set
function f : 2N → R defined on the subsets of N is said to be submodular, if it satisfies f (X ∪ {s}) −
f (X ) ≥ f (Y ∪ {s}) − f (Y). �

Suppose the submodular function is monotone nondecreasing, i.e., f (X ) ≤ f (Y) for all X ⊆ Y ⊆
N and normalized, i.e., f (∅) = 0, then a greedy maximization of such a function as summarized in
Algorithm 12.1 is near optimal with an approximation factor of (1 − 1/e); see [37].

To use this framework, we have to rewrite f (z) = log det [T(z)] as a set function

f (X ) = log det

⎡
⎣ ∑

(i,j)∈X×X
gi,jg

T
i,j

⎤
⎦ , (12.33)

where the index set X is related to the component selection vector z as X = {m | zm = 1, m = 1, . . . , N}
and the column vectors gi,j correspond to the rows of G as G = [g1,1, g1,2, . . . , gN,N]T . We use such an
indexing because the sampling matrix 	 ⊗ 	 results in a Kronecker structured (row) subset selection.

Modifying this set function slightly to

f (X ) = log det

⎡
⎣ ∑

(i,j)∈X×X
gi,jg

T
i,j + εI

⎤
⎦ − N log ε, (12.34)

we obtain a normalized, nondecreasing, submodular function on the set X ⊂ N . Here, ε > 0 is a
small constant. In Eq. (12.34), εI is needed to carry out the first few iterations of Algorithm 12.1 and
−N log ε ensures that f (∅) is zero. It is worth mentioning that the greedy algorithm is linear in K while
computing Eq. (12.34) dominates the computational complexity. Finally, random subsampling (i.e., z
having random 0 or 1 entries) is not suitable as it might not always result in a full-column rank model
matrix.
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In Fig. 12.4, we illustrate the PSD estimation based on the observations from a subset of nodes for
100 realizations of the random process on the Karate club network. For the nonparametric model, the
selected graph nodes obtained from Algorithm 12.1 are indicated with a black circle in Fig. 12.4A.
Based on the observations from these 20 selected graph nodes, the PSD estimate obtained using LS is
shown in Fig. 12.4B. It can be seen that the PSD estimate based on the observations from a subset of
nodes fits reasonably well to the true PSD.
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FIG. 12.4

PSD estimation from a subset of nodes. Estimators are based on a random process defined on the Karate club
network [28]. (A) Graph sampling for nonparametric PSD estimation. Here, 20 out of 34 nodes are observed.
The sampled nodes are highlighted by the circles around the nodes. (B) Nonparametric PSD estimation based
on observations from 20 nodes and 100 data snapshots. (C) Graph sampling for parametric MA PSD
estimation. Here, 4 out of 34 nodes are observed. (D) Parametric MA PSD estimation based on observations
from 4 nodes and 100 data snapshots.
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For the parametric MA model, wherein the PSD is parametrized with Q = 7 MA parameters, the
selected graph nodes obtained from Algorithm 12.1 are shown in Fig. 12.4C and the reconstructed PSD
using LS is shown in Fig. 12.4D. In this case, we sample only 4 out of 34 graph nodes and yet obtain a
PSD estimate that fits very well to the true PSD.

12.5 DISCUSSION AND THE ROAD AHEAD
In this chapter, we have introduced the concept of weakly stationary graph processes and their related
power spectral density. We discussed the links between the different definitions as well as the relations
with classical signal processing. Furthermore, we extended this idea to processes that are jointly
stationary in the vertex and time domain, where the subclass of separable processes is of particular
importance due to their more parsimonious description. The chapter has also focused on estimating
the PSD and the covariance using nonparametric as well as parametric methods. Equivalences and
differences with classical PSD techniques for spatiotemporal signals have been established. Finally, we
presented different techniques to estimate the PSD and the covariance from only a subset of the nodes
without any loss of identifiability. This can be viewed as a particular instance of sparse covariance
sampling. In this context, we also proposed a greedy method to select the best nodes to sample in order
to guarantee a satisfying estimation of the PSD and the covariance.

While this chapter only covers weakly stationary graph processes, a definition of strict stationarity
is still open. One option could be to define a strictly stationary graph process as the output of filtering
i.i.d. noise. Ergodicity is also a concept that we did not discuss in this chapter. Ergodicity in a graph
signal processing context would mean that the statistics of the graph process could be derived from
successive graph shifts of a single realization (observed at one or multiple nodes) [38]. Due to the
finite length of graph signals, this will entail certain problems and exact estimates of the statistics (even
asymptotically) will rarely be possible. How to model nonstationary graph processes in an intuitively
pleasing way is another unexplored area. A way forward in this direction could be the introduction of
so-called node-varying graph filters [39], where the variation of the filter taps can be expanded in a
particular basis. Filtering white or i.i.d. noise using such filters leads to a nonstationary graph process
that is parametrized by a limited number of coefficients. Yet, other parametrized graph filter structures
could be employed as a model for nonstationary graph processes, e.g., edge-variant graph filters [40]
or median graph filters [41,42]. Finally, in this chapter, we limited ourselves to normal graph shift
operators that are endowed with a unitary matrix of eigenvectors. Stationarity for nonnormal graph
shifts (whether diagonalizable or not) is a topic for future research. Some of the concepts discussed
in this chapter can be easily extended to nonorthonormal and/or generalized eigenvectors but others
require more research.
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