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Abstract—Stationarity is a cornerstone property that facilitates
the analysis and processing of random signals in the time domain.
Although time-varying signals are abundant in nature, in many
practical scenarios, the information of interest resides in more ir-
regular graph domains. This lack of regularity hampers the gen-
eralization of the classical notion of stationarity to graph signals.
This paper proposes a definition of weak stationarity for random
graph signals that takes into account the structure of the graph
where the random process takes place, while inheriting many of
the meaningful properties of the classical time domain definition.
Provided that the topology of the graph can be described by a
normal matrix, stationary graph processes can be modeled as the
output of a linear graph filter applied to a white input. This is
shown equivalent to requiring the correlation matrix to be diago-
nalized by the graph Fourier transform; a fact that is leveraged to
define a notion of power spectral density (PSD). Properties of the
graph PSD are analyzed and a number of methods for its estima-
tion are proposed. This includes generalizations of nonparametric
approaches such as periodograms, window-based average peri-
odograms, and filter banks, as well as parametric approaches, us-
ing moving-average, autoregressive, and ARMA processes. Graph
stationarity and graph PSD estimation are investigated numeri-
cally for synthetic and real-world graph signals.

Index Terms—Graph signal processing, weak stationarity, ran-
dom graph process, periodogram, windowing, power spectral den-
sity, parametric estimation.

I. INTRODUCTION

N ETWORKS and graphs are used to represent pairwise
relationships between elements of a set, and are objects of
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intrinsic interest. In graph signal processing (GSP), the object
of study is not the network itself but a signal supported on the
vertices of the graph [2], [3]. The graph is intended to represent a
notion of proximity between the components of the signal and, as
such, provides a structure that can be exploited in its processing.
The use of a graph to process a signal is formalized by the
definition of the graph shift operator (GSO), which is a matrix
representation of the graph (Sec. II), and the graph Fourier
transform (GFT), which projects signals in the eigenvector space
of the GSO. The GSO and GFT have been proven useful in the
processing of brain activity signals using brain networks, the
study of epidemic spreading over social networks, and analysis
of Markov random fields [4]–[6].

When the GSO is particularized to a cyclic shift, the
associated GFT turns out equivalent to the classical discrete
Fourier transform (DFT) [7]. Cyclic shifts and DFTs are
central to the processing of time signals in general and to
the analysis of (periodic) stationary stochastic processes in
particular [8]. The latter is true for various reasons, one of the
most important being that the DFT diagonalizes the covariance
matrix of the stationary process and reduces its analysis to the
study of its power spectral density (PSD) [9]. In this paper
we consider analogous notions of stationary graph processes,
their concomitant PSDs and use those to study parametric and
nonparametric graph PSD estimation.

Stationary graph processes were first defined and analyzed in
[10]. The fundamental problem identified in that paper is that
GSOs do not preserve energy in general and cannot therefore
be isometric [11]. This problem is addressed with the definition
of an isometric graph shift that preserves the eigenvector space
of the Laplacian GSO but modifies its eigenvalues [12]. A sta-
tionary graph process is then defined as one whose probability
distributions are invariant with respect to multiplications with
the isometric shift. It is further shown that this definition re-
quires the covariance matrix of the signal to be diagonalized by
the eigenvectors of the GSO, which are also the eigenvectors of
the isometric shift. Although not formally defined as such, this
conclusion implies the existence of a graph PSD with compo-
nents given by the covariance eigenvalues. The requirement of
having a covariance matrix diagonalizable by the eigenvectors
of the Laplacian GSO is itself adopted as a definition in [13],
where the requirement is shown to be equivalent to statistical
invariance with respect to the translation operator introduced
in [14]. The PSD is explicitly defined in [13] and a general-
ization of the short time Fourier transform is proposed for its
estimation.

The main goal of this paper is to provide a comprehensive
introduction to the spectral analysis and estimation of graph
stationary processes. We start with a review of GSP concepts
(Sec. II), define weakly stationary graph processes (Sec. III),
introduce useful properties (Sec. III-A), and discuss some
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examples (Sec. III-B). To emphasize connections with station-
ary processes in time we say a process is stationary with respect
to a normal GSO if: (i) It can be modeled as the output of a linear
shift invariant graph filter [7], [15] applied to a white input. (ii)
Its covariance matrix satisfies a form of invariance with respect
to applications of the GSO. (iii) Its covariance matrix is diago-
nalized by the GSO’s eigenvector matrix. The shift invariance in
definition (ii) is more involved than its time-domain counterpart,
but it does preserve the locality of the given GSO and sheds light
on the local structure of graph stationary processes. These three
definitions are equivalent under mild conditions (Prop. 1) and,
since (iii) is shared with [13] and a consequence of [10], they are
also equivalent to the isometric invariance in [10] and the trans-
lation invariance in [13]. Our discussion in this section differs
from [10], [13] in that we not only consider Laplacian GSOs
but arbitrary normal GSOs. Although mathematically minor,
this modification broadens applicability of graph stationarity,
establishing connections with results in statistics and network
topology inference [16]. Normal GSOs that are not Laplacians
cover all symmetric shifts and a subset of non-symmetric GSOs
which is small but includes the directed cycle.

Since stationary processes are easier to understand in the fre-
quency domain, we study different methods for spectral (PSD)
estimation, which, if needed, can also be used to improve the
estimate of the covariance matrix itself (Sec. IV and Sec. V).
We begin by looking at simple nonparametric methods for PSD
estimation (Sec. IV). We first extend the periodogram and the
correlogram to the graph domain, and analyze their estima-
tion performance. We then generalize more advanced estimators
such as window-based average periodograms and filter banks [9,
Chs. 2 and 5]. The estimation performance is evaluated analyti-
cally and differences relative to their time-domain counterparts
are highlighted. After this, we shift attention to parametric es-
timation (Sec. V). The focus is on estimating the PSD of au-
toregressive (AR), moving-average (MA), and ARMA graph
processes, which are likely to arise in distributed setups driven
by linear dynamics [5], [17], [18]. As in time, it turns out that the
estimation of the ARMA parameters is a non-convex (quartic)
problem, although for certain particular cases – including that
of positive semidefinite shifts – the optimization is tractable.
Numerical results are presented to confirm theoretical claims
and provide insights on the implications of graph stationarity
and to discuss some potential applications (Sec. VI). The lat-
ter include smoothing of face-image signals, characterization of
brain networks and signals, and description of flow cytometry
data.

Notation: Entries of vector x are [x]i = xi . Entries of matrix
X are [X]ij = Xij . Conjugate, transpose, and transpose conju-
gate are X∗, XT , and XH . For square matrix X, we use tr[X]
for its trace and diag(X) for a vector with the diagonal ele-
ments of X. For vector x, diag(x) denotes a diagonal matrix
with diagonal elements x. The elementwise product of x and y
is x ◦ y. The all-zero and all-one vectors are 0 and 1. The ith
element of the canonical basis of RN is ei .

II. GRAPH SIGNALS AND FILTERS

Let G = (N , E) be a directed graph or network with a set
of N nodes N and directed edges E such that if there exists a
connection from node i to node j then (i, j) ∈ E . We associate

with G the GSO S, defined as an N × N matrix whose entry
Sji �= 0 only if i = j or if (i, j) ∈ E [3], [7]. The sparsity pattern
of S captures the local structure of G, but we make no specific
assumptions on the values of the nonzero entries of S. Frequent
choices for S are the adjacency matrix [3], [7], the Laplacian [2],
and their respective generalizations [19]. The intuition behind
S is to represent a linear transformation that can be computed
locally at the nodes of the graph. More rigorously, if the set
Nl(i) stands for the nodes within the l-hop neighborhood of
node i and the signal y is defined as y = Slx, then node i can
compute yi provided that it has access to the value of xj at
j ∈ Nl(i). We henceforth work with a normal S to guarantee
the existence of a unitary matrix V and a diagonal matrix Λ
such that S = VΛVH .

A graph signal is a vector x = [x1 , ..., xN ]T ∈ RN where
the i-th element represents the value of the signal at node i or,
alternatively, as a function f : N → R, defined on the vertices
of the graph. Given a graph signal x, we refer to x̃ := VH x
as the frequency representation of x, with VH being the graph
Fourier transform (GFT) [7].

We further introduce the notion of a graph filter H : RN →
RN , defined as a linear graph signal operator of the form

H :=
L−1∑

l=0
hlSl , (1)

where h = [h0 , . . . , hL−1 ]T is a vector of L ≤ N scalar coeffi-
cients. According to (1), graph filters are polynomials of degree
L − 1 in the GSO S [3], which due to the local structure of
the shift can be implemented locally too [15], [20]. It is easy to
see that graph filters are invariant to applications of the shift in
the sense that if y = Hx, it must hold that Sy = H(Sx). Using
the factorization S = VΛVH the filter in (1) can be rewritten
as H = V

( ∑L−1
l=0 hlΛl

)
VH . The diagonal matrix

∑L−1
l=0 hlΛl

is termed the frequency response of the filter and extracted in
the vector h̃ := diag(

∑L−1
l=0 hlΛl).

To relate the frequency response h̃ with the filter coefficients
h let λk = [Λ]kk be the kth eigenvalue of S and define the N ×
N Vandermonde matrix Ψ with entries Ψkl = λl−1

k . Further
define ΨL as a tall matrix containing the first L columns of Ψ
to write h̃ = ΨLh and conclude that (1) can be written as

H =
L−1∑

l=0

hlSl = Vdiag(h̃)VH = Vdiag
(
ΨLh

)
VH . (2)

Equation (2) implies that ify is defined asy = Hx, its frequency
representation ỹ = VH y satisfies

ỹ = diag
(
ΨLh

)
VH x = diag

(
h̃
)
x̃ = h̃ ◦ x̃, (3)

which demonstrates that the output at a given frequency depends
only on the value of the input and the filter response at that given
frequency. Observe that when L = N we have ΨN = Ψ and
that, if we are given a filter with order greater than N − 1, we
can rewrite it as a different filter of order not larger than N − 1
due to the Cayley-Hamilton theorem.

III. WEAKLY STATIONARY RANDOM GRAPH PROCESSES

This section leverages notions of weak stationarity in dis-
crete time to define stationarity in the graph domain, discusses
relations with existing definitions, and presents results that will
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be leveraged in the ensuing sections. The proposed definitions
depend on the GSO S, so that a process x can be stationary in S
but not in S′ �= S. The shift does not need to be the adjacency or
the Laplacian matrix, but it does need to be normal and account
for the topology of the graph.

A standard zero-mean white random process w is one with
mean E [w] = 0 and covariance E

[
wwH

]
= I. Our first defini-

tion, states that white signals processed by a linear shift-invariant
graph filter give rise to stationary graph processes.

Definition 1: Given a normal shift operator S, a zero-mean
random process x is said to be weakly stationary with respect to
S if it can be written as the response of a linear shift-invariant
graph filter H =

∑N −1
l=0 hlSl to a zero-mean white input w.

The definition states that the process x is stationary if we can
write x = Hw for some filter H =

∑N −1
l=0 hlSl that we excite

with a white input w. If we write x = Hw, the covariance
matrix Cx := E

[
xxH

]
of the signal x can be written as

Cx = E
[
(Hw)(Hw)H

]
= HE

[
wwH

]
H = HHH , (4)

which implies that the color of the process is determined by the
filter H. Def. 1 is constructive as it describes how a stationary
graph signal can be generated. Alternatively, one can define
stationarity using requirements on the moments of the random
graph signal in either the vertex or the frequency domain.

Definition 2: Given a normal shift operator S, a zero-mean
random process x is said to be weakly stationary with respect
to S if the two equivalent properties hold

a) For any set of nonnegative integers a, b, and c≤b it holds

E
[(
Sax

)((
SH

)bx
)H

]
= E

[(
Sa+cx

)((
SH

)b−cx
)H

]
. (5)

b) Matrices Cx and S are simultaneously diagonalizable.

Before discussing its intuition, we start by showing that
Defs. 2.a and 2.b are indeed equivalent. To do this, suppose
that Def. 2.a holds and reorder terms in (5) to yield

SaCxSb = Sa+cCxSb−c . (6)

For (6) to be true, Sc and Cx must commute for all c. Since
both matrices are diagonalizable, this will happen if and only
if S and Cx have the same eigenvectors [21], which implies
Def. 2.b. Conversely, if Def. 2.b. holds, then we can write
Cx = Vdiag(λc)VH . Substituting this expression into (6) the
equality checks and Def. 2.a follows.

The idea under Def. 2.a is that if the total number of times
that we shift our signal is constant (regardless of how many of
those times we shift the signal forward Sx or backward SH x),
then the correlation has to be the same. Indeed, in the two sides
of (5) the total number of times the signal has been shifted is
a + b. This resembles what happens for stationary signals in
time, where correlation depends on the total number of shifts,
but not the particular time instants. Formally, when S is a cyclic
shift, SH is a shift in the opposite direction with SH = S−1 .
Then, if we set a = 0, b = N and c = l we recover E

[
xxH

]
=

E
[
Slx(Slx)H

]
, which is the definition of a stationary signal

in time. Intuitively, having the same number of shifts in (5) is
necessary because the eigenvalues of the GSO S do not have
unit magnitude and can change the energy of the signal. The
vertex-based definition in (5) is based on the original GSO S,

which is local and real-valued. As a result, (5) provides intuition
on the relations between stationarity and locality, which can be
leveraged to develop stationarity tests or estimation schemes that
work with local information; see Sec. IV. This is different from
the vertex-based definitions in [10] and [13], which however
are more advantageous than (5) from other perspectives; see
Remark 1.

While Def. 2.a captures the implications of stationarity in the
vertex domain, Def. 2.b captures its implications in the graph
frequency domain by requiring that the covariance Cx be diag-
onalized by the GFT matrix V – this was deduced as a property
in [10] and proposed as a definition in [13]. When particularized
to time, Def. 2.b requires Cx to be circulant and therefore diago-
nalized by the Fourier matrix. This fact is exploited in (periodic)
time stationary processes to define the PSD as the eigenvalues
of the circulant covariance matrix, and motivates the following
definition.

Definition 3: The power spectral density (PSD) of a random
process x that is stationary with respect to the normal graph
shift S = VΛVH is the nonnegative N × 1 vector p

p := diag
(
VH CxV

)
. (7)

Observe that since Cx is diagonalized by V (see Def. 2.b)
the matrix VH CxV is diagonal and it follows that the PSD in
(7) corresponds to the eigenvalues of the positive semidefinite
correlation matrix Cx . Thus, (7) is equivalent to

Cx = Vdiag(p)VH . (8)

Defs. 1 and 2, which are valid for any symmetric GSO S as
well as for nonsymmetric but normal shifts, are equivalent for
time signals by construction. They are also equivalent for an
important class of graphs, as shown next.

Proposition 1: If S is normal and its eigenvalues are all dis-
tinct, Defs. 1 and 2 are equivalent.

Proof: Since Defs. 2.b and 2.a are equivalent, we show that
under the conditions in the proposition, Def. 1 is equivalent to
Def. 2.b. Assume first that Def. 1 holds. Since the graph filter
H in (4) is linear shift invariant, it is completely characterized
by its frequency response h̃ = Ψh as stated in (2). Using this
characterization we rewrite (4) as

Cx =Vdiag(h̃)VH
(
Vdiag(h̃)VH

)
H=Vdiag2(|h̃|)VH. (9)

This means that Def. 2.b holds. Conversely, if Def. 2.b holds
it means that we can write Cx = Vdiag(λc)VH for some
component-wise nonnegative vectorλc . Define now vector

√
λc

where the square root is applied element-wise. Then, for Def. 1
to hold, there must exist a filter with coefficients h satisfying
h̃ = Ψh =

√
λc . Since Ψ is Vandermonde, the system is guar-

anteed to have a solution with respect to h provided that all
modes of Ψ (the eigenvalues of S) are distinct, as required in
the proposition. �

For normal shifts, Def. 1 always implies Def. 2 as also shown
in [13]. However, if S is not normal, as is the case for most
directed graphs, the equivalence is lost and the question of which
definition to use arises. Constructive approaches related to Def. 1
that use graph filters to model a set of observations have been
successfully applied in the context of diffusions over directed
non-normal graphs [3], [22].
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Remark 1: When the shift is S = L and the eigenvalues of
S are all distinct, Defs. 1 and 2 are equivalent to those in
[10] and [13]. The main differences between [10], [13], and
our framework are in the interpretation of stationarity in the
vertex domain. To define stationarity, [10] utilizes an isometric
GSO S̃ that has the same eigenvectors as S but whose eigen-
values are unitary complex exponentials [11]. Although the re-
sultant operator is complex-valued and has a sparsity struc-
ture different from S, it provides a more natural invariance.
Indeed, since the resultant S̃ preserves energy and gives rise to
the same GFT, the counterpart to (5) can be simply written as
E[xxH ] = E[S̃lx(S̃lx)H ]. Differently, [13] proposes as start-
ing point Def. 2.b and analyzes the implications in the vertex
domain using the so-called translation operator defined in [14].
The reason for having different possible definitions in the ver-
tex domain is that the irregularity and finiteness of the graph
support leads to non-isometric shifts. One can then modify the
shift to make it isometric as in [10], define a different isometry
as in [13], or define a different form of invariance as in (5).
We also point out that our work differs from [13] in that we
consider normal shifts instead of Laplacians and that we see
Def. 1 as a definition, not a property. These are mathematically
minor differences that are important in practice. For example,
normal shifts that are not Laplacians include symmetric shifts
with positive non-diagonal entries or the cyclic shift. Moreover,
in cases where Defs. 1 and 2 differ, Def. 1 is useful because it
models real-world processes (see Sec. III-B).

A. Properties of Graph Stationary Processes

Three properties that will be leveraged in the ensuing sections
are listed next. Since these properties are direct generalizations
of their classical time counterparts, their proofs are omitted for
conciseness. For Property 3, recall that Nl(i) denotes the l-hop
neighborhood of node i.

Property 1: Let x be a stationary process in S with covari-
ance matrix Cx and PSD px . Consider a filter H with coeffi-
cients h and frequency response h̃ and define y := Hx as the
response of H to input x. Then, the process y:

a) Is stationary in S with covariance Cy = HCxHH .
b) Has a PSD given by py = |h̃|2 ◦ px .
Property 2: Given a process x stationary in S = VΛVH

with PSD p, define the GFT process as x̃ = VH x. Then, it
holds that x̃ is uncorrelated and its covariance matrix is

Cx̃ := E
[
x̃x̃H

]
= E

[
(VH x)(VH x)H

]
= diag(p). (10)

Property 3: Let x = Hw be a process written as the re-
sponse of a linear graph filter H =

∑L−1
l=0 hlSl of degree L − 1

to a white input. Then, [Cx ]ij = 0 for all j /∈ N2(L−1)(i).

Property 1, also identified in [13], is a statement of the spec-
tral convolution theorem for graph signals, which can also be
viewed as a generalization of Def. 1 for inputs that are not white.
Property 2 (see also [10]) is fundamental to motivate the analy-
sis and modeling of stationary graph processes in the frequency
domain, which we undertake in ensuing sections. It also shows
that if a process x is stationary in the shift S = VΛVH , then
the GFT VH provides the Karhunen-Loève expansion of the
process. The last property requires a bit more of a discussion.
In time, the correlation matrix often conveys a notion of lo-

cality as the significant values of Cx accumulate close to the
diagonal. Property 3, which follows from the locality of graph
filters, puts a limit on the spatial extent of the components xj of a
graph signal that can be correlated with a given element xi . Only
those elements that are in the 2(L − 1)-hop neighborhood – i.e.,
elements xj with indices j ∈ N2(L−1)(i) – can be correlated
with xi . This spatial limitation of correlations can be used to de-
sign windows for spectral estimation as we explain in Sec. IV-B.

Remark 2: While Defs. 1 and 2 assume that the random pro-
cess x has mean x̄ := E [x] = 0, traditional stationary time pro-
cesses are allowed to have a (non-zero) constant mean x̄ = α1,
with α being an arbitrary scalar. Our proposal here is for station-
ary graph processes to be required to have a first-order moment
of the form x̄ = αvk , i.e., a scaled version of an eigenvector
of S. This choice: i) takes into account the structure of the un-
derlying graph; ii) maintains the validity of Property 1; and iii)
allows to set vk = 1 for the cases where S is either the adja-
cency matrix of the directed cycle or the Laplacian of any graph,
recovering the classical definition. Note that [10], [12] require
x̄ = 0, while [13] requires x̄ = α1.

B. Examples of Stationary Graph Processes

We close this section providing some representative examples
of stationary graph processes.

Example 1: White noise. Zero-mean white noise is stationary
in any graph shift S. The PSD of white noise with covariance
E[wwH ] = σ2I is p = σ21.

Example 2: Covariance matrix graph. Any random process
x is stationary with respect to the shift S = Cx defined by its
covariance matrix. Since in this case the eigenvalues of S and
Cx are the same, it holds that the PSD is p = diag(Λ). This can
be exploited, for example, in the context of network topology
inference. Given a set of (graph) signal observations {xr}R

r=1
it is common to infer the underlying topology by building a
graphGcorr whose weight links correspond to cross-correlations
among the entries of the observations. In that case, the process
generating those signals is stationary in the shift given by the
adjacency of Gcorr ; see [16] for details.

Example 3: Precision matrix graph. Let Θ denote the pre-
cision matrix of x, which is defined as the (pseudo-)inverse
Θ = C†

x . Per Def. 2.b, it holds then than the process x is sta-
tionary in Θ. The PSD in this case is p = diag(Λ)

†
. This is

particularly important when x is a Gaussian Markov Random
Field (GMRF) whose Markovian dependence is captured by the
unweighted graph GM F . It is well-known [23, Ch. 19] that if
Θ is the precision matrix of a GMRF, then Θij can be non-
zero only if (i, j) is either a link of GM F , or an element in
the diagonal i = j. Then, it holds that any GMRF is station-
ary with respect to the sparse shift S = Θ, which captures the
conditional independence of the elements of x.

Example 4: Network Diffusion Processes. Many graph pro-
cesses are characterized by local interactions between nodes
of a (sparse) graph that can be approximated as linear [5],
[17], [18]. This implies that we can track the evolution of the
signal at the ith node through a local recursion of the form
x

(l+1)
i = x

(l)
i − γ(l) ∑

j sij x
(l)
j where x

(0)
i is the initial condi-

tion of the system, sij are elements of the GSO, and γ(l) are time
varying diffusion coefficients. The diffusion halts after L itera-
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tions – which can be possibly infinite – to produce the output
yi = x

(L)
i . Diffusion dynamics appear in, e.g., network control

systems [24], opinion formation [18], brain networks [25], and
molecular communications [26]. Utilizing the GSO, diffusion
dynamics can be written as x(l+1) = (I − γ(l)S)x(l) , with the
output y = x(L) being

y = x(L) =
∏L

l=0(I − γ(l)S)x. (11)

The Cayley-Hamilton theorem guarantees that any matrix poly-
nomial can be expressed as a graph filter with degree less than
N . If we now think of the initial condition x as a process sta-
tionary in S, it follows that y, which is a filtered version of x,
is also stationary (cf. Property 1).

IV. NONPARAMETRIC PSD ESTIMATION

The interest in this and the following section is in estimating
the PSD of a random process x that is stationary with respect
to S using as input either one or a few realizations {xr}R

r=1 of
x. In this section we consider nonparametric methods that do
not assume a particular model for x. We generalize to graph
signals the periodogram, correlogram, windowing, and filter
bank techniques that are used for PSD estimation in the time
domain. Parametric methods are analyzed in Sec. V.

A. Periodogram and Correlogram

Since Property 2 implies that Cx̃ is diagonal, we can
rewrite (10) to conclude that the PSD can be written as
p = E

[|VH x|2]. This yields a natural approach to estimate
p with the GFT of realizations of x. Thus, compute the GFTs
x̃r = VH xr of each of the samples xr in the training set and
estimate p as

p̂pg :=
1
R

R∑

r=1

|x̃r |2 =
1
R

R∑

r=1

∣
∣VH xr

∣
∣2 . (12)

The estimator in (12) is the analogous of the periodogram of
time signals and is referred to as such from now on. Its intuitive
appeal is that it writes the PSD of the process x as the average
of the squared magnitudes of the GFTs of realizations of x.

Alternatively, one can replace Cx in (7) by its sample-based
version Ĉx = (1/R)

∑R
r=1 xrxH

r and estimate the PSD as

p̂cg :=diag
(
VH ĈxV

)
:= diag

[

VH

[
1
R

R∑

r=1

xrxH
r

]

V
]

. (13)

An important observation in the correlogram definition in (13) is
that the empirical covariance Ĉx is not necessarily diagonalized
by V. However, since we know that the actual covariance Cx̃ is
diagonal, we retain only the diagonal elements of VH ĈxV to
estimate the PSD of x. The expression in (13) is the analogous
of the time correlogram. Its intuitive appeal is that it estimates
the PSD with a double GFT transformation of the empirical
covariance matrix.

Although different in genesis, the periodogram in (12) and the
correlogram in (13) are identical estimates. To see this, consider
the last equality in (13), and move matrices VH and V into the
empirical covariance sum. Observe then that the summands end
up being of the form (VH xr )(VH xr )H . The diagonal elements
of these outer products are |VH xr |2 , which are the summands in

the last equality in (12). This is consistent with the equivalence
of correlograms and periodograms in time signals. Henceforth,
we choose to call p̂pg = p̂cg the periodogram estimate of p.

To evaluate the performance of the periodogram estimator in
(12) we assess its mean and variance. The estimator is unbiased
by design and, as we shall prove next, this is easy to establish
formally. To study the estimator’s variance we need the addi-
tional hypothesis of the process having a Gaussian distribution.
Expressions for means and variances of periodogram estimators
are given in the following proposition.

Proposition 2: Let p be the PSD of a process x that is station-
ary with respect to the shift S = VΛVH. Independent samples
{xr}R

r=1 are drawn from the distribution of the process x and
the periodogram p̂pg is computed as in (12). The bias bpg of
the estimator is zero,

bpg := E [p̂pg ] − p = 0. (14)

Further define the covariance matrix of the periodogram esti-
mator as Σpg := E

[
(p̂pg − p)(p̂pg − p)H

]
. If the process x

is assumed Gaussian and S is symmetric, the covariance matrix
can be written as

Σpg := E
[
(p̂pg − p)(p̂pg − p)H

]
= (2/R)diag2(p). (15)

Proof: See Appendix A. �
The expression in (14) states that the bias of the periodogram

is bpg = 0, or, equivalently, that the expectation of the peri-
odogram estimator is the PSD itself, i.e., E [p̂pg ] = p. The
expression for the covariance matrix of Σpg holds true only
when the process x has a Gaussian distribution. The reason for
this limitation is that the determination of this covariance in-
volves operations with the fourth order moments of the process
x. This necessity and associated limitation also arise in time
signals [8, Sec. 8.2]. To help readability and intuition, the co-
variance Σpg in (15) is stated for a symmetric S, however, in
Appendix A the proof is done for a generic normal, not neces-
sarily symmetric, S.

The variance expression in (15) is analogous to the peri-
odogram variances of PSDs of time domain signals in that: (i)
Estimates of different frequencies are uncorrelated – because
Σpg is diagonal. (ii) The variance of the periodogram is pro-
portional to the square of the PSD. The latter fact is more often
expressed in terms of the mean squared error (MSE), which
we define as MSE(p̂pg) := E

[‖(p̂pg − p)‖2
2
]

and write as
[cf. (14) and (15)]

MSE(p̂pg) = ‖bpg‖2
2 + tr[Σpg ] = (2/R)‖p‖2

2 . (16)

As it happens in time signals, the MSE in (16) is large and results
in estimation errors that are on the order of the magnitude of the
frequency component itself. Two of the workarounds to reduce
the MSE in (16) are the use of windows and filter banks. Both
tradeoff bias for variance as we explain in the following sections.

B. Windowed Average Periodogram

The Bartlett and Welch methods for PSD estimation of time
signals utilize windows to, in effect, generate multiple sam-
ples of the process even if only a single realization is given
[9, Sec. 2.7]. These methods reduce variances of PSD esti-
mates, but introduce some distortion (bias). The purpose of this
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section is to define counterparts of windowing methods for PSD
estimation of graph signals.

To understand the use of windows in estimating a PSD let us
begin by defining windows for graph signals and understanding
their effect on the graph frequency domain. We say that a signal
w is a window if its energy is ‖w‖2

2 = ‖1‖2
2 = N . Applying the

window w to a signal1 x entails componentwise multiplication
to produce the signal xw = diag(w)x. In the graph frequency
domain we can use the definition of the GFT x̃w = VH xw ,
the definition of the windowed signal xw = diag(w)x, and the
definition of the inverse GFT to write

x̃w = VH xw = VH diag(w)x = VH diag(w)Vx̃ :=W̃x̃,
(17)

where in the last equality we defined the dual of the window-
ing operator diag(w) in the frequency domain as the matrix
W̃ := VH diag(w)V. In time signals the frequency represen-
tation of a window is its Fourier transform and the dual operator
of windowing is the convolution between the spectra of the win-
dow and the signal. This decoupled explanation is lost in graph
signals2. Nonetheless, (17) can be used to design windows with
small spectral distortion. Ideal windows are such that W̃ = I
which can be achieved by setting w = 1, although this is un-
likely to be of any use. More interestingly, (17) implies that
good windows for spectral estimation must have W̃ ≈ I or can
allow nonzero values in columns k where the components x̃k of
x̃ are known or expected to be small.

Turning now to the problem of PSD estimation, consider
the estimate p̂ obtained after computing the periodogram
in (12) using a single realization x, so that we have that
p̂ = |VH x|2 . Suppose now that we window the realization x
to produce xw = diag(w)x and compute the windowed peri-

odogram p̂w :=
∣
∣VH xw

∣
∣2 . Utilizing the definition of the win-

dow’s frequency representation, we can write this windowed
periodogram as

p̂w :=
∣
∣VH xw

∣
∣2 =

∣
∣VH diag(w)x

∣
∣2 =

∣
∣W̃VH x

∣
∣2 . (18)

The expression in (18) can be used to compute the expectation
of the windowed periodogram that we report in the following
proposition (recall that ◦ denotes entrywise product).

Proposition 3: Let p be the PSD of a process x that is sta-
tionary with respect to the shift S = VΛVH . The expectation
of the windowed periodogram p̂w in (18) is,

E [p̂w ] = (W̃ ◦ W̃∗)p. (19)

Proof: Write p̂w =
∣
∣W̃VH x

∣
∣2 = diag(W̃VH xxH VW̃).

Take the expectation and use E
[
xxH

]
= Cx to write E [p̂w ] =

diag(W̃VH CxVW̃H ). Further observe that VH CxV =
diag(p) to conclude that p̂w = diag(W̃diag(p)W̃H ). This
latter expression is identical to (19). �

Prop. 3 implies that the windowed periodogram in (20) is a
biased estimate of p, with the bias being determined by the dual
of the windowing operator in the frequency domain W̃.

1To keep notation simple, we use x to denote a realization of process x.
2See [14] for a different definition of the windowing operation in the graph

domain. While the definition in [14] does not amount to multiplication in the
vertex domain, it exhibits a number of convenient properties.

Multiple windows yield, in general, better estimates than
single windows. Consider then a bank of M windows W =
{wm}M

m=1 and use each of the windows wm to construct the
windowed signal xm := diag(wm )x. We estimate the PSD p
with the windowed average periodogram

p̂W :=
1
M

M∑

m=1

∣
∣VH xm

∣
∣2 =

1
M

M∑

m=1

∣
∣VH diag(wm )x

∣
∣2 . (20)

The estimator p̂W is an average of the windowed periodograms
in (18) but is also reminiscent of the periodogram in (12). The
difference is that in (12) the samples {xr}R

r=1 are independent
observations whereas in (20) the samples {xm}M

m=1 are all gen-
erated through multiplications with the window bank W . This
means that: (i) There is some distortion in the windowed peri-
odogram estimate because the windowed signals xm are used
in lieu of x. (ii) The different signals xm are correlated with
each other and the reduction in variance resulting from the av-
eraging operation in (20) is less significant than the reduction
of variance observed in Prop. 2.

To study these effects, given the windowing operation
diag(wm ), we obtain its dual in the frequency domain as
W̃m := VH diag(wm )V [cf. (17)], and use those to define the
power spectrum mixing matrix of windows m and m′ as the
entrywise product

W̃mm ′ := W̃m ◦ W̃∗
m ′ . (21)

We use these matrices to give expressions for the bias and co-
variance of the estimator in (20) in the following proposition.

Proposition 4: Let p be the PSD of a process x that is station-
ary with respect to the shift S = VΛVH . A single observation
x is given along with the window bank W = {wm}M

m=1 and
the windowed average periodogram p̂W is computed as in (20).
The expectation of the estimator p̂W is

E [p̂W ] =
1
M

M∑

m=1

W̃mmp. (22)

Equivalently, p̂W is biased with bias bW := E [p̂W ] − p. Fur-
ther define the covariance matrix of the windowed periodogram
as ΣW := E

[
(p̂W − E [p̂W ])(p̂W − E [p̂W ])H

]
. If the process

x is assumed Gaussian and S is symmetric, the trace of the
covariance matrix can be written as

tr[ΣW ] =
2

M 2

M∑

m=1,m ′=1

tr
[(

W̃mm ′p
)(

W̃mm ′p
)H

]
. (23)

Proof: See Appendix B, where the expression of tr[ΣW ] for
nonsymmetric normal shifts is given too [cf. (59)]. �

The first claim of Prop. 4 is a generalization of the bias
expression for the bias of windowed periodograms in (19). It
states that the estimator p̂W is biased with a bias determined by
the average of the spectrum mixing matrices W̃mm = W̃m ◦
W̃∗

m . The form of these mixing matrices depends on the design
of the window bank W = {wm}M

m=1 and on the topology of the
graph G. Observe that even if the individual spectrum mixing
matrices W̃mm are not close to identity we can still have small
bias by making their weighted sum M−1 ∑

m W̃mm ≈ I.
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The second claim in Prop. 4 is a characterization of the trace
of the covariance matrix ΣW . To interpret the expression in (23)
it is convenient to separate the summands with m = m′ from
the rest to write

tr[ΣW ] =
2

M 2

M∑

m=1

tr
[(

W̃mmp
)(

W̃mmp
)H

]

+
2

M 2

M∑

m=1,m ′ �=m

tr
[(
W̃mm ′p

)(
W̃mm ′p

)H
]
. (24)

Comparing (24) with (19), we see that the terms in the first
summand are tr[(W̃mmp)(W̃mmp)H ] = ‖E[p̂wm

]‖2
2 . Given

that the windows have energy ‖w‖2
2 = ‖1‖2

2 = N we expect
‖E[p̂wm

]‖ ≈ ‖E [p̂x ] ‖2 = ‖p‖2 . This implies that the first sum
in (24) is approximately proportional to 2‖p‖2

2/M . Thus, this
first term behaves as if the different windows in the bank W
were generating independent samples [cf. (16)].

The effect of the correlation between different windowed
signals appears in the cross terms of the second sum, which can
be viewed as the price to pay for the signals {xm}M

m=1 being
generated from the same realization x instead of actually being
independent. We explain next that the price of this second sum
is smaller than the gain we get in the first term.

Window design: The overall MSE is given by the squared bias
norm summed to the trace of the covariance matrix,

MSE(p̂W) = ‖bW‖2
2 + tr[ΣW ]. (25)

The expression in (25) can be used to design (optimal) windows
with minimum MSE. Do notice that the bias in (25) depends
on the unknown PSD p. This problem can be circumvented
by making p = 1 in the bias and trace expressions in Prop. 4.
This choice implies that the PSD is assumed white a priori. If
some other knowledge of the PSD is available, it can be used
as an alternative prior. Irrespectively of the choice of prior,
finding windows that minimize the MSE is computationally
challenging.

An alternative approach to design the window bank W =
{wm}M

m=1 is to exploit the local properties of the random pro-
cess x. As stated in Property 3, some stationary processes are
expected to have correlations with local structure. It is then rea-
sonable to expect that windows without overlap capture inde-
pendent information that results in a reduction of the cross-terms
in (24). This intuition is formalized next.

Proposition 5: Consider two windows wm and wm ′ and
assume that the distance between any node in wm and any
node in wm ′ is larger than 2L hops. If the process x can be
modeled as the output of an L-degree filter, then it holds that
tr[(W̃mm ′p)(W̃mm ′p)H ] = 0.

Proof: Let N (wm ) = {i : [wm ]i �= 0} be the set of nodes
in the support of wm , and N (wm ′) the ones in the sup-
port of wm ′ . We know that the distance between any i ∈
N (wm ) and any i′ ∈ N (wm ′) is greater than 2L. Invoking
Property 3, this implies that [Cx ]ii′ = 0, which allows us
to write diag(ei)Cxdiag(ei ′) = 0. Since this is true for any
pair (i, i′) with i ∈ N (wm ) and i′ ∈ N (wm ′), we have that:
f1) diag(wm )Cxdiag(wm ′) = 0. Note now that W̃mm ′p =
W̃m ◦ W̃∗

m ′p = W̃m diag(p)W̃∗
m ′ , which using the defini-

tions W̃m = VH diag(wm )V and Cx = Vdiag(p)VH can be

written as: f2) W̃mm ′p = VH diag(wm )Cxdiag(w∗
m ′)V. Sub-

stituting f1) into f2) yields W̃mm ′p = VH 0V = 0. �
The result in Prop. 5 implies that if we use windows without

overlap, the second sum in (24) is null. This means that the
covariance matrix ΣW of the PSD estimator in (20) behaves as
if the separate windowed samples were independent samples.
We emphasize that Prop. 5 provides a lax bound for a rather
stringent correlation model. The purpose of the result is to il-
lustrate the reasons why local windows are expected to reduce
estimation MSE. In practice, we expect local windows to re-
duce MSE as long as the correlation decreases with the hop
distance between nodes. Windowing design can then be related
to clustering (if the windows are non-overlapping) and cover-
ing (if they overlap) with the goal of keeping the diameter of
the window large enough so that most of the correlation of the
process is preserved. Recent results in the context of designing
sampling schemes for covariance estimation of graph processes
corroborate this point [27]. Sec. VI evaluates the estimation
performance when estimating the PSD of a graph process for
different types of windows.

C. Filter Banks

Windows reduce the MSE of periodograms by exploiting the
locality of correlations. Filter banks reduce MSE by exploiting
the locality of the PSD [9, Sec. 5]. To define filter bank PSD
estimators for graph processes, suppose that we are given a filter
bank Q := {Qk}N

k=1 with N filters (as many as frequencies).
The filters Qk are assumed linear shift invariant with frequency
responses q̃k , so that we can write Qk = Vdiag(q̃k )VH . We
further assume that their energies are normalized ‖q̃k‖2

2 = 1.
The kth (bandpass) filter is intended to estimate the kth compo-
nent of the PSD p = [p1 , . . . , pN ]T through the energy of the
output signal xk := Qkx, i.e.,

p̂q̃k
:= ‖xk‖2

2 = ‖Qkx‖2
2 . (26)

The filter bank PSD estimate is given by the concatenation
of the individual estimates in (26) into the vector p̂Q :=
[p̂q̃1 , . . . , p̂q̃N

]T . We emphasize that we can think of filter banks
as an alternative approach to generate multiple virtual realiza-
tions xk from a single actual realization x. In the case of win-
dowing, realizations xm correspond to different pieces of x. In
the case of filter banks, realizations xk correspond to different
filtered versions3 of x.

Using Parseval’s theorem and the frequency representations
q̃k and x̃ of the filter Qk and the realization x, respectively, the
estimate in (26) is equivalent to

p̂q̃k
= ‖x̃k‖2

2 = ‖diag(q̃k )x̃‖2
2 . (27)

The expression in (27) guides the selection of the response q̃k .
E.g., if the PSD values at frequencies k and k′ are expected to be
similar, i.e., if pk ≈ pk ′ we can make [q̃k ]k = [q̃k ]k ′ = (1/

√
2)

so that the PSD components [|VH x|2 ]k and [|VH x|2 ]k ′ are
averaged. More generically, the design of the filter q̃k can be
guided by the bias and variance expressions that we present in
the following proposition.

3A related approach that filters x using a set of N ′ �= N graph filters whose
frequency responses are designed by shifting a prespecified kernel and then
obtains the PSD estimate via interpolation is presented in [13].
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Proposition 6: Let p = [p1 , . . . , pN ]T be the PSD of a pro-
cess x that is stationary with respect to the shift S = VΛVH .
A single observation x is given along with the filter bank
Q = {q̃k}N

k=1 and the filter bank PSD estimates p̂Q are com-
puted as in (27). The expectation of the kth entry of p̂Q is

E [p̂q̃k
] := (|q̃k |2)T p. (28)

Equivalently, p̂q̃k
is biased with bias bq̃k

:= E [p̂q̃k
] − pk . Fur-

ther define the variance of the kth entry of the filter bank esti-
mate p̂Q as var [p̂q̃k

] := E
[
(p̂q̃k

− E [p̂q̃k
])2

]
. If the process x

is assumed Gaussian and S is symmetric, the variance of p̂q̃k
is

var [p̂q̃k
] := E

[
(p̂q̃k

−E [p̂q̃k
])2]= 2

∥
∥diag

(|q̃k |2
)
p
∥
∥2

2 . (29)

Proof: See Appendix C, where the expression of var [p̂q̃k
]

for nonsymmetric normal shifts is given too [cf. (64)]. �
The variance expression in (28) shows that the estima-

tion accuracy of a filter bank benefits from an averaging ef-
fect – recall that the filter is normalized to have unit energy
‖q̃k‖2

2 = 1. This averaging advantage manifests only if the
bias in (28) is made small so that the overall MSE, given by
MSE(p̂Q) =

∑N
k=1 b2

q̃k
+ var [p̂q̃k

], decreases. In time signals
the bias is made small by exploiting the fact that the PSD of
nearby frequencies are similar. In graph signals, some extra in-
formation is necessary to identify frequency components with
similar PSD values. If, e.g., the process x is a diffusion process
as the one in Example 4, the PSD components pk and pk ′ are
similar – irrespectively of α – if the eigenvalues λk and λk ′

of the shift S are similar. If the eigenvalues of the Laplacian
are further ordered, averaging of nearby PSD estimates can be
interpreted as the use of a bandpass filter.

A generic approach to designing bandpass filters for PSD
estimation is to exploit (FIR) filters, which are attractive due
their ability to be implemented distributedly [15]. Formally,
write Qk =

∑L
l=1 ql

kS
l , denote as qk = [q1

k , ..., qL
k ]T the vector

of filter coefficients, and as q̃k = ΨLqk its frequency response,
where we recall that ΨL stands for the first L columns of Ψ. The
coefficientsqk could be designed upon substituting q̃k = ΨLqk

into both (28) and (29) and minimizing the resultant MSE. This
can be challenging because it involves fourth-order polynomials
and requires some prior knowledge on p. For the purpose of
PSD estimation in time, a traditional approach for suboptimal
FIR design is to select coefficients guaranteeing that [q̃k ]k = 1
while minimizing the out-of-band power [8]. Defining ψT

k,L as
the kth row of ΨL , this can be formalized as

qk := argmin
qL

‖ΨLqL‖2
2 , s.t. ψT

k,LqL = 1, (30)

with the constraint forcing [q̃k ]k = 1 and the objective attempt-
ing to minimize the contribution to p̂q̃k

from frequencies other
than k. If we make L ≥ N the solution to (30) is [q̃k ]k ′ = 0 for
all k′ �= k. For L < N , the filter qk has a response in which
nonzero coefficients [q̃k ]k ′ are clustered at frequencies k′ that
are similar to k – in the sense of being associated with multi-
pliers λk ′ ≈λk . We further observe that (30) has the additional
advantage of being solved in closed form as

qk =
(
ψT

k,LΨH
L ΨLψ

∗
k,L

)−1(ΨH
L ΨL

)−1
ψk,L , (31)

which does not have unit energy but can be normalized.

V. PARAMETRIC PSD ESTIMATION

We address PSD estimation assuming that the graph process
x can be well approximated by a parametric model in which
x is the response of a graph filter H to a white input. As per
Def. 1, this is always possible if the filter’s order is sufficiently
large. The goal here is to devise filter representations of an
order (much) smaller than the number of signal elements N .
Mimicking time processes, we devise moving average (MA),
autoregressive (AR), and ARMA models. Due to space con-
straints the focus here is on the modeling of graph processes
and the parametric estimation of the generating filters, but not
on the design of those filters. Details on this latter topic can be
found in, e.g., [7], [20], [28].

A. Moving Average Graph Processes

Consider a vector of coefficients β = [β0 , ..., βL−1 ]T and as-
sume that x is stationary in the graph S and generated by the FIR
filter H(β) =

∑L−1
l=0 βlSl . The degree of the filter is less than

N although we want in practice to have L 
 N . If the process
x is indeed generated as the response of H(β) to a white input,
the covariance of x can be written as

Cx(β) = H(β)HH (β) =
L−1∑

l=0,l ′=0

(βlSl)(βl ′SH )l ′ . (32)

The PSD corresponding to the covariance in (32) is the mag-
nitude squared of the frequency representation of the filter. To
see this formally, notice that it follows from the definition in (7)
that p(β) = diag

(
VH Cx(β)V

)
. Writing the covariance ma-

trix as Cx(β) = H(β)HH (β) and the frequency representation
of the filter as h̃(β) = diag(VH(β)VH ), it follows readily that
p(β) = |h̃(β)|2 . For the purposes of this section the latter will
be written explicitly in terms of β as [cf. (3)]

p(β) = |h̃(β)|2 = |ΨLβ|2 . (33)

The covariance and PSD expressions in (32) and (33) are graph
counterparts of MA time processes generated by FIR filters –
see Sec. III-B for a discussion on their practical relevance.

The estimation of the coefficientsβ can be addressed in either
the graph or graph frequency domain. In the graph domain we
compute the sample covariance Ĉx = xxH and introduce a
distortion function DC (Ĉx ,Cx(β)) to measure the similarity
of Ĉx and Cx(β). The filter coefficients β are then selected as
the ones with minimal distortion,

β̂ = argmin
β

DC (Ĉx ,Cx(β)). (34)

The expression for Cx(β) in (32) is a quadratic function of β
that is generally indefinite. The optimization problem in (34)
will therefore be not convex in general.

To perform estimation in the frequency domain we first com-
pute the periodogram p̂pg defined in (12). We then introduce
a distortion measure Dp(p̂pg , |ΨLβ|2) to compare the peri-
odogram p̂pg with the PSD |ΨLβ|2 and select the coefficients
β that solve the following optimization

β̂ := argmin
β

Dp(p̂pg , |ΨLβ|2). (35)
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We observe that although we use the periodogram in (35), any
of the nonparametric methods of Sec. IV-A can be used in-
stead. Since the quadratic form |ΨLβ|2 in (35) is also indefi-
nite, the optimization problem in (35) is not necessarily convex.
In the particular case when the distortion Dp(p̂pg , |ΨLβ|2) =
‖p̂pg − |ΨLβ|2‖2

2 is the Euclidean 2-norm, efficient (phase-
retrieval) solvers with probabilistic guarantees are available
[29], [30]. Alternative tractable formulations of (34) and (35)
when the shifts are symmetric, or, when the shifts are posi-
tive semidefinite and the filter coefficients are nonnegative are
discussed below.

Symmetric shifts: If the shift S is symmetric, the expression
for the covariance matrix in (32) can be simplified to a polyno-
mial of degree 2(L − 1) in S,

Cx(β) =
L−1∑

l=0,l ′=0

βlβl ′Sl+ l ′ :=
2(L−1)∑

l=0

γlSl := Cx(γ). (36)

In the second equality in (36) we have defined the coefficients
γl :=

∑
l ′+ l ′′= l βl ′βl ′′ summing all the coefficient crossproducts

that multiply Sl and introduced Cx(γ) to denote the covariance
matrix written in terms of the γ coefficients. We propose now a
relaxation of (34) in which Cx(γ) is used in lieu of Cx(β) to
yield the optimization problem

β̂ = argmin
γ

DC (Ĉx ,Cx(γ)). (37)

If we add the constraints γl =
∑

l ′+ l ′′= l βl ′βl ′′ , the problem in
(37) is equivalent to (34). By dropping these constraints we end
up with a tractable relaxation because (37) is convex for all con-
vex distortion metrics DC (Ĉx ,Cx(γ)). A tractable relaxation
of (35) can be derived analogously.

Nonnegative filter coefficients: When the shift S is positive
semidefinite, the elements of the matrix Ψ are all nonnegative.
If we further restrict the coefficients β to be nonnegative, all the
elements in the product ΨLβ are also nonnegative. This means
that in (35) we can replace the comparison Dp(p̂pg , |ΨLβ|2)
by the comparison Dp(

√
p̂pg ,ΨLβ). We can then replace

(35) by

β̂ := argmin
β≥0

Dp
(√

p̂pg ,ΨLβ
)
. (38)

The optimization in (38) is convex, therefore tractable, for all
convex distortion metrics Dp(

√
p̂pg ,ΨLβ). Do notice that the

objective costs in (38) and (35) are not equivalent and that (38)
requires positive semidefinite shifts – such as the Laplacian –
and restricts coefficients to satisfyβ ≥ 0. A tractable restriction
of (34) can be derived analogously.

B. Autoregressive Graph Processes

For some processes it is more convenient to use a paramet-
ric model that generates an infinite impulse response through
an autoregressive filter. As a simple example, consider the dif-
fusion process driven by the graph filter H = α0

∑∞
l=0 αlSl ,

where α represents the diffusion rate and α0 a scaling coeffi-
cient. If the series is summable, the filter can be rewritten as
H = α0(I − αS)−1 from where we can conclude that its fre-
quency response is h̃ = diag(VH HV) = α0diag(I − αΛ−1).

This demonstrates that H can be viewed as a single pole AR
filter – see also [20].

Suppose now that x is a random graph process whose realiza-
tions are generated by applying H = α0(I − αS)−1 to a white
input w. Then, it readily holds that its covariance Cx is [cf. (4)]

Cx(α0 , α) = HHH = α2
0(I − αS)−1(I − αS)−H , (39)

which implies that the PSD of x is

p(α0 , α) = diag
[
α2

0 |I − αΛ|−2] , (40)

confirming the fact that the expression for the PSD of x is sim-
ilar to that of a first-order AR time-varying process. We can
now proceed to estimate the PSD utilizing the AR parametric
models in (39) and (40) as we did in Sec. V-A for MA models.
Substituting Cx(α0 , α) for Cx(β) in (34) yields a graph do-
main formulation and substituting p(α0 , α) for |ΨLβ|2 in (35)
yields a graph frequency domain formulation. Since only two
parameters must be estimated the corresponding optimization
problems are tractable.

Since the filter H = α0(I − αS)−1 is the equivalent of an
AR process of order one, an AR process of order M can
be written as H = α0

∏M
m=1(I − αmS)−1 for some set of

diffusion rates α = [α0 , . . . , αM ]T . The frequency response
h̃ = diag(VH HV) of this filter is

h̃ = α0 diag
[ M∏

m=1

(I − αmΛ)−1
]

. (41)

Upon defining the graph process x = Hw with w white and
unitary energy, the covariance matrix Cx can be written as

Cx(α) = α2
0

M∏

m=1

(I − αmS)−1(I − αmS)−H . (42)

The process x is stationary with respect to S, because of, e.g.,
Def. 1. The PSD of x can be written as

p(α) = α2
0 diag

[ M∏

m=1

|I − αmΛ|−2
]

. (43)

As before, we substitute Cx(α) for Cx(β) in (34) to obtain a
graph domain formulation and substitute p(α) for |ΨLβ|2 in
(35) to obtain a graph frequency domain formulation. A related
approach in the context of identifying the coefficients of a linear
predictor using graph filters was presented in [3]. For large
degree M the problems can become intractable. Yule-Walker
schemes [9, Sec. 3.4] tailored to graph signals may be of help.
Their derivation and analysis are left as future work.

Remark 3: To further motivate AR processes, consider the
example of x = Hw with H being a single-pole filter and w
a white and Gaussian input, so that x is Gaussian too. The
covariance of this first-order AR process is given by (39),
with its inverse covariance (precision matrix) being simply
Θ := C−1

x = (ρ)−2(I − αS)H (I − αS). Since S is sparse, the
precision matrix Θ is sparse too. Specifically, Θi,j �= 0 only if
j is in the two-hop neighborhood of i. Then, it follows that a
Gaussian AR process of order one on the shift S is a GMRF,
with the Markov blanket [23, Ch. 19] of a node i being given by
N2(i), i.e., the nodes that are within the two-hop neighborhood
of i. As explained in Example 2, such a process is stationary
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both in S and in Θ. The same holds true for an AR process of
order M , which in this case will give rise to a GMRF whose
Markov blankets are given by the 2M -hop neighborhoods of
the original graph.

C. Autoregressive Moving Average Graph Processes

The techniques in Secs. V-A and V-B can be combined to
form ARMA models for PSD estimation. However, as is also
done for time signals, we formulate ARMA filters directly in
the frequency domain as a ratio of polynomials in the graph
eigenvalues. We then define coefficients a := [a1 , ..., aM ]T and
b := [b0 , ..., bL−1 ]T and postulate filters with frequency re-
sponse

h̃ = diag
[(∑L−1

l=0 blΛl
) (

1 − ∑M
m=1 amΛm

)−1
]

. (44)

To find the counterpart of (44) in the graph domain define the
matrices B :=

∑L−1
l=0 blSl and A :=

∑M
m=1 amSm . It then fol-

lows readily that the filter whose frequency response is in (44) is
H = (I − A)−1B = B(I − A)−1 . These expressions confirm
that we can interpret the filter as the sequential application of
finite and infinite response filters.

If we now define the graph process x = Hw, its covariance
matrix follows readily as

Cx(a,b) = (I − A)−1BBH (I − A)−H . (45)

Since Cx(a,b) is diagonalized by the GFT V, the process x is
stationary with PSD [cf. (44)]

p(a,b) = diag
[∣
∣
∣
∑L−1

l=0 blΛl
∣
∣
∣
2 ∣

∣
∣1 − ∑M

m=1 amΛm
∣
∣
∣
−2

]

. (46)

As in the AR and MA models, we can identify the
model coefficients by minimizing the covariance distortion
DC (Ĉx ,Cx(a,b)) or the PSD distortion Dp(p̂pg ,p(a,b))
[cf. (33) and (34)]. These optimization problems are compu-
tationally difficult.

Alternative estimation schemes can be obtained by reordering
(45) into (I − A)Cx(I − A)H = BBH and solving for either
the graph domain distortion

(â, b̂) := argmin
a,b

DC
(
(I − A)Ĉx(I − A)H ,BBH

)
(47)

or the graph frequency domain distortion

(â, b̂) := argmin
a,b

Dp

[∣
∣
∣1 − ∑M

m=1 amΛm
∣
∣
∣
2
p̂pg , diag

[∣
∣
∣
∑L−1

l=0 blΛl
∣
∣
∣
2
]]

.

(48)

The formulations in (47) and (48) can still be intractable but
we observe that the problems have the same structure as the
ones considered in Sec. V-A. The tractable relaxation that we
discussed for symmetric shifts and the tractable restriction to
nonnegative filter coefficients for positive semidefinite shifts
can be then used here as well.

Remark 4: The parametric methods in this section are
well tailored to PSD estimation of diffusion processes – see
Sec. III-B. When L 
 N the dynamics in (11) are accurately

represented by a low-order FIR model. Parametric estimation
with a MA model as in Sec. V-A is recommendable. Single
pole AR models arise when γ(l) = γ for all l and L = ∞ as
we already explained in Sec. V-B. An AR model of order M
arises when M single pole models are applied sequentially. The
latter implies that AR models are applicable when the diffusion
coefficients γ(l) are constant during stretches of time or vary
slowly with time. If we consider now M diffusion dynamics
with constant coefficients γ(l) = γm for all l running in parallel
and we produce an output as the sum of the M outcomes we
obtain an ARMA system with M poles and M − 1 zeros [20].

Remark 5: The methods for PSD estimation that we pre-
sented in Secs. IV and V can be used for covariance estimation
as well. This follows directly for some of the parametric for-
mulations in which we estimate filter coefficients that minimize
a graph domain distortion – these include (34), its relaxation
in (37), and the analogous formulations in Secs. V-B and V-C.
When this is not done, an estimate for Cx can be computed from
a PSD estimate as Ĉx = Vdiag(p̂pg)VH . A further step is to
use the notion of stationarity and the models in this section to
estimate the shift S itself (hence, the topology of the network)
from a set of signal realizations. See [22], [31] for two recent
examples along these lines.

VI. NUMERICAL EXPERIMENTS

The implementation and associated benefits of the proposed
schemes are illustrated through four test cases (TCs). TC1 and
TC2 rely on synthetic graphs to evaluate the performance of
nonparametric and parametric PSD estimation methods. TC3
and TC4 illustrate how the concepts and tools of stationary
graph processes can be leveraged in practical applications in-
volving real-world signals and graphs. Unless otherwise stated,
the results shown are averages across 100 realizations of the
particular experiment.

TC1. Nonparametric methods: We first evaluate the estima-
tion performance of the average periodogram [cf. (12) and (16)]
as a function of R, the number of realizations observed. Con-
sider a baseline Erdős-Rényi (ER) graph with N = 100 nodes
and edge probability p = 0.05 [32]. We define its adjacency
matrix as the shift and generate signals by filtering white Gaus-
sian noise with a filter of degree 3. In this case, the normalized
MSE equals 2/R [cf. (16)] as can be corroborated in Fig. 1a
(top). To further confirm this result, we consider three varia-
tions of the baseline setting: i) a smaller ER graph with N = 10
nodes and p = 0.3, ii) a small-world graph [33] obtained by
rewiring with probability q = 0.1 the edges in a regular graph
of the same size as the baseline ER, and iii) filtering the noise
with a longer filter of degree 6. As expected, Fig. 1a (top)
indicates that the normalized MSE is independent of these vari-
ations. We then repeat the above setting but for signals gen-
erated as filtered versions of non-Gaussian white noise drawn
from a uniform distribution of unit variance. Even though the
MSE expression in (16) was shown for Gaussian signals, we
observe that in the tested non-Gaussian setup the evolution
of the MSE with R is the same; see Fig. 1a (bottom). This
similarity can be explained by the fact that a graph filter is a
linear combination of shifted signals and shifting is a linear op-
eration. Hence, invoking the central limit theorem, the larger
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Fig. 1. Normalized MSE (NMSE) for different PSD estimation schemes. (a) Top: NMSE for the periodogram using Gaussian inputs. Bottom: NMSE for
non-Gaussian inputs. (b) Theoretical and empirical NMSE for different window strategies. (c) NMSE as a function of the number of windows for local and random
windows. (d) NMSE for filter banks as a function of the degree of the generating filter. (e) NMSE for MA parametric estimation as a function of the degree of the
generating filter. (f) NMSE for different ARMA parametric estimators based on R = 1 and R = 2 signal realizations.

the filter degree the closer the signals at hand are from being
normal.

The second experiment evaluates the performance of window-
based estimators. To assess the role of locality in the window
design, we consider graphs generated via a stochastic block
model [34] with N = 100 nodes and 10 communities with 10
nodes each. The edge probability within each community is
p = 0.9, while the probability for edges across communities
is q = 0.1. We design rectangular non-overlapping windows
where the nodes are chosen following two strategies: i) M = 10
local windows corresponding to the 10 communities, and ii)
M = 10 windows of equal size with randomly chosen nodes.
We use the Laplacian as shift and generate the graph process
using a filter with L = 2 coefficients. Fig. 1b shows the theo-
retical and empirical normalized MSE for the two designs as
well as that of the periodogram for a single window. We first
observe that the periodogram has no bias and that the theoretical
and empirical errors coincide for the three cases, validating the
results in Propositions 2 and 4, respectively. Moreover, we cor-
roborate that windowing contributes to reduce the variance of
the estimator. Fig. 1b also illustrates that windows that leverage
the community structure of the graph yield a better estima-
tion performance. To gain insights on the latter observation, we
now consider a small-world graph of size N = 100 obtained by
rewiring with probability q = 0.05 a regular graph where each
node has 10 neighbors. Both local and random windows are
considered, where the local windows are obtained by applying
complete linkage clustering [35] to a metric space given by the
shortest path distances between nodes. In order to obtain in-
creasing number of windows M , we cut the output dendrogram
at smaller resolutions [36]. The random windows are designed
to have the same sizes as the local ones. The windows are tested
for graph processes generated by two filters of different degrees:
i) L = 2, so that nodes that are more than 2 hops away are not

correlated (cf. Property 3); and ii) L = 10, which is greater than
the graph diameter, inducing correlations between every pair
of nodes. In Fig. 1c we illustrate the performance of local and
random windows in these two settings as a function of M . We
first observe that as M increases, the error first decreases until it
reaches an optimal point and then starts to increase. Intuitively,
this indicates that at first the reduction in variance outweighs
the increase in bias but, after some point, the marginal vari-
ance reduction when adding one extra window does not com-
pensate the detrimental effect on the bias. Moreover, it can be
seen that local windows outperform the random ones, espe-
cially for localized graph processes (L = 2). These findings are
consistent for other types of graphs, although for graphs with a
weaker clustered structure the benefits of local windows are less
conspicuous.

The last experiment evaluates the performance of filter-bank
estimators. Two types of bandpass filters are considered. The
first type designs the k-th filter as an ideal bandpass filter with
unit response for the k-th frequency and the B frequencies clos-
est to it, and zero otherwise [cf. (27)]. More precisely, being λk

the eigenvalue associated to the k-th frequency, we consider the
closest frequencies as those with eigenvalues λk ′ minimizing
|λk − λk ′ |. The second filter bank type designs the filters using
the FIR approach in (31). To run the experiments we consider the
adjacency matrix of an ER graph with N = 100 and p = 0.05,
and generate signals by filtering white noise. Fig. 1d shows the
MSE performance of both approaches as a function of the degree
of the filter that generates the process as well as the nonpara-
metric periodogram estimation. We consider two ideal bandpass
filters with B = 3 and B = 7 and two FIR bandpass filters with
L = 5 and L = 10. Fig. 1d indicates that filter banks contribute
to reduce the MSE compared to the periodogram. Moreover,
the ideal bandpass filter outperforms the FIR design and, within
each type, filters with larger bandwidth (B = 7 and L = 5) tend
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Fig. 2. (a) Error in the identification of sources in opinion formation dynamics as a function of the number of observed opinions and parametrized by the noise
level σ. (b)-(c) Diagonalization of the sample covariance of the images of an individual with the basis of that same individual (b-top), a different one (b-bottom),
and the ensemble sample covariance (c). (d) Diagonalization of the sample covariance of the functional brain signals in [37] with the basis corresponding to the
structural brain network.

to perform better. The reason being that the periodogram-based
estimation for a single observation is very noisy, thus, it benefits
from the averaging effect of larger bandwidths.

TC2. Parametric methods: We first illustrate the parametric
estimation of a MA process. Consider the Laplacian of an ER
graph with N = 100 and p = 0.2 and processes generated by
an FIR filter of length L whose coefficients β are selected ran-
domly. The performance of a periodogram is contrasted with that
of two parametric approaches: i) an algorithm that estimates the
L values in β by minimizing (35) via phase-retrieval [30]; and
ii) a least squares algorithm that estimates the 2L − 1 values in
γ by minimizing (36). The results are shown in Fig. 1e (solid
lines). It can be observed that both parametric methods out-
perform the periodogram since they leverage the FIR structure
of the generating filter. Moreover, this difference is largest for
smaller values of the degree, since in these cases a few parame-
ters are sufficient to completely characterize the filter of interest.
Furthermore, we also test our schemes for a model mismatch
(MM) scenario where the MA schemes assume that the order
of the process is L + 2 instead of L (dashed lines in Fig. 1e).
The results show that, although the model mismatch degrades
the performance, the parametric estimates are still superior to
the periodogram.

The second experiment considers ARMA processes with L
poles and L zeros. The coefficients are drawn randomly from a
uniform distribution with support [0, 1] and the shift is selected
as in the previous experiment. We compare the periodogram
estimation with two schemes: i) a least squares (LS) algorithm
that estimates 2L coefficients, i.e., the counterpart of (36) for the
problem in (48); and ii) a least squares algorithm that estimates
L nonnegative coefficients, i.e., the counterpart of (38) for (48).
Note that the latter is computationally tractable because both the
eigenvalues of the shift and the coefficients of the filters are non-
negative. The algorithms are tested in two scenarios, with one
and two signal realizations available, respectively. Fig. 1f shows
that the parametric methods attain smaller MSEs compared to
the periodogram. Moreover, note that while increasing the num-
ber of observations reduces the MSE for all tested schemes, the
reduction is more pronounced for nonparametric schemes. This
is a manifestation of the fact that parametric approaches tend to
be more robust to noisy or imperfect observations.

TC3. Real-world graphs with synthetic signals: We now
demonstrate how the tools developed in this paper can be useful
in practice through a few real-world experiments. The first one

deals with source identification in opinion formation dynamics.
We consider the social network of Zachary’s karate club [38]
represented by a graph G consisting of 34 nodes or members
of the club and 78 undirected edges symbolizing friendships
among members. Denoting by L the Laplacian of G, we define
the GSO S = I−αL with α = 1/λmax(L), modeling the dif-
fusion of opinions between the members of the club. A signal
x can be regarded as a unidimensional opinion of each club
member regarding a specific topic, and each application of S
can be seen as an opinion update. We assume that an opinion
profile x is generated by the diffusion through the network of
an initially sparse (rumor) signal w. More precisely, we model
w as a white process such that wi = 1 with probability 0.05,
wi = −1 with probability 0.05, and wi = 0 otherwise. We are
given a set {xr}R

r=1 of opinion profiles generated from different
sources {wr}R

r=1 diffused through a filter of unknown nonneg-
ative coefficients β. Observe that the opinion profiles xr are
typically dense since the degree of the filters considered is in
the order of the diameter of the graph. Our goal is to identify the
sources of the different opinions, i.e., the nonzero entries of wr

for every r. Our approach proceeds in two phases. First, we use
{xr}R

r=1 to identify the parameters β of the generating filter.
We do this by solving (38) via least squares. Second, given the
set of coefficients β, we have that xr =

∑L−1
l=0 βlSlwr . Thus,

we estimate the sources wr by solving a �1-regularized least
squares problem to promote sparsity in the input. In Fig. 2a
(blue) we show the proportion of sources misidentified as a
function of the number of observations R. As R increases, the
estimates of the parameters β become more reliable, thus lead-
ing to a higher success rate. Finally, we consider cases where the
observations are noisy. Formally, we define noisy observations
x̂r by perturbing the original ones x̂r = xr + σz ◦ xr where
σ denotes the magnitude of the perturbation and z is a vector
with elements drawn from a standard normal distribution. Note
that the elements [xr ]i = 0 remain unperturbed, which is equiv-
alent to assuming that we can easily spot people that have not
heard about the rumor. As expected, higher levels of noise have
detrimental effects on the recovery of sources. Nevertheless, for
moderate noise levels (σ = 0.1) a performance comparable to
the noiseless case can be achieved when observing 20 signals
or more.

TC4. Real-world signals: Three experiments with real-data
are presented. The first one considers grayscale images of differ-
ent individuals, the second one human brain signals measuring
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Fig. 3. The images (a-e) illustrate how, by leveraging the concept of graph stationarity, the Wiener graph filter (GF) in (e) achieves a better performance than a
regular low-pass GF in (d) and both of them outperform the classical 2D Gaussian filter. The images (f-i) illustrate the difference in recovering the original image
(f) from the noisy version (g) when assuming that the image is stationary in a shift build with faces without glasses (h) and with glasses (i).

activity at different regions of the brain, and the last one cellular
flow cytometry data.

Face images: We consider a set of 100 grayscale images
{xr}100

r=1 corresponding to 10 face pictures of 10 different
people4. Formally, every image is represented by a vector xr ∈
R10304 where the entries correspond to grayscale values of pix-
els, normalized to have zero mean. We consider the images xr to
be realizations of a graph process which, by definition, is station-
ary in the shift given by its covariance, here approximated by the
sample covariance S = Ĉx = VΛcVH . Moreover, denote by
Ij the set of images corresponding to faces of person j and con-

sider the sample covariance Ĉ(j )
x = V(j )

x Λ(j )
c V(j )H

x of the sub-
set {xr}r∈Ij

. While matrix Ĉ(j )
x will be perfectly diagonalized

by V(j )
x , the question is whether it will be (approximately) diag-

onalized by V or V(k)
x , where k �= j. After left and right multi-

plying the covariance Ĉ(j )
x with the particular GFT, the resultant

off-diagonal elements account for the cross-correlation among
frequency components. Hence, invoking Property 2, we know
that if the process is actually stationary in the shift that generated
the GFT, those off-diagonal elements must be zero. To assess
this, Figs. 2b-(top), 2b-(bottom), and 2c plot blocks of the ma-
trices (V(1)H Ĉ(1)

x V(1)), (V(2)H Ĉ(1)
x V(2)), and (VH Ĉ(1)

x V),
respectively. The pictures reveal that while Ĉ(1)

x is not diago-
nalized by V(2)

x (many of the off-diagonal elements are non-
zero), it is approximately diagonalized by the principal com-
ponent basis V. To quantify this more rigorously, we consider
the metric θ(V, Ĉ) := ‖diag(diag(VH ĈV))‖F /‖VH ĈV‖F ,
where only the N elements of the diagonal are considered in
the numerator. Then, for the example in Fig. 2c, we find that
θ(V, Ĉ(1)

x ) = 50%, confirming that the relative weight of the
elements in the diagonal is high and, hence, that the process
generating face images of subject j is approximately stationary
in S = Ĉx . To illustrate why this is useful, we describe next
a couple of experiments where traditional tools for processing
stationary time-signals are applied to the graph signals at hand.
Our goal is to explore potential application domains for the def-
initions and tools introduced in this paper. In particular, we use
the graph counterpart of the Wiener filter [8] to denoise face
images. More precisely, given a noisy version y of an image
of individual j, we model y as stationary in S = Ĉx and ob-
tain the filtered version yWie where ỹWie

k = pk/(pk + ω2
k ) ỹk ,

with ω2
k denoting the noise power at frequency k. In the ex-

periments we set the PSD as p = p̂cg , i.e., the eigenvalues of
the sample covariance Ĉx . For comparison purposes, we also
consider a Gaussian 2D low-pass filter with unitary variance

4http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

and a ‘low-pass’ graph filter, where we keep unchanged the fre-
quency components ỹk that correspond to active frequencies,
i.e., all k such that pk > 0, and discard the rest. The results
are illustrated in Fig. 3 where inspection reveals that the Gaus-
sian filter (which exploits neither V nor p) yields the worst
reconstruction performance, while the Wiener filter (which ex-
ploits both) achieves a better reconstruction than the low-pass
graph filter (which exploits only V). The second example also
deals with image smoothing. In particular, we use the face with
glasses in Fig. 3f and consider two different GSOs S1 and S2
corresponding to two different sample covariances that use the
same number of images. The shift S1 is constructed based on
images of people not wearing glasses whereas most of the im-
ages used in generating S2 contained glasses. If we implement
the Wiener filter to denoise Fig. 3g using as shifts the sample
covariances corresponding to S1 and S2 and as PSD their corre-
sponding correlograms, we observe that the second filter is able
to recover the glasses (Fig. 3i) while the first one fails (Fig. 3h),
entailing a poorer recovery. This can be interpreted as a manifes-
tation of the original image being closer to stationary in S2 than
in S1 .

Brain signals: The ensuing experiment deals with brain sig-
nals. While in the setup with face images the supporting graph
was unknown and estimated as the sample covariance, in this
case the graph is given. In particular, the goal is to analyze brain
functional signals using as support the so-called functional and
structural brain networks [4], [37]. To that end, we use the
120 brain functional signals {xr}120

r=1 and shifts Sfun and Sstr

provided in [37]. As done before, the goal is to assess if the sig-
nals are stationary in the provided graphs. The results indicate
that {xr}120

r=1 are approximately stationary in Sfun. In particu-
lar, we have that θ(Vfun, Ĉx) = 99%, so that the contribution
to the norm of the off-diagonal elements of (VH

funĈxVfun) is
negligible. More importantly and interestingly, they also indi-
cate that {xr}120

r=1 are approximately stationary in Sstr, with the
matrix (VH

strĈxVstr) being shown in Fig. 2d. In fact, we have
that θ(Vstr, Ĉx) = 67%. This is more surprising since the con-
struction of Sstr is agnostic to {xr}120

r=1 . It also points out that
functional and structural networks, often viewed as separate en-
tities, are clearly related. Such an observation can be exploited
in multiple tasks. One example is to improve the algorithms to
identify the underlying networks. Our results for that particular
application, which build on network topology identification al-
gorithms that view the set of available observations as stationary
in the network to be identified [16], are promising and will soon
be reported in a separate contribution.

Flow cytometry: A common approach to identify the graph
structure associated with an observed dataset is to construct
a regularized estimator of the precision matrix Θ; see, e.g.,
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Fig. 4. (a) Shift operatorS103 recovered from the implementation of graphical
lasso. (b) Diagonalization of Ĉx withV103 . The graph process is approximately
stationary in S103 .

graphical lasso [39]. Given that, by definition, a process is sta-
tionary in the graph given by its precision matrix (Example 3 in
Section III-B), this same process is expected to be approximately
stationary in the graph obtained via graphical lasso. In order to
illustrate this property, we consider a flow cytometry dataset on
N = 11 proteins and R = 7466 observations corresponding to
different cells [40] (dataset also used in [39]). More precisely,
we are given a set {xr}R

r=1 of observations where xr ∈ R11 rep-
resents the levels of 11 different proteins in an individual cell
r. Denoting by Ĉx the sample covariance of the observations,
graphical lasso estimates the associated graph shift Sη as

Sη = argmin
S∈SN

+

− log |S| + tr(ĈxS) + η‖S‖1 , (49)

where SN
+ denotes the cone of N × N positive semi-definite

matrices and η ≥ 0 parametrizes the level of regularization in
estimating Sη . In Fig. 4a we portray the shift operator recov-
ered when η = 103 . Denoting the eigendecomposition of the
shift as Sη = VηΛηVH

η , the form of VH
η ĈxVη determines

if the process is stationary on Sη . One can first check that
VH

0 ĈxV0 is a diagonal matrix, implying that the observed net-
work process is stationary in S0 . This is not surprising since
S0 = Ĉ−1

x , i.e., graphical lasso with no regularization returns
the inverse sample covariance. Interestingly, for η = 103 we
have that θ(VH

103 , Ĉx) = 99%, demonstrating that the observed
graph process is approximately stationary in S103 , a graph that
resembles the known dependencies between proteins [39], [40];
see Fig. 4b. Given that graphical lasso and related methods are
widely used to unveil graph structures, the framework of sta-
tionary graph processes here developed is relevant to a broad
range of applications.

VII. CONCLUSION

Different equivalent ways of generalizing the notion of sta-
tionarity to graph processes associated with a normal shift op-
erator were studied. Given that graph stationary processes were
shown to be diagonalized by the graph Fourier basis, the cor-
responding power spectral density was introduced and several
estimation methods were studied in detail. We first generalized
nonparametric methods including periodograms, window-based
average periodograms, and filter banks. Their performance was
analyzed, comparisons with the traditional time domain schemes
were established and open issues, such as how to group nodes
and frequencies in a graph, were identified. We then focused
on parametric estimation, where we examined MA, AR, and

ARMA processes. We not only showed that those processes
are useful to model linear diffusion dynamics, but also identi-
fied particular scenarios where the optimal parameter estimation
problem is tractable.

APPENDICES

A. Proof of Prop. 2

To prove that the estimate is unbiased, we use
the fact that p̂pg = p̂cg combined with (13) to con-
clude that E[p̂pg ] = diag[VH R−1(

∑R
r=1 E[xrxH

r ])V] =
diag[VH R−1RCxV] = p. Hence, bpg = E[p̂pg ] − p = 0.

To compute the covariance, start by writing Σpg =
E

[
p̂pg p̂H

pg
] − ppH . We may expand the leftmost term as

E
[
p̂pg p̂H

pg
]

= E
[
diag(VH ĈxV)diag(VH ĈxV)H

]
(50)

=
1

R2

R∑

r=1

R∑

r ′=1

E
[
diag(VH xrxH

r V)diag(VH xr ′xH
r ′ V)H

]
.

We may split the above summation into the terms where
r �= r′ and those where r = r′. For the former case, since xr is
assumed to be independent from xr ′ , we have that

E
[
diag(VH xrxH

r V)
]
E

[
diag(VH xr ′xH

r ′ V)H
]

= ppH.
(51)

By contrast, for the case where r = r′ we undertake an elemen-
twise analysis of the elements in the expected value in (50).
Notice that if we denote by vi the ith column of V we have that
[diag(VH xrxH

r V)]i = vH
i xrxH

r vi . Replacing this expression
in (50), setting r = r′, and using the formula for the quartic
form of a Gaussian, see e.g. [41, pp. 43], we obtain that
[
E

[
diag(VH xrxH

r V)diag(VH xr ′xH
r ′ V)H

] ]
ij

= E
[
vH

i xrxH
r vivH

j xrxH
r vj

]
=vH

i E
[
xrxH

r vivH
j xrxH

r

]
vj

= pipj + vH
i Cxv∗

jv
T
i Cxvj + vH

j CxvivH
i Cxvj . (52)

When S is symmetric, hence V is real, the above expression can
be further simplified to obtain

E
[
diag(VH xrxH

r V)diag(VH xrxH
r V)H

]

= 2diag2(p) + ppH. (53)

Upon substituting (51) and (53) into (50), the result follows.

B. Proof of Prop. 4

From the definition of p̂W in (20), it follows that

p̂W =
1
M

M∑

m=1

diag(VH diag(wm )Vx̃x̃H VH diag(w∗
m )V).

(54)
Thus, using the definition of W̃m , we may write

E [p̂W ]=
1
M

M∑

m=1

diag(W̃m E
[
x̃x̃H

]
W̃H

m ). (55)

Leveraging the fact that E
[
x̃x̃H

]
=diag(p) is diagonal and

recalling that W̃mm = W̃m ◦ W̃∗
m , the result in (22) follows.
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In order to show (23), notice that only the diagonal elements
of ΣW are needed. Each of them can be found as

[ΣW ]k,k = E [[p̂W ]k [p̂W ]k ] − E [[p̂W ]k ]2 . (56)

Rewriting p̂W as a sum across the M windows, it holds that

E [[p̂W ]k [p̂W ]k ] = E

[
1
M

M∑

m=1

[|W̃m x̃|2 ]k 1
M

M∑

m ′=1

[|W̃m ′ x̃|2 ]k
]

=
1

M 2

M∑

m=1,m ′=1

E
[
[|W̃m x̃|2 ]k [|W̃m ′ x̃|2 ]k

]
. (57)

Denoting the kth row of W̃m by w̃T
k |m , the term [|Ŵm x̃|2 ]k

can be written as w̃T
k |m x̃x̃H w̃∗

k |m . Consequently, we have

E
[
[|Ŵm x̃|2 ]k [|Ŵm ′ x̃|2 ]k

]
=E

[
w̃T

k |m x̃x̃H w̃∗
k |m w̃T

k |m ′ x̃x̃H w̃∗
k |m ′

]

= w̃T
k |m E

[
x̃x̃H w̃∗

k |m w̃T
k |m ′ x̃x̃H

]
w̃∗

k |m ′ , (58)

where the middle factor is a quartic form of a Gaussian with
covariance diag(p) (cf. Property 2). Solving this fourth moment,
see e.g. [41, pp. 43], it follows that

E
[
[|Ŵm x̃|2 ]k [|Ŵm ′ x̃|2 ]k

]
(59)

= |w̃T
k |m |2p|w̃T

k |m ′ |2p + |w̃T
k |m diag(p)w̃∗

k |m ′ |2

+ w̃T
k |m diag(p)VH V∗w̃k |m ′w̃H

k |mVT Vdiag(p)w̃∗
k |m ′ .

When S is symmetric, hence V is real, the third summand in
(59) is equal to the second one. Thus, substituting first (59) into
(57) and then, (57) into (56) yields

[ΣW ]k,k = 2
M 2

M∑

m=1,m ′=1
|w̃T

k |m diag(p)w̃∗
k |m ′ |2 . (60)

Since W̃mm ′ = W̃m ◦ W̃∗
m ′ , it follows that |w̃T

k |m
diag(p)w̃∗

k |m ′ | = [W̃mm ′p]k , thus

[ΣW ]k,k =
2

M 2

M∑

m=1,m ′=1
|[W̃mm ′p]k |2 . (61)

Finally, using (61) to write tr[ΣW ] =
∑N

k=1[ΣW ]k,k , we obtain
(23) and the proof concludes.

C. Proof of Prop. 6

Rewriting the norm in (27) as the trace of the corresponding
outer product we get that

E [p̂q̃k
] = tr[diag(q̃k )E

[
x̃x̃H

]
diag(q̃∗

k )]. (62)

Expression (28) follows from replacing E
[
x̃x̃H

]
by diag(p)

and noting that the trace of the product of diagonal matrices
equals the sum of the entrywise products of the diagonals.

To prove (29), we first find E[p̂q̃k
p̂q̃k

]. Since p̂q̃k
=

tr[diag (q̃k )x̃ x̃H diag(q̃k )H ] = tr [x̃H diag(|q̃k |2)x̃] then,
since the argument of the trace is a scalar, we can write

E [p̂q̃k
p̂q̃k

] = E
[
tr[x̃H diag(|q̃k |2)x̃x̃H diag(|q̃k |2)x̃]

]

= tr[E
[
x̃x̃H diag(|q̃k |2)x̃x̃H

]
diag(|q̃k |2)], (63)

where we have a quartic form of a Gaussian. From the expression
of this quartic form, see e.g. [41, pp. 43], we obtain

E [p̂q̃k
p̂q̃k

] =
∥
∥diag

(|q̃k |2
)
p
∥
∥2

2 + ((|q̃k |2)T p)2 (64)

+ tr[diag(p)VH V∗diag(|q̃k |2)VT Vdiag(p)diag(|q̃k |2)].

When S is symmetric, hence V is real, the trace in (64) is
equal to

∥
∥diag

(|q̃k |2
)
p
∥
∥2

2 and, since var [p̂q̃k
] = E [p̂q̃k

p̂q̃k
] −

E [p̂q̃k
]2 , using (64) and (28), the expression (29) follows.
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