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In this paper, we tackle the problem of selecting the radar node positions to provide an estimate of the
target state vector with a prescribed accuracy. The topology optimization problem is formulated as se-
lection of a fixed number of radar node positions from a set of available ones, where the radar ob-
servations are modeled by a general non-linear model. We further propose a topology optimization
framework for the simultaneous estimation of the multi-modal parameter vector. In particular, the task
of joint position and velocity estimation is considered. The feasibility of the proposed approach is de-
monstrated for several cost functions, namely the frame potential as well as the log-determinant and
maximum eigenvalue of the error covariance matrix.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

In recent years the radar sensor application area experiences a
booming growth. Radar sensors, which are becoming much
smaller and cheaper due to advances in microwave technology, are
widely used for different applications that require 24/7 area
monitoring, such as ground/air traffic control, environment mon-
itoring (precipitation, temperature, pollution), patient monitoring,
to list a few [1–3]. The replacement of a single complex radar with
a network of simple radar units that enclose the observation area
enables a higher detection probability and evaluation of 3D target
data [4]. Although the idea of the simultaneous exploitation of
data from multiple radar nodes has been discussed several dec-
ades ago [5,4,6], radar networks have become widely experimen-
tally studied over the last few years due to advances on high-data
rate communications and signal processing capabilities, which
made it possible at low costs to synchronize radar nodes and
process simultaneously (and in real time) their output [7,8].

While the power budget and the waveform parameters de-
termine the performance of a single radar node [9], the overall
performance of a radar network is determined by the number of
nodes and their spatial locations [10]. Along with the single radar
node characteristics, these network parameters define the total
. Yarovoy).
coverage area in terms of predefined detection and accuracy of the
target parameter estimates, as well as the overall robustness of the
system. Therefore, an efficient exploitation of the radar network
requires optimal node allocation. The latter can be considered ei-
ther as a real-time or off-line design task, depending on the par-
ticular application. The selection of spatial positions of radar nodes
is one of the key tasks in radar network resource allocation. It aims
to achieve the optimal system performance with minimum system
costs.
1.1. Prior work

Different techniques for spatial radar (sensor) placement are
presented in the literature [11–15]. In general, they are aimed at
tackling two types of optimization problems:

1. Selection of the minimal number of radar nodes to meet some
prescribed system performance requirements.

2. Selection of a fixed and known amount of radar nodes that
corresponds to the best possible system performance.

Depending on the mission, different performance metrics are
used for the system design. The three most common functional-
ities of the radar are target detection, state vector estimation, and
tracking. Previous studies mostly focus on the selection of the
radar network configuration that ensures only accurate target lo-
calization. However, a number of radar applications require
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knowledge of the full target state vector, which includes not only
the location, but also the velocity of the target at each time instant
[16]. Additionally, the use of the Doppler shift provides higher
detection probability in a strong clutter [17]. Topology optimiza-
tion for the joint position and velocity vector estimation of a
ground moving target (GMT) using pulse Doppler radars on-board
unmanned aerial vehicles (UAVs) was considered in [18,16].
However, the assumption made in [18] is related to the constant
accuracy of the UAV measurements and does not allow for an
optimal solution in terms of signal-to-noise ratio (SNR). Both ap-
proaches from [18] and [16] explore the mobility of the sensors,
which requires a real-time optimization.

In this paper, we focus on the off-line problem of radar node
positions selection to satisfy prescribed accuracy requirements of
the target state vector estimation. The estimation accuracy mea-
sures are often chosen to be scalar functions of the error covar-
iance matrix, such as 1) the maximum eigenvalue (E-optimality);
2) the trace (A-optimality); and 3) the log-determinant (D-op-
timality). Other measures, like mutual information, entropy, and
cross-entropy, are frequently used as well [19,20]. The sensor se-
lection problem is combinatorial in nature. Therefore, different
optimization techniques are used to solve it in polynomial time.
For example, convex optimization methods, which are based on
the relaxation of the Boolean constraint { }0, 1 N on the selection
coefficients, were shown to perform well in terms of mean square
error (MSE). At the same time, these methods imply a high com-
putational cost. In contrast to convex methods, greedy algorithms
have a linear complexity. While the first class of methods requires
the cost function to be convex, the second one requires its sub-
modularity. In particular, the log-determinant, the mutual in-
formation, and the entropy were shown to be submodular func-
tions. Another submodular function, namely the frame potential
(FP), which is a measure for the orthogonality of the rows of the
measurement matrix, was introduced in [13] as a proxy for the
mean square error. Together with a low computational complexity,
the FP-based greedy algorithm sometimes shows a competitive
performance with convex optimization [13].

1.2. Our contributions

In this work, we tackle the problem of selecting the optimal
radar node positions, which provide the most accurate estimation
of the target parameters, namely the position and velocity vectors.
The radar network is assumed to operate in a static mode, i.e. with
fixed node positions. We develop a generic framework for topol-
ogy optimization based on non-linear measurement models. Both
the frame potential and the log-determinant (LD) of the error
covariance matrix are used as performance metrics. These cost
functions were shown to be submodular, which allows one to use
greedy optimization algorithms ensuring a near-optimal perfor-
mance and a low computational complexity [13,21]. We redesign
the FP and the LD to our specific non-linear model, where the
parameter vector can take any value from the known parameter
space and can be represented by entries of different modalities
(e.g., range and velocity). The developed theoretical framework is
applied to the problem of topology optimization for a frequency-
modulated continuous-wave (FMCW) radar network for only tar-
get position vector estimation as well as for the simultaneous
position and velocity estimation. Closed-form expressions of the
FP and the LD cost functions for an FMCW radar network are de-
rived. The radar power budget and the waveform parameters are
incorporated in both performance metrics, which provide both
angular- and range-dependent solutions. The developed technique
does not ensure a Doppler coverage model, like the one developed
in [17]. This means that although the target might be Doppler
covered, the accuracy of the velocity vector estimation might be
very low and depends on its position (e.g., on the baseline be-
tween two radars).

The rest of the paper is organized as follows. The measurement
model, the cost functions and the optimization algorithm are in-
troduced in Section 2. The extension of the optimization approach
to the case with multi-modal target parameters is provided in
Section 3. Section 4 presents closed-form expressions of the FP
and the LD cost functions for an FMCW radar network with details
provided in Appendix A. Section 5 presents the results on topology
optimization for an FMCW radar network. Section 6 concludes the
paper. We use the following notations. a and A denote a vector
and matrix, respectively. (·)E denotes the statistical average. (·)T

denotes matrix transpose. (·)⁎ is the complex conjugate. (·)† is the
Hermitian operator. { ·}tr denotes the trace of the matrix. (·)frac is
the fractional part of a real number.
2. General framework

2.1. Non-linear measurement model

We consider a general non-linear measurement model for a set
of N possible radar positions

α ξ= ( ) + ( )y f , 1

where ∈ y NQ is the vector of accumulated measurements with Q
being the number of accumulated signal samples per integration
time in a single radar, α ∈ K is the vector of parameters to be
estimated, f is the non-linear vector function, and ξ ∈ NQ is the
measurement noise. We formulate the topology optimization
problem as the selection of the L most informative radar positions
from the N available ones, where L is known a priori. The sets of
selected and available radar positions are defined as { }= …i i, , L1

and { }= … N1, , , respectively, where ⊆ and thus ≤L N . For
the sake of simplicity, we assume that all radars in the network
have the same operating parameters, although this assumption
can easily be relaxed.

Since the error covariance matrix for a non-linear measure-
ment model depends on the parameter vector α, all covariance-
based cost functions depend on α as well [22]. Therefore, we grid
the parameter space and perform the optimization considering the
complete set of M grid points α α α{ … }, , , M1 2 . Furthermore, we
linearize the model (1) around every grid point αm applying a first-
order Taylor series expansion,

α α α ξ≈ ( ) + ( − ) + ( )( )y f G , 2m m m

where the entries of the matrix ∈( ) ×Gm
NQ K are

=
α

α αα
( )

( − ) +

∂ ( )

∂
=

( − ) +⎡⎣ ⎤⎦Gm n Q q k

f

1 ,
n Q q

k
m

1 ; = …q Q1, , ; = …n N1, , ;

= …k K1, , ; and = …m M1, , .
In the presence of zero-mean i.i.d. Gaussian noise with variance

s2, the mean square error, which is equal to the Cramér–Rao lower
bound, of the estimate of αm based on a set of selected radars is
given by:

∑α α σ
λ

= (‖ − ^ ‖ ) =
( )=

MSE E
1

,
3

m m
k

K

m k
2
2 2

1 ,

where λm k, is the kth eigenvalue of the matrix
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= ∈( ) † ( ) ( ) ×T G Gm m m
K K , with matrix ∈( ) ×Gm

LQ K such that
=( )

( − ) +
( )

( − ) +
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦G Gm l Q q k m i Q q k1 , 1 ,l

.

The MSE has many local minima in the optimal selection vector,
and therefore cannot be efficiently optimized. Popular proxies to
the MSE are the maximum eigenvalue and the log-determinant of
the error covariance matrix, as well as the frame potential. In
particular, the FP and the LD were shown to be monotonic sub-
modular functions [13,21], while the MSE is not. The sub-
modularity of the function is related to the concept of diminishing
returns and means the following. For two sets and such that

⊂ ⊂ and element ∈ −j , the function (·)f is sub-
modular if

( + ) − ( ) ≥ ( + ) − ( ) ( )f j f f j f . 4

This property together with monotonicity allows one to reach a
near-optimal solution with greedy algorithms [23]. Moreover,
greedy algorithms have a linear complexity in the size of the
problem, and therefore are of particular interest for large-scale
problems. Next, we develop the FP and the LD for the defined
general non-linear measurement model (1) with an extension to
the case of multi-modal parameter vectors.

2.2. Cost functions and optimization algorithm

We modify the definition of the frame potential given in [13] to
the model with Q measurements accumulated per integration
time in each of the radars from the set :

{ }∑( ) =
( )∈

( ) ( ) †G GFP tr ,
5

m
i j

m
i

m
j

,

2

where ∈( ) ×Gm
i Q K is the submatrix of ( )Gm given by

=( ) ( )
( − ) +

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦G Gm
i

q k m i Q q k, 1 ,
. As was shown in [13], the minimization

of the FP is related to the minimization of the MSE. While the MSE
function has many local minima, the use of the FP allows for a near
optimal solution in terms of the minimum MSE. In order to per-
form a joint optimization over all grid points of the parameter
space, the FP in (5) is modified to a weighted FP as [24]

∑( ) = ( )
( )=

pFP FP ,
6m

M

m m
1

where >p 0m is the weight that represents the probability that the

true α lies on the grid point αm; ∑ == p 1m
M

m1 .
Related to the weighted FP, the following monotonic sub-

modular cost function is maximized

( ) = ( ) − ( ⧹ ) ( )F FP FP , 7

where = ⧹ .
The log-determinant of the error covariance matrix, which in-

dicates the log-volume of the confidence ellipsoid is given by

∑( ) =
( )∈

( ) ( ) †
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The weighted log-determinant over the set of grid points from the
parameter space is then modified to

∑ ∑( ) =
( )= ∈
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In order to apply greedy optimization, the LD-based cost has to
be monotonic and submodular and is given by [25]
{ }∑ ∑
( )

( ) = − + ϵ + ϵ
= ∈

( ) ( ) †
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⎟
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m

M
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m
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K
1

1

where ϵ > 0 is a small positive number, IK is the identity matrix of
size K, and the term ( ϵ)K log ensures that the function (10) is zero
for an empty set . The maximization of the function (·)F from (7)
corresponds to the removal of −N L rows from the matrix ( )Gm ,
while the maximization of (·)F from (10) corresponds to the ac-
cumulation of L rows that form the matrix ( )Gm . The pseudocode
for the maximization of these two cost functions is given in
Algorithm 1.

Algorithm 1. Greedy algorithm.
ut : M matrices ( )Gm , the set of available radar positions ,
the number of radar positions to be selected L, and function

(·)F (from (7) or (10)).
tput : Positions of L radars.
tialize: The radar set, .
. For (weighted) FP cost function:

{ }= ∑∈ =
( ) ( ) †G Gparg min tri j m

M
m m

i
m
j

, 1

2
.

. For (weighted) LD cost function:

= ( )∈
( )GFarg maxi m
i .

peat : Until L positions are found
. Find the radar = ( ∪ )∉i F iarg maxi .

. Update : = ∪ i

. For (weighted) FP cost function:
(a) If | | = −N L, stop.
(b) Assign the set of selected positions = ⧹ .
. For (weighted) LD cost function:
(a) If | | = L, stop.
(b) Assign the set of selected positions = .
3. Estimation of multi-modal parameters

Without loss of generality, let us consider a model, where the
parameter vector α is represented by two modalities. Examples of
such a model are combinations of the simultaneous estimation of
target range, radial velocity, and bearing in a single radar. Basically,
the parameter vector for each grid point m from the parameter
space is composed of two vectors with different measurement
units α α α= [ ],m m m

T
,1 ,2 , where α ∈ m

K
,1 1 and α ∈ m

K
,2 2, with the

total number of parameters under estimation given by = +K K K1 2.
This also results in a splitting of the system matrix ( )Gm as

=( ) ( ) ( )⎡⎣ ⎤⎦G G G,m m m,1 ,2 with ∈( ) ×Gm
QN K

,1
1 and ∈( ) ×Gm

QN K
,2

2.
The MSE is then expressed as:

α α α α= (‖ − ^ ‖ ) + (‖ − ^ ‖ ) ( )MSE E E . 11m m m m,1 ,1 2
2

,2 ,2 2
2

However, since αm,1 and αm,2 represent different modalities, their
errors should be treated differently. Therefore, we would like to
introduce the weighting coefficients wm,1 and wm,2 in the MSE,
which allows us to put a different emphasis on each term:

α α α α= (‖ − ^ ‖ ) + (‖ − ^ ‖ ) ( )w wMSE E E . 12m m m m m m,1 ,1 ,1 2
2

,2 ,2 ,2 2
2

This can be implicitly realized by rewriting the model in (2) as

α α α ξ≈ ( ) + ( ˜ − ˜ ) + ( )
∼( )
Gy f , 13m m m

where
∼( )
Gm is the modified weighted matrix:
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=
( )

∼( ) ( ) ( )
⎡
⎣⎢

⎤
⎦⎥G G G

w w
1

,
1

,
14

m
m

m
m

m
,1

,1
,2

,2

and where α α α˜ = ⎡⎣ ⎤⎦w w,m m m m m
T

,1 ,1 ,2 ,2 is the weighted para-
meter vector. Using the model (13) in the submodular costs
(7) and (10) will implicitly relate these costs to the weighted MSE
(12). The possibility to operate with the weights pm, wm,1, and wm,2
expands the set of application scenarios for topology optimization
of radar networks. For example, the radar network topology can be
optimized for scenarios, where some grid points from the para-
meter space are uni-modal, while others are multi-modal.
4. Topology optimization of the FMCW radar network

4.1. System model

We consider a 3D scenario with N widely distributed potential
positions of the radar nodes. These nodes are assumed to be
monostatic FMCW radars that explore the autonomous mode of
the signal transmission–reception (see Fig. 1). Each FMCW radar
transmits a burst of the linear frequency-modulated (LFM) pulses
that can be represented by:

ω ω( ) = + Δ
( )

( )
⎛
⎝
⎜⎜

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎞
⎠
⎟⎟x t A jt

t
T

exp frac ,
15

n
c

s
0

where φ= | | ( )A A jexp0 0 0 is the transmit signal amplitude, ω π= f2c c
with fc being the signal center frequency, ω πΔ = Δf2 with Δf being
the signal bandwidth, = …n N1, , , and Ts the sweep time. Note
that the data association problem that arises in scenarios with
multiple targets is not considered in this paper. It is assumed that
the signals from different targets are properly associated in the
preceding data processing step.

The signal reflected from the moving target related to the mth
grid point is shifted in time and frequency as

τ τ ω ξ( ) = ( − ) ( − ( − ) ) + ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )y t A x t j t texp , 16m
n

m
n n

m
n

m
n

d
n n
m

where φ= | | ( )( ) ( ) ( )A A jexpm
n

m
n

m
n is the non-fluctuating amplitude of

the received signal; τ ( )
m

n is the signal time delay related to the
Fig. 1. Target localization in a monostatic radar network with autonomous signal
reception.
target-radar distance ( )Rm
n

= ( − ) + ( − ) + ( − )( ) ( ) ( ) ( )R x x y y z zm
n

m
n

m
n

m
n2 2 2

as τ =( ) ( )R c2 /m
n

m
n with c being the speed of light; ( )x y z, ,m m m and

( )( ) ( ) ( )x y z, ,n n n are the target and the nth radar coordinates re-
spectively; ω π=( ) ( )f2d

n
d
n

m m
with ( )fd

n
m

being the Doppler frequency of

the received signal, which is related to the radial target velocity
υ υ υ υ= ( ( − ) + ( − ) + ( − ))( ) ( ) ( ) ( ) ( )x x y y z z R/r

n
x m

n
y m

n
z m

n
m
n

m m m m (υxm, υym,
and υzm are the projections of the target velocity υm on the x-, y-,
and z-axes) as ω ω υ=( ) ( ) c2 /d

n
c r

n
m m ; ξ ( )( )t n is a zero-mean i.i.d. Gaussian

noise with variance s2. Following the model (1), we define
α φ τ ω τ( ) = | | ( ) ( − ( − ) ) ( − )( ) ( ) ( ) ( ) ( ) ( ) ( )f t A j j t x t; exp expn

m m
n

m
n

m
n

d
n n

m
n

m
and

obtain

α ξ( ) = ( ) + ( ) ( )( ) ( ) ( )y t f t t; , 17m
n n

m
n

where α υ υ υ= [ ]x y z, , , , ,m m m m x y z
T

m m m .
In this scenario, we assume that the target location and velocity

vector estimation is realized via a two-step de-centralized ap-
proach. In the first step, the target detection and the estimation of
the time delay and Doppler frequency are done in a single radar,
based on the echo-signal reflected from the target. In the second
step, these local measurements are transferred to the central
processing unit (CPU), where the estimation of the target position
and/or velocity vectors is performed. In order to simplify the
evaluation of the FP and the LD cost functions, first we evaluate
the estimation performance of the target range and radial velocity
for a single FMCW radar. Next, we introduce the closed-form ex-
pressions, based on a single radar node performance, for the
evaluation of these FP and LD costs.
4.2. The performance of a single FMCW radar

Assuming a fixed sampling frequency that results in Q accu-
mulated signal samples per integration time DTs in each radar, the
measurement model for a single radar is then given by (1) for

( ){ }= =N 1 1 . We linearize the noiseless signal α( )f m around

the parameter vector β β β= [ ],m m m
T

,1 ,2 with J¼2 components,

β τ=m m,1 and β ω=m d,2 m. The matrix ∈( ) ×Gm
Q J1 is then given by

=
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β
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∂
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β
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τ
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We define the performance of a single radar that characterizes the
estimation accuracy of the time delay and Doppler frequency of
the signal, reflected from the target represented by the mth grid
point from the parameter space, as

{ } τ ω τ ω= = ( ) + ( ) + ( ) ( )
( ) ( ) ( ) † ( ) ( ) ( )G GP P P Ptr 2 , , 18m m m m m d m d
1 1 1 1 1 1

where
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m

with wm,1 and wm,2 being the weighting coefficients.

4.3. The FP and the LD cost functions for an FMCW radar network

The measurement model for the radar network is given by (1).
The parameter vector is the target state vector that contains two
different modalities: target position and velocity. Thus, we define
α α α˜ = ⎡⎣ ⎤⎦w w,m m m m m

T
1, ,1 2, ,2 , where α = [ ]x y z, ,m m m m

T
,1 and

α υ υ υ= [ ], ,m x y z
T

,2 m m m with =K 31 and =K 32 components, respec-

tively. The weighted linear systemmatrix ∈
∼( ) ×( + )Gm

NQ K K1 2 consists
of two submatrices ( )Gm,1 and ( )Gm,2, which are defined as
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with = …d K1, , 1 and = …b K1, , 2.
The LD and the FP for the FMCW radar network can then be

evaluated as
Fig. 2. Candidate radar positions for the TU-Delft cam
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. The closed-

form expressions for the entries of the matrix ( )Tm
i are provided in

Appendix A.
5. Numerical results

In this section, we apply the developed framework for the se-
lection of the L most favorable positions of short-range FMCW
monostatic radars in terms of the minimum MSE of the target
parameter vector estimates. The estimation of the target position
has to be performed over the area of the TU-Delft campus (di-
mension is approx. 400 000 m2), which is represented by a uniform
grid with a cell size of 50 m2 (M¼171). The potential radar posi-
tions are represented by N¼117 non-uniformly distributed nodes
(Fig. 2). These positions are selected such that radars can be lo-
cated on the roofs of the buildings in a 3D spatial model. The
parameters of a single radar node are presented in Table 1. The
target maximal radar cross-section (RCS) is 1 m2. A free-space
propagation model is considered in this simulation. This model is
based on the assumption that the first and strongest signal com-
ponent in time corresponds to the line-of-sight propagation.

Two measurement models are considered: 1) range estimation
for target localization and 2) simultaneous range and radial velo-
city estimation for target position and velocity vector estimation.
pus. The area dimension is approx. 400 000 m2.
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In each of the scenarios considered in this section, we put equal
weights on the grid points from the parameter space, i.e.,

=p M1/m .
First, we consider the scenario, where the spatial positions of the

radar nodes need to be optimized in order to provide an accurate
estimation of the 2D target position. The potential positions of the
radar nodes are modeled in a 2D plane as well. In this simulation, we
compare three performance metrics: the frame potential, the log-de-
terminant, and the maximum eigenvalue of the error covariance
matrix (λmax). While the first two costs are optimized using a greedy
approach, the third one, λmax, is exploited in the convex optimization
algorithm that can be found in [11]. The dependence of the average
RMSE on the number of selected radars L for the three costs is shown
in Fig. 3. The LD cost function leads to more favorable radar network
geometries in terms of average RMSE, compared to the FP. Moreover, it
allows for a better or equivalent estimation accuracy, compared to the
λmax-driven optimization. Additionally, the linear complexity of the
greedy algorithms in terms of N signifies the advantage of the LD over
other cost functions. The overlap of the curves for a large L is caused
by the high density of the radar grid relative to the size of the target
area. The contour plot of the RMSE distribution for L¼20 optimally
placed radars using the log-determinant cost function demonstrates a
high localization accuracy in the area of interest (see Fig. 4).

Next, we consider a scenario, where a 2D position estimation of a
ground target and a 3D position and velocity estimation of a low-level
airspace target has to be performed. Such a scenario might occur in
multifunctional radar network operations, where surveillance of
ground-based targets is combined with the tracking of low-altitude
flying targets. The parameter space consists of two subspaces. In the
first subspace, the parameter vector has two components (2D target
Table 1
Single radar simulation parameters.

Parameter Value

ERP [ ]P Gt a 10 dBm

Carrier frequency ⎡⎣ ⎤⎦fc 25 GHz

Sweep time [Ts] · −0.5 10 s3

Number of integrated pulses [D] 512

Signal bandwidth Δ⎡⎣ ⎤⎦f 250 MHz

Receiver bandwidth [ ]B 300 kHz

Noise figure [ ]Fn 8 dB

System losses ⎡⎣ ⎤⎦Lsyst 15 dB
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FP, greedy
LD, greedy
λmax, convex

Fig. 3. Average RMSE of the target localization for different numbers of optimally
placed radars L from the N¼117 available ones for the K¼2 parameters under
estimation and the M¼171 grid points for the parameter space.
position); in the second subspace, the parameter vector has three
components (3D target position and velocity). The first subspace is
represented by the =M 1711 grid points that have been used in the
previous analysis for the TU-Delft campus area representation. In the
second subspace, the target horizontal coordinates ( )x y,m m are the
same as in the first scenario, while the vertical coordinate zm
can take values { }…100, 200, , 1500 m. Additionally, the tar-
get velocity can take any value from the velocity domain,
represented by the set of target velocity values

{ }υ = 2, 6, 10, 14, 18, 22 m/s and movement directions in azi-

muth { }ϕ π π π π π π π= 0, /4, /2, 3 /4, , 5 /4, 3 /2, 7 /4 and elevation

{ }ρ π π π π π= − −/2, /4, , /4, /2 , respectively (see Fig. 5). Conse-
quently, each position grid point is assigned with × × =6 8 5 240
possible velocities in the second scenario which results in

= × × =M 240 15 171 615 6002 grid points. As one can see, the use
of the target velocity is cumbersome. An interesting direction for
further research can be the investigation of more practical algorithms
to handle such large amounts of target grid points. In this simulation,
we assume that the altitudes of the radar nodes are equal to 20 m
each, which corresponds to the average height of the buildings on the
TU-Delft campus.

The lower bounds on the variances of the time delay and
Doppler frequency estimation are given by [26]:

σ
ω

≈
Δ ( )ττ

3
2

1
SNR

, 22
2

2

σ ≈
( )ω ω T D

6
SNR

,
23s

2
2 2d d

where the signal-to-noise ratio is evaluated from the radar equa-
tion

π
=

( ) ( )
P G T
f R L k T

GSNR
RCS

4
,

24
t a s

c syst B syst
proc

2

3 4

with Pt being the transmitted power, Ga the antenna gain, Lsyst the
system loss, Tsyst the system temperature, Gproc the processing
gain, and kB the Boltzmann constant. For a single radar with
parameters listed in Table 1, the accuracy of time delay estimation
will be eight times worse than the accuracy of Doppler frequency
estimation. As a result, the weighting coefficients are chosen as

=w 1m,1 and =w 64m,2 .
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Fig. 4. Contour plot of the RMSE (m) of the target localization with L ¼ 20 opti-
mally sited short-range FMCW radars using the greedy algorithm based on a log-
determinant cost function.
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Fig. 6 shows the dependence of the RMSEs of the position
(Fig. 6a) and the velocity (Fig. 6b) estimates as a function of L for
both the FP and the LD cost functions. For this scenario, the LD cost
function again outperforms the FP. Compared to the previous
scenario (Fig. 3), the RMSE curves for the FP and the LD cost
functions do not coincide with increasing the number of selected
radars L. This is due to the large parameter space with most of the
grid points lying above the radar grid. The latter leads to a lower
SNR and worse estimation performance. This scenario is aimed to
show the capability to perform topology optimization of multi-
functional radar systems. Moreover, scenarios with different sen-
sor types can be considered as a further extension of this work.

5.1. The influence of the weighting coefficients

Finally, we compare the topology selection results in terms of
RMSE of the target position estimation for two measurement
models of a single radar: (1) only target range measurement;
(2) target range and radial velocity measurement. The first mea-
surement model implies only target localization, while the second
one implies both target localization and velocity estimation in the
radar network. In the second measurement model, it is assumed
that both range and radial velocity are used for target localization.
In order to investigate the effect of the target movement on the
localization accuracy, three scenarios of target movement are
considered (Fig. 7): (a) along the y-axis (Scenario 1); (b) along the
x-axis (Scenario 2); (c) at an angle of 45° from the x- and the
Fig. 5. Gridding of the velocity domain (squares are the grid points

10 20 30 40 50
60

80

100

120

140

160

180

Number of selected radars, L

Lo
ca

liz
at

io
n 

R
M

S
E

, m

FP
LD

Fig. 6. Average RMSE of the target position and velocity for different numbers of op
estimation. (a) Position accuracy, (b) velocity accuracy.
y-axes (Scenario 3). The target velocity is υ = 10 m/s. Fig. 8 pre-
sents the ratios of the positioning RMSEs (RMSEp) for two mea-
surement models, L¼10 selected radar positions and different
values of the weighting coefficients. The superscript index in the
RMSE specifies the measurement model, i.e., either the first or the
second one. As apparent from the results, the effect of the weights
and the measurement model itself for the three scenarios is dis-
similar. First of all, localization-driven topology optimization, in
general, can outperform the location- and velocity-driven topol-
ogy optimization (the first and the third scenario of the target
movement) in terms of the RMSE of target localization. This is not
the case for the second movement scenario, where the selected
topologies based on the second measurement model result in a
lower RMSE for all considered values of the weighting coefficients
wm,1 and wm,2. Second, using the best weighting coefficients, we
can achieve up to 3 dB improvement in terms of the localization
RMSE. At last, when no weights are introduced ( =w 1m,1 and

=w 1m,2 ), the location- and velocity-driven topology optimization
allows for a better or equivalent performance compared to only
localization-driven topology optimization. Fig. 9 shows two net-
work topologies for two measurement models and three different
scenarios. As one can see, the difference between the optimal
topologies for the two measurement models can be up to six radar
node positions, which results in a different estimation accuracy. In
each of the considered scenarios, the optimal topologies corre-
spond to those that enclose the target areas.
that represent the target area). (a) In azimuth, (b) in elevation.
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5.2. Computational complexity

Both the FP and the LD cost functions explore the greedy
Algorithm 1. The complexity of the greedy Algorithm 1 for the
weighted log-det cost function is linear with respect to the num-
ber of potential radar node positions N, O(N), since N matrices are
evaluated in Algorithm 1. For the weighted frame potential the
complexity of the same algorithm is cubic with respect to N, ( )O N3 .
This is related to the fact that for each of the −N L steps, there are
( − )N S 2 terms ( = … ( − )S N L3, , ). The complexity of the algorithm
can be further reduced to ( )O N2 by exploiting the recursive
property of the FP function. Based on this, for large-scale problems
with ⪡L N and ⪡K N , the LD cost function allows for a lower
computational complexity, compared to the FP cost function. At
the same time, Algorithm 1 for the LD cost is cubic in the number
−200 0 200 400 600 800 1000
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−100
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Fig. 7. Scenarios of the target movement. Line directions on the target grid points
correspond to the target velocity vectors (not in scale).

Fig. 8. Ratios of the RMSEs of the target localization for optimal radar network topologies fo
(2) the range and radial velocity estimation for target location and velocity vectors estimatio
of parameters under estimation K, ( )O K3 , while for the FP it is
linear in K, O(K). Therefore, exploiting the LD cost for problems
where K is in the order of N would entail a higher complexity,
compared to the FP.
6. Conclusions

In this paper, we have proposed a generic framework of radar
network topology optimization, based on the greedy algorithm.
The theory is developed for non-linear measurement models with
an extension to the case of multi-modal parameter vector esti-
mation. This approach can be applied for scenarios of temporal
(measurements are done with one radar) as well as spatio-tem-
poral (measurements are done with a radar network, where the
data fusion on the level of signal samples takes place) data selection.

The developed framework has been applied to the optimal
topology selection of radar nodes for the simultaneous position
and velocity estimation of a target. The scenarios where different
points from the parameter space can be represented with different
modalities are feasible as well. Three cost functions were com-
pared: the frame potential, the log-determinant and the maximum
eigenvalue costs, with the last two being scalar functions of the
error covariance matrix. The results show that the log-determinant
and the maximum eigenvalue show an equivalent performance in
terms of average RMSE, while the greedy optimization of the log-
determinant is much more computationally efficient than the
convex optimization of the maximum eigenvalue. Moreover, the
performance of the location-driven versus the position- and velo-
city-driven optimization was compared, showing a further im-
provement in terms of average RMSE of the target parameter vector
estimation, when the target movement is taken into account.
r two measurement models at L ¼ 10: (1) the range estimation for target localization;
n. (a) Scenario 1: υ υ υ= =0,x y , (b) Scenario 2: υ υ υ= =, 0x y , (c) Scenario 3: υ υ=x y .
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Appendix A. The evaluation of the FP and LD in (21) and (22)

In this appendix, we provide the closed-form expressions for

the evaluation of the matrix =
∼ ∼( ) ( ) † ( )
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The parameter vector is α α α˜ = ⎡⎣ ⎤⎦w w,m m m m m
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i can be then evaluated as
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The derivatives of the time delay and the Doppler frequency
with respect to target coordinates and velocities are:

τ

τ

τ

∂
∂

= ( − )

∂
∂

=
( − )

∂
∂

= ( − )
( )

( ) ( )

( )

( ) ( )

( )

( ) ( )

( )

x c
x x

R

y c
y y

R

z c
x x

R

2
;

2
;

2
;

25

m
i

m

m
i

m
i

m
i

m

m
i

m
i

m
i

m

m
i

m
i

ω ω υ

ω ω υ

ω ω υ

ω

υ
ω

ω

υ
ω

ω

υ
ω

∂

∂
=

( ) − ( − )
( )

∂

∂
=

( ) − ( − )
( )

∂

∂
=

( ) − ( − )
( )

∂

∂
= ( − )

∂

∂
=

( − )

∂

∂
= ( − )

( )

( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )

( )

( ) ( )

( )

( ) ( )

( )

( ) ( )

( )

x c
R b x x

R

y c
R b y y

R

z c
R b z z

R

c
x x

R

c
y y

R

c
z z

R

2
;

2
;

2
;

2
;

2
;

2
;

26

d
i

m

c m
i

x m
i

m
i

m
i

d
i

m

c m
i

y m
i

m
i

m
i

d
i

m

c m
i

z m
i

m
i

m
i

d
i

x

m
i

m
i

d
i

y

m
i

m
i

d
i

z

m
i

m
i

2

3

2

3

2

3

0

0

0

m m

m m

m m

m

m

m

m

m

m

where υ υ υ= ( − ) + ( − ) + ( − )( ) ( ) ( ) ( )b x x y y z zm
i

x m
i

y m
i

z m
i

m m m .
The matrix ( )Tm

i can be easily truncated for the scenarios, where
only target position or velocity is estimated. For example, for 3D
target localization based on trilateration technique, the parameter
vector is α = [ ]x y z, ,m m m m

T . The entries of the measurement matrix

∈( ) ×Gm
i Q K
,1

1 are then given by =
α

αβ
β( ) ∂ ( )

∂
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∂[ ]
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i
q d

f
,1 ,

q m

m
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m d,1

,1 . The matrix

∈( ) ×Tm
i K K1 1 can be evaluated at =w 0m,2 .
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