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ABSTRACT

In this paper, we are interested in learning the underlying graph
structure behind training data. Solving this basic problem is essen-
tial to carry out any graph signal processing or machine learning
task. To realize this, we assume that the data is smooth with respect
to the graph topology, and we parameterize the graph topology using
an edge sampling function. That is, the graph Laplacian is expressed
in terms of a sparse edge selection vector, which provides an explicit
handle to control the sparsity level of the graph. We solve the sparse
graph learning problem given some training data in both the noise-
less and noisy settings. Given the true smooth data, the posed sparse
graph learning problem can be solved optimally and is based on sim-
ple rank ordering. Given the noisy data, we show that the joint sparse
graph learning and denoising problem can be simplified to design-
ing only the sparse edge selection vector, which can be solved using
convex optimization.

Index Terms— Graph Learning, graph signal processing, graph
sparsification, topology inference, sparse sampling.

1. INTRODUCTION

Graphs offer a way to describe and explain relationships in complex
datasets, a central entity of modern data analysis, where data deluge
is prominent [1–3]. In particular, the nodes of the graph denote the
entities and the edges encode the pairwise relationship between these
entities. Such entities are referred to as graph signals. Examples of
such complex-structured data beyond traditional time-series include
data residing on brain networks, gene networks, social networks, rec-
ommendation systems, transportation networks, and so on.

Having a good quality graph is central to any graph signal pro-
cessing or machine learning task. In this paper, we are interested
in the problem of learning the hidden graph topology behind the
data. Due to the sheer quantity of data, we are motivated to select
the simplest graphical models that adequately explain the data. In
particular, we are interested in learning a sparse graph, i.e., a graph
with a limited number of edges that adequately explains the input (or
training) data. To realize this, we make a simple, but widely used as-
sumption [1,4] that the data is smooth with respect to the discovered
graph.

The contributions in this paper are threefold. First, we model
the graph learning problem as an edge selection problem, where we
parameterize the graph through a sparse edge sampling vector. In
particular, the proposed model provides an elegant handle to control
the number of edges, thus the graph sparsity. Second, for the case
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when the true smooth graph signals are given, the graph learning
problem can be solved optimally, and the solution is based on simple
rank ordering. Finally, given the noisy graph signals, i.e., for the
joint sparse graph learning and denoising problem, we provide a one-
step solution based on convex optimization as well as an algorithm
based on alternating minimization.

The problem of learning the graph Laplacian or the weighted ad-
jacency matrix from smooth graph signals has been considered be-
fore [4,5]. Learning sparse graphs from the true graph signals, which
is the problem we consider in Section 3, has been studied in [5].
There the graph learning problem is posed as a constrained optimiza-
tion problem with the constraint set being the set of valid adjacency
matrices, and the optimization problem is solved using an iterative
primal-dual algorithm. In contrast, our modelling greatly simplifies
the solution to simple rank ordering. Such a modelling is inspired
from [6], where the problem to design edge weights that maximize
the algebraic connectivity of the graph has been addressed. In [4],
the joint graph learning and denoising problem has been addressed,
i.e., the problem that we study in Section 4. An alternating mini-
mization algorithm is proposed, alternating between graph learning
and denoising, where the graph learning optimization problem in-
volves a search over the space of all valid graph Laplacians. On the
contrary, we show that this problem can be solved in one-step and it
boils down to the design of a sparse edge sampling function.

Graph topology identification is also investigated in [7] under
the assumption that the eigenvectors of the graph Laplacian are
known, which is a much stronger assumption. Although the eigen-
vectors can be computed from graph data (or the sample covariance
matrix) when it is stationary with respect to the graph [8, 9], the
graph signals need not always be vertex stationary. In any case, the
estimated eigenvectors are not error free due to limited data records.
In most of the existing approaches [4,5,7], graph sparsification is (or
can be) achieved by penalizing the ℓ1-norm of the graph Laplacian
matrix, adjacency matrix or the shift operator, however, there is no
explicit handle to control the number of edges, unlike the proposed
approach. In a related line of research, [10, 11] investigate comput-
ing sparse graphs that approximate a given graph spectrally, which
means that their Laplacian matrices have similar quadratic forms.

2. PROBLEM SETUP

Consider a dataset with N real valued elements, which are defined
on the vertices of an undirected graph G = (V, E), where the vertex
set V = {v1, · · · , vN} denotes the set of nodes, and the edge set E
reveals the connection between the nodes. We refer to such datasets
as graph signals. We assume that the length of the graph signals
(thus the number of nodes), i.e., N is known. However, the edge
set is not known. Therefore, we assume a complete graph G(V, E)
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as a candidate graph in which each node is connected to every other
node with the number of edges |E| = M = N(N−1)/2, and aim to
determine a subgraph of G by choosing a subset of edges, Es, from
the edge set E of this candidate graph.

Any undirected graph topology is basically determined by its
graph Laplacian matrix, which essentially reveals the connectivity
of the graph. Let us denote the graph Laplacian matrix (i.e., a sym-
metric matrix) of the complete graph by L ∈ S

N , where [L]i,j is
nonzero only if i = j or (i, j) ∈ E . The symmetric matrix L
can be expressed in terms of the so-called incidence matrix, A =
[a1, · · · ,aM ] ∈ R

N×M as

L = AAT =
M∑

m=1

amaT
m,

where the m-th column of A, i.e., am denotes a length-N edge vec-
tor with entries [am]i = 1, [am]j = −1, and it has zeros elsewhere,
for an edge m connecting nodes i with j (more generally, am is
determined only up to a sign).

Let us now denote the subgraph Gs(V, Es) with the edge set
Es ⊂ E such that |Es| = K ≪ M . We will refer to such a
subgraph with K edges as a K-sparse graph. We connect such
a K-sparse graph Gs to L through a sparse edge selection vector
w = [w1, w2, · · · , wM ]T ∈ {0, 1}M , where wm = 1 if an edge
belongs to the edge subset Es, and wm = 0 otherwise. In terms of
w, |Es| = K means ∥w∥0 = K. (The notation ∥w∥0 counts the
number of non-zero entries in w.) Finally, we can write the Lapla-
cian matrix of the K-sparse graph, Ls, as a function of w as

Ls(w) =
M∑

m=1

wmamaT
m. (1)

In what follows, we will optimally design the edge sampling
function w to recover the graph that sufficiently explains the data.

3. LEARNING FROM NOISELESS GRAPH SIGNALS

Let x = [x1, x2, · · · , xN ]T ∈ R
N be a graph signal defined on the

vertices V of a graph. The smoothness and the spectral content of
the signal both depend on the underlying graph topology. The Lapla-
cian quadratic form given by xTLs(w)x quantifies how smooth the
graph signal x is with respect to the underlying graph [1]. In par-
ticular, the signal x is smoothest with respect to the graph with K
edges for low values of xTLs(w)x.

3.1. Problem statement: noiseless setting

Suppose we are given L graph signals denoted by the vectors
{xk}

L
k=1, and they are collected in an N × L matrix X =

[x1, · · · ,xL]. We are interested in recovering the graph Laplacian
(in other words, the graph topology) under the prior information
that the graph signals are smooth with respect to a K-sparse graph.
More formally, we state the following.

Problem 1. Given the graph signals {xk}
L
k=1, determine a graph

with K edges such that the graph signals have smooth variations on
the resulting graph.

Mathematically, the above problem can be cast as the following
optimization problem:

argmin
w∈W

1
L

L∑

k=1

xT
kLs(w)xk =

1
L
tr{XTLs(w)X}, (2)

where W = {w ∈ {0, 1}M | ∥w∥0 = K} is the constraint set that
restricts the number of edges.

3.2. Solver

Problem (2) is a cardinality constrained Boolean optimization prob-
lem, hence nonconvex. By recalling that Ls(w) =

∑M
m=1

wmamaT
m,

we can express the cost function in (2) as a linear function in w, i.e.,
we have

1
L
tr
{
XTLs(w)X

}
=

M∑

m=1

wmtr
{
XT (amam

T )X
}
. (3)

Introducing the length-M vector c = [c1, c2, . . . , cM ]T with cm =
tr
{
XT (amam

T )X
}

, we can write (2) as

argmin
w∈{0,1}M

cTw s.to ∥w∥0 = K. (4)

The above Boolean linear programming problem admits an explicit
solution and computing the optimal solution is straightforward. It
is solved by sorting the entries of c in an ascending ordering. More
specifically, the solution w will have entries equal to 1 at indices cor-
responding to the K smallest entries of c, and others are set to zero
(ties may be broken arbitrarily). Computationally, the sorting algo-
rithm costs O(K logK), and with a parallel implementation (e.g.,
on different processors), the computational complexity will be as
low as O(K) [12, 13]. We give another interpretation of this result
through the following remark.

Remark 1. Let us suppose the graph signal is stochastic with co-
variance matrix Rx = E{xxT } ∈ R

N×N . Then, the solution to (4)
would select K edges between those nodes having the highest cross-
correlation, i.e., it will add an edge between the ith and the jth node
if the variables xi and xj are strongly correlated. To see this, we
express the cost function in (2) as

L−1tr{XTLs(w)X} = tr
{
Ls(w)R̂x

}

=
M∑

m=1

wm(am
T R̂xam)

where R̂x = 1

L
XXT ∈ R

N×N is the sample data covariance
matrix. Recalling the definition of am, it is easy to see that the term

am
T R̂xam = [R̂x]i,i + [R̂x]j,j − 2[R̂x]i,j is small if the ith and

jth nodes are highly correlated and we have sufficient samples to
compute the sample covariance matrix.

By modelling the graph topology through an edge selection vec-
tor, the graph learning problem can be solved optimally using a sim-
ple and elegant solution with a controlled sparsity level, whereas op-
timizing directly the graph Laplacian [4] or the adjacency matrix [5]
leads to a more complicated suboptimal solution with no explicit
handle to control the graph sparsity.

4. LEARNING FROM NOISY GRAPH SIGNALS

In many cases, we might not have access to the true graph signals.
Suppose we observe a noisy version of the graph signal, xk, as

yk = xk + nk ∈ R
N , (5)

and we are given L such observations for k = 1, 2, . . . , L, where we
assume that nk is zero-mean white Gaussian noise of variance σ2.
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To recover xk based on the smoothness assumption, typically a least-
squares problem is solved with a Tikhonov regularization, xT

k Lxk,
to enforce the prior information that the noiseless graph signal xk is
smooth with respect to the underlying graph. More specifically, the
following optimization problem (assuming, for a moment that the
graph, i.e., w is known) is solved [1]:

argmin
{xk}L

k=1

1
L

L∑

k=1

(
∥yk − xk∥

2
2 + γxT

k Ls(w)xk

)
, (6)

where the regularization parameter γ > 0 controls the amount of
smoothness. This graph denoising problem has an explicit solution
given by

x̂k = [I + γLs(w)]−1yk, k = 1, · · · , L.

4.1. Problem statement: noisy setting

Having given the above denoising inference problem at hand, we
will now formally state the problem of interest.

Problem 2. Given the observations {yk}
L
k=1 that are related to the

unknown graph signal xk as in (5), determine the K-sparse graph
such that the estimate x̂k has the lowest possible estimation error,
and it is smooth with respect to the recovered graph.

Sparse graph learning for the denoising inference problem can
be mathematically formulated as follows:

argmin
{xk}

L
k=1

,w∈W

1
L

L∑

k=1

(∥yk − xk∥
2
2 + γ xT

kLs(w)xk) (7)

whose solution is denoted as ({x̂k}
L
k=1, ŵ). This formulation is dif-

ferent from [4], as [4] solves an optimization problem over the space
of all possible graph Laplacians (instead of parameterizing the graph
with w ∈ W) without sparsifying the graph. It can nevertheless be
done through an extra ℓ1-norm penalty term.

The above problem (7) is noncovex due to the Boolean and car-
dinality constraints on w and the coupling between the optimization
variables in the second term of (7). We provide two methods to solve
it. The first one is a straightforward approach based on alternating
descent, while the second one is based on convex relaxation.

4.2. Alternating minimization

The optimization problem (7) can be solved using alternating min-
imization with respect to {xk}

L
k=1 and w. That is, given w, the

problem in (7) reduces to a linear system in the unknown X, which
admits a closed form solution; while given {xk}

L
k=1, it reduces to

a Boolean linear programming problem, which admits an analytical
solution with respect to w based on rank ordering. These observa-
tions suggest an iterative alternating minimization algorithm yield-
ing successive estimates of {xk}

L
k=1 with fixed w, and alternately of

w with fixed {xk}
L
k=1. Specifically, with the iterate of w given per

iteration i ≥ 0, i.e., w[i], we solve for X[i] using a matrix inversion
as

X [i] = Xmin(w[i])

with

Xmin(w) = argmin
X

∥Y −X∥2F + γ tr{XTLs(w)X}

= [I + γLs(w)]−1Y ,
(8)

where Y = [y1,y2, · · · ,yL] is the data matrix of size N × L.
Once X [i] is available, w[i+ 1] can be obtained by solving the

Boolean linear program [cf. (4)]

w[i+ 1] = argmin
w∈{0,1}M

M∑

m=1

wmcm[i+ 1] s.to ∥w∥0 = K,

where cm[i+ 1] = tr
{
XT [i+ 1](amam

T )X[i+ 1]
}

. In spite of
the Boolean and cardinality constraints in the above problem, there
exists a simple analytical solution for w[i + 1] based on sorting
{cm[i+1]}Mm=1, i.e., the solution w[i+1] will have entries equal to 1
at indices corresponding to the K smallest entries in {cm[i+1]}Mm=1

and zeros otherwise. The iterations are initialized at i = 0 by ran-
domly generating w[i+1] from a uniform distribution over W . The
above alternating minimization method is computationally very at-
tractive, and consists of two simple known solutions per iteration.
However, the algorithm converges only to a stationary point of (7),
and it suffers from the choice of the initial estimate.

The algorithm proposed in [4] is also along the lines of alter-
nating minimization, except that the graph learning step involves a
complicated optimization over the space of all possible valid Lapla-
cian matrices.

4.3. Convex relaxation

To avoid the issues related to the initialization of the alternating min-
imization algorithm, in what follows we propose a one-step solution
based on convex relaxation. We can rewrite the formulation in (7)
alternatively as

ŵ = argmin
w∈W

r(w); X̂ = Xmin(ŵ) (9)

with

r(w) = ∥Y −Xmin(w)∥2F + γ tr{XT
min(w)Ls(w)Xmin(w)}

and
[I + γLs(w)]Xmin(w) = Y . (10)

The computational complexity of solving the linear system of equa-
tions (10) decreases as the sparsity in w increases. Furthermore, the
estimates {x̂k}

L
k=1 and ŵ in (9) are still the same as in (7).

Plugging the solution to (10) in r(w) and after some straight-
forward matrix algebra, we can express the regularized residual
squared, r(w), as

r(w) = tr
{
Y T [I + γLs(w)]−1Y

}

+ γtr
{
Y TLs(w)Y

}
− ∥Y ∥2F .

(11)

Relaxing the cardinality constraint ∥w∥0 = K with 1
Tw =

K and the Boolean constraints {0, 1}M with linear inequality con-
straints related to the box constraint [0, 1]M , the optimization prob-
lem (9) will be convex on w ∈ [0, 1]M . To see this, we introduce a
variable

Z = Y T [I + γLs(w)]−1Y + γY TLs(w)Y ∈ R
L×L

and obtain a semidefinite program:

argmin
Z,w

tr{Z}

s.to

[
Z − γY TLs(w)Y Y T

Y I + γLs(w)

]
≽ 0L+N ,

1
Tw = K, 0 ≤ wm ≤ 1, m = 1, 2, . . . ,M,

(12)
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Fig. 1: Sparse graph learning: The colored dots indicate the temperature values. (a) Noiseless case. Graph with K = 110 edges recovered by solving (2).
(b) Noisy case: Convex relaxation is used to recover a graph with K = 110 edges using (12).
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Fig. 2: Performance evaluation.

with variables w and Z, and recall that Ls(w) =
∑M

m=1
wmamaT

m.
A standard off-the-shelf solver can be used for solving the semidef-
inite program in (12). For large-scale problems, computationally
cheaper first-order (and online) methods for solving (12) can be
derived as the size of the linear matrix inequality in (12) depends on
the size of the training data and the number of nodes.

5. NUMERICAL RESULTS

We use temperature measurements collected across 32 weather sta-
tions in the French region of Brittany and the aim is to learn the graph
that explains the observed data; see Fig. 1. There are 744 observa-
tions per weather station available, out of which we use L = 50
snapshots as the training set and the remaining ones as the evalu-
ation set. One such observation (i.e., a graph signal) on a graph
with N = 32 nodes is shown in Fig. 1, where the colored dots
indicate different temperature readings. The convex optimization
problems are solved using the CVX toolbox, which internally calls

SDPT3 [14]. The candidate graph with N = 32 will have M = 496
edges, from which we aim to learn a subgraph with K = 110 edges.

To begin with, we consider the noiseless case, where the true
graph signal is assumed to be known, and graph learning in this
case amounts to solving a sorting problem. As shown in Fig. 1a,
we can see that in the learnt graph with K = 110 edges, edges are
present between nodes that share similar values. Although the pro-
posed approach doesn’t always (e.g., for low values of K) ensure a
well-connected graph, it clusters entities (or correlated nodes) with
similar values. Fig. 2a shows that the cost (i.e., smoothness) of the
proposed closed-form sorting solution, which is optimal, is lower
than the existing iterative solution [5].

Next, we consider the noisy setting with the same training data
as before, where we perform joint graph learning and denoising. In
Fig. 1b, we show the learnt graph with K = 110 edges based on
the convex relaxation approach explained in Sec. 4.3. In Fig. 2b, we
evaluate the denoising performance based on the learnt graph using
the evaluation set. In particular, we show the mean squared error
for different values of the noise level, where the mean squared error
is computed from 1000 independent Monte Carlo experiments. The
one-step solution based on convex optimization (cf. Sec. 4.3) leads
to a lower error as compared to the alternating minimization ap-
proaches, which in general converge only to a stationary point. This
also holds for our method developed in Sec. 4.2, however, we stress
the fact that the proposed alternating minimization (cf. Sec. 4.2) is
computationally much less expensive (involving two simple known
solutions per iteration) as compared to the iterative solution in [4].
The graph learnt under the noiseless setting does not perform well
for denoising. Nevertheless, due its simple solution, it can be used
to generate a base graph, which can be further refined for specific
graph inference problems.

6. CONCLUSIONS

We have studied the problem of learning a sparse graph that ade-
quately explains the data under a smoothness prior. We model the
graph learning problem as the design of a sparse edge sampling func-
tion. In other words, we express the graph Laplacian in terms of an
edge selection vector. We have considered both the noiseless and
noisy setting. In the noiseless setting, designing the edge selection
vector is elegant, and it boils down to a simple low-complexity sort-
ing problem. However, in the presence of noise, we propose a com-
putationally cheap alternating minimization algorithm as well as a
one-step convex relaxation based solution.

Software and datasets to produce results of this paper can be
downloaded from http://cas.et.tudelft.nl/˜sundeep/sw/
icassp17Graphlearning.zip
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