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ABSTRACT
Generally in distributed signal processing, and specifically in dis-
tributed graph filters, reducing the communication and computa-
tional complexity plays a key role in the network lifetime. In this
work we present a novel algorithm to sparsify the graph filtering
operation in a random way, where each node decides locally with a
certain probability with which of its neighbors to communicate. We
show that, if the filter coefficients are changed accordingly, the first
and second order moment of the stochastic output are identical to the
deterministic filter output and bounded, respectively. We apply our
idea on the tasks of signal denoising and diffusion. Numerical re-
sults show that the distributed implementation costs of the filter can
be reduced up to 95% with a variance of 10−3 from the deterministic
output.

Index Terms— graph signal processing, graph filters, graph sig-
nal denoising, diffusion graph signals, graph sparsification.

1. INTRODUCTION
Signals collected by a sensor network, or present in social networks
and other irregular domains are often characterized by complex re-
lationships captured by a graph [1]. Recent advances in the field of
signal processing on graphs allow analyzing these signals not only
in the vertex, but also in the graph spectral domain [2, 3]. Graph
spectral domain processing is now made possible through the use of
the graph Fourier transform and graph filters [2, 3]. The latter are
direct analogous of temporal filters now operating on the graph fre-
quency content of the signal [4]. Among others, graph filters are
useful to clean noisy collected data (like sensor measurments) [2, 5]
and also to analyze the diffusion of graph signals over the network
(temperature diffusion, gossiping in a social network) [2, 6].

The distributed implementation of graph filters [7, 8] rises with
the necessity to alleviate the computational cost of processing large
amounts of data, or when, in a sensor network, due to physical limi-
tation (communication range and the necessity to cover large areas)
the sensors cannot deliver the data to a fusion center for process-
ing. However, even in a distributed fashion, the communication and
computational costs may be too expensive for cheap sensors.

In this work, we present a novel approach to reduce the dis-
tributed filtering cost by filtering the signal, rather than on the orig-
inal graph, on its sparsified version. Specifically, in each iteration
round of the filtering process each node will locally decide to ex-
change information randomly with its neighbors. The proposed ap-
proach can be seen as gossiping [9], while performing the graph fil-
ter, but in the same time also as sparsified filtering [10]. We will
refer to this approach as stochastic sparsification. As a benefit the
distributed costs are alleviated, but at the same time the filter output
is now stochastic. We characterize the first and second order mo-
ment of the filter output. We show that, with a proper change of the
filter coefficients, the expected filter output obtained in the stochas-
tic sparsified graph is the same as that of the deterministic graph and
that the average variance among all nodes is upper bounded.

In this work we will specifically focus on two main graph filter-
ing tasks : Tikhonov denoising and distributed diffusion. However,
note that the general idea can be applied to any graph filter and de-
sired frequency response. Numerical results show that up to 95% of
the communication and computational complexity can be saved with
very little difference from the deterministic filter output.

2. BACKGROUND
In this section we recall some basics on signal processing on graphs,
distributed graph filters, Tikhonov denoising and graph signal diffu-
sion. We also show that for the aforementioned tasks a distributed
finite impulse response (FIR) graph filter of any order can be alterna-
tively implemented by an autoregressive moving average graph filter
of first order (ARMA1).

Signal processing on graphs. Given an undirected graph G =
(V, E) with V the set of N vertices and E the set of M edges.
The local structure of G is represented by the graph shift opera-
tor S, an N × N symmetric matrix with Si,j 6= 0 if there exists
an edge between the nodes i and j. Common choices1 for S are
the adjacency matrix of the graph [3], the graph discrete Ld and
normalized Ln Laplacian [2] or their translated versions [?]. Be-
ing a symmetric matrix, S always enjoys an eigendecomposition
S = UΛUH with eigenvectors U = [u1, . . . ,un] and eigenval-
ues Λ = diag[λ1, . . . , λN ], which carry the notion of frequency in
the graph setting [2, 3]. More formally, the eigenvalues {λn}Nn=1

indicate the graph frequencies and the eigenvector matrix U is used
as the graph Fourier expansion basis.

A graph signal is defined as the N × 1 vector x with i-th entry
xi ∈ C living on the i-th node of G. The graph Fourier transform
x̂ of x and its inverse are respectively calculated as x̂ = UHx and
x = Ux̂.

Distributed FIR graph filters. From [3], an FIR graph filter of
order K (FIRK ) can be expressed as a K-th order polynomial of S.
The output signal and the graph frequency response of the filter are
respectively given by

y =
K∑
k=0

φkS
kx and h(λn) =

K∑
k=0

φkλ
k
n, (1)

where φk indicate the filter coefficients. Due to the locality of the
shift operator S and since SKx can be expressed as S(SK−1x),
each node can compute theK-th term from the values of the (K−1)-
th terms in its neighborhood [7]. This leads to a distributed commu-
nication and computational cost of O(MK).

Distributed ARMA1 graph filters. An ARMA1 graph filter [8]
can be implemented in a distributed fashion as

yt = ψSyt−1 + ϕx, (2)

where x is the graph signal to be filtered, yt is the filter output at
time t with arbitrary initial condition y0 and where ψ and ϕ indicate

1For this work, we only require the shift operator to have an upper
bounded spectral norm, i.e., ‖S‖≤ % for some % > 0.
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the filter coefficients. From [8], the graph frequency response of the
ARMA1 filter is

h(λn) =
ϕ

1− ψλn
subject to |ψ|< %, (3)

with % the upper bound on the spectral norm of S. As shown in [8],
recursion (2) will attain the frequency response (3) theoretically at
infinity, yet in practice characterized by a linear convergence. The
per− iteration communication cost of the ARMA1 filter isO(M).

Tikhonov denoising. Graph signal denoising under a smooth-
ness prior [2,5] considers a noisy graph signal x = u+nwith u the
signal of interest and n the noise. With the prior assumption that u
varies smoothly w.r.t. the underlying graph, the denoising problem
is formulated as

u∗ = argmin
u∈RN

‖x− u‖22+wu>Su, (4)

with w some weighting factor between the noise suppression and
smoothness prior. The optimal solution of (4) is

u∗ =

N∑
n=1

(
1

1 + wλn
u>nx

)
un, (5)

which is characterized by a rational frequency response, similar to
(3), with ψ = −w and ϕ = 1. As shown in [8], the optimal solution
u∗ can always be met with a stable implementation of (2) despite
the choice of the weight2 w.

Graph signal diffusion. Analyzing the diffusion of a graph sig-
nal, e.g., gossip in social networks, in time across the graph is an-
other important topic in signal processing on graphs (see [2] and
references therein). Such a diffusion process is often modelled using
as shift operator the heat kernel [11], i.e., e−wS with the constant
w that characterizes the diffusion rate. Considering x as the initial
signal on the graph, the diffused graph signal after t time instants is
yt = e−wStx, with steady state (t→∞)

y = (I + wS)−1x. (6)

We can see that the relation between the steady state diffused signal
y and the initial graph signal x in (6) is also characterized by a
rational polynomial in S. Hence, it looks as the graph signal x is
filtered by an ARMA1 graph filter with frequency response (5). For
processing yt in finite time t, two dimensional graph-temporal filters
can be used [12, 13].

Being characterized by an ARMA1 frequency response, the so-
lutions to both Tikhonov denoising and diffusion filtering have the
benefit that the filter coefficients can be designed to perfectly match
the solution without relying on the knowledge of the graph struc-
ture [8]. Such a filter design is known as a universal design, with the
main benefit that it avoids the eigendecomposition of S.

Filter equivalence. As we previously mentioned, the distributed
ARMA1 recursion (2) will attain the frequency response (3), and
thus the solution to both Tikhonov denoising and diffusion filtering
theoretically at infinity. However, in practice we are interested to
obtain the filter output in finite time. For t = T , we have

yT = (ψS)Ty0 + ϕ

T−1∑
τ=0

(ψS)τx, (7)

where we expanded (2) to all its terms. Depending on the choice
of y0, recursion (7) has two interpretations as a FIR filter: (i) for

2This result is obtained by implementing (5) with a shift operator that is a
translated version of the normalized Laplacian, i.e., S = Ln − I [8].

y0 = 0, the output yT is the same as that of an FIRT−1 with co-
efficients φ = [φ0, φ1, . . . , φT−1]> = [ϕ,ϕψ, . . . , ϕψT−1]>, and
(ii) for y0 = x, the output yT is the same as that of an FIRT with
coefficients φ = [ϕ,ϕψ, . . . , ϕψT−1, ψT ]>. Further, arresting the
ARMA1 recursion after T iterations will require the same commu-
nication and computational effort as the FIR.

3. STOCHASTIC SPARSIFICATION

This section contains our approach to perform the filtering operation
in a sparsified way. The idea is that, at each iteration (time instant t),
each node i will randomly choose if it will transmit the information
to each of its neighbors j. In this way, the filtering costs are reduced
proportionally with the probability p of selecting a neighbor. We
characterize the sparsified filter output and we show that, if the filter
coefficients are changed accordingly, the filter output obtained from
the sparsified approach is stochastically close to the deterministic
filter output obtained from the filter running on the original graph G.
Specifically, the first and second order moment of the error between
them are respectively zero and upper bounded.

Stochastic graph model. Given the graph G that represents the
the interconnections between nodes in our network of interest. We
consider as a stochastic realization of G at time t, the graph Gt ob-
tained with a random edge sampling of G. More formally:

Random edge sampling (RES) graph model. The probability that
a link (i, j) in the edge set E will remain active at time t is p, with
0 < p ≤ 1. The edges are activated independently accross time.

Thus, at each time step t, our graph realization Gt = (V, Et) is
a random realization of the undelying graph G = (V, E), where the
edge set Et ⊆ E is generated via an i.i.d. Bernoulli process. We will
indicate with S the shift operator of G, with St the shift operator of
Gt and with S̄ = E [St] the expected shift operator relative to the
expected graph Ḡ. Since Et ⊆ E , then also St belongs to the same
set as S. Further, due to the interlacing property [14], the spectral
radius bound % satisfies the property ‖St‖≤ ‖S‖≤ % for each t.

Stochastically sparsified graph filtering. The communication
and computational complexity of filtering the graph signal x can be
reduced by performing the filtering recursions on the time-varying
sparsified graph Gt, which abides to the RES graph model, instead
of on the deterministic graph G.

a) FIR. The sparsified output signal y(s)
t at time instant t of an

FIRK graph filter performed on the time-varying sparsfied graph is

y
(s)
t =

K∑
k=0

φ
(s)
k ΦS(t, t− k + 1)x, (8)

where ΦS(t′, t) := StSt−1 . . .St′ for t′ ≥ t and ΦS(t′, t) := I

for t′ < t and φ(s)
k are the sparsified filter coefficients. The FIR

output in (8) is complete only for t ≥ K with expected output

ȳ
(s)
t = E

[
y
(s)
t

]
= E

[
K∑
k=0

φ
(s)
k

(
t−k+1∏
τ=t

Sτ

)
x

]

=

K∑
k=0

φ
(s)
k S̄

kx
(a)
=

K∑
k=0

φ
(s)
k (pS)kx,

(9)

where (a) holds for shift operators that satisfy E[St] = pS like
S = A or S = Ld. Then, if each coefficient φ(s)

k is a scaled version
of φk by p−k, the expected output will be identical to the FIRK
output (1) performed on the original graph G

ȳ
(s)
t = yt for φ

(s)
k = φkp

−k, (10)
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or equivalently, the sparsification error has a zero mean ē =

E
[
y
(s)
t − yt

]
= 0. While the appropriate modification of the

filter coefficients gives a zero mean error, we next analyze the vari-
ance of the filter output to see how p influences the output signal.
Our conclusions will be based on the average variance among the
nodes

var[yt] = tr(E
[
yty

H
t

]
− E[yt]E[yt]

H)/N, (11)

which represents a simple way to quantify the experienced variance
of the filter output at each node. The following proposition (proof in
Appendix), shows that the average variance of the FIR filter is upper
bounded.

Proposition 1 The average variance among the nodes of an FIR
graph filter (8) performing the filtering recursion stocastically ac-
cording to the RES graph model is upper bounded by

var[y(s)
t ] ≤

(
%>p φ

)2
‖x‖2/N, (12)

where %p = [(%/p)0, (%/p)1, . . . , (%/p)K ]>.

From the result of Proposition 1 we can notice that that p has in-
deed an impact on the variance. Further, our handle, to reduce the
variance are %, the spectral norm of the shift operator, and the filter
coefficients φ. In this context we make the following observation:

Remark 1: To potentially reduce the variance of the output signal
of the sparsified filter output, the use of shift operators with a small
spectral norm is recommended. For this purpose we consider S =

1
λmax

Ld− 0.5I (with % ≤ 0.5) for G and St = 1
λmax

Ld,t− 0.5pI for
Gt with E[St] = pS.

The communication and computational complexity of the sparsi-
fied FIR is now reduced linearly with p fromO(MK) toO(pMK).

b) ARMA1. Similarly to the FIR graph filter, the sparsified output
for the ARMA1 graph filter at time t is computed as

y
(s)
t = ψ(s)Sty

(s)
t−1 + ϕ(s)x, (13)

where ψ(s) and ϕ(s) indicate the sparsified ARMA1 coefficients. The
expected sparsified output ȳ(s)

t of the ARMA1 filter at time t is

ȳ
(s)
t = ψ(s)(pS)ȳ

(s)
t−1 + ϕ(s)x, (14)

again assuming that E[St] = pS. In this case, if we consider ψ(s) =

ψ/p and ϕ(s) = ϕ the expected output of (14) will be identical to
that of the ARMA1 output (2) performed on the deterministic graph
G. This change of filter coefficients will again lead to a zero mean
error between the sparsified filter output (13) and the deterministic
output (2).

To characterize the second order moment of the stochastic
ARMA1 output, we analyze the limiting average variance of the
filter output over all nodes, defined as

lim
t→∞

var[yt]= lim
t→∞

(
tr
(
E
[
yty

H
t

]
− E[yt]E[yt]

H
)
/N
)
, (15)

which gives insights on the variance experienced at the steady state
of the ARMA1 filter. The following proposition shows that, similarly
as the FIR filter, the limiting average variance among all nodes is
upper bounded.

Proposition 2 The limiting average variance among the nodes of an
ARMA1 graph filter (13) performing the filtering recursion stochas-
tically according to the RES graph model is upper bounded by

lim
t→∞

var[y(s)
t ] ≤ 1

N

(
ϕ2‖x‖2

(1− %|ψp−1|)2

)
. (16)

Proof: The claim can be derived from Theorem 3 in [15], by consid-
ering that now the graph signal x is deterministic. �

Proposition 2 extends the results obtained for the FIR filters to
the ARMA1 graph filters. It provides a stronger result, asserting that
the variance of the ARMA1 output, even at infinite iterations (i.e.,
steady state) is upper bounded. In analogy with the filter equiva-
lence, this can be viewed as implementing an infinite order sparsi-
fied FIR filter and showing that for a first order rational frequency
response, the variance of the filter output is upper bounded. Differ-
ently from the FIR filters, we can see that now the limiting average
variance is upper bounded by a quadratic rate of 1/p.

Also in this case the use of the shift operator with limited spec-
tral norm is recommended since it enlarges the stability region of
the ARMA filters and thus the approximation accuracy. The sparsi-
fication approach, again reduces the distributed filtering costs of the
ARMA1 linearly with p, from O(MK) to O(pMK).

The following algorithm shows how the sparsified ARMA1 filter
output is computed locally at node i at time instant t.

Algorithm 1 Sparsified ARMA1 filter.

1: Filter coefficients ψ(s) = ψp−1 and ϕ(s) = ϕ

2: procedure CALCULATE [y
(S)
t ]i

3: collect [y
(s)
t−1]j from all current active neighbors j∈ [Ni]t−1

4: [y
(s)
t ]i=ψ(s)∑

j∈[Ni]t−1
sij
[
[y

(s)
t−1]i−[y

(s)
t−1]j

]
+ ϕ(s)[x]i

5: send [y
(s)
t ]i to all neighborsNi with probability p

In Algorithm 1, we indicate with Ni the neighbouring nodes of i
w.r.t. the original graph G (i.e., the nodes j that are connected with
i by an edge with weight sij) and with [Ni]t the subset ofNi that is
connected with i at time t.

We conclude this section with the following remarks.
Remark 2: Albeit it is true that the error variance is upper

bounded, numerical simulations show that the practical error vari-
ance is much smaller than the upper bounds (12) and (16). The
results also confirm that p has an impact on the output variance.

Remark 3: While our mathematical results show that not using
normalized shift operators, we obtain a zero mean error, the use of
S = Ln − I is recommended to improve the stability of the ARMA
filters and also to reduce the filter output variance. However, we
do not have a closed form expression of the expected value of the
normalized Laplacian, i.e., S = Ln or its translated version S =
Ln−I . This expression is necessary for our derivations to change the
filter coefficients such that the sparsified output is not biased w.r.t.
the deterministic output. Nonetheless, we have observed (and shown
in the next section) that using S = Ln − I , without any change in
the filter coefficients, brings a very small mean and variance of the
error.

4. NUMERICAL RESULTS

In this section, we evaluate the performance of the stochastic spar-
sification approach. Considering that both the Tikhonov denoising
problem and the graph signal diffusion can be reformulated as the
same mathematical problem, we will directly address the former.

Setup. For our simulations we consider that the underlying
graph G is composed of N = 1000 nodes randomly placed in a
squared area, where two nodes are neighbors if they are closer than
15% of the maximum distance of the area. Our results are averaged
over 100 realizations. To quantify the performance we consider the
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Fig. 1. Mean error over all nodes and realizations between determin-
istic and sparsified output for different values of pwhenS = Ln−I .

error e = y(s) − y between the deterministic filter output y oper-
ating on G and the sparsified filter output y(s) operating on the RES
graph realizations Gt. We characterize both the average mean over
the nodes 3 and the empirical average standard deviation over all
nodes defined as

var[e] =
[
tr
(
E
[
eeH

])
/N
]

=
[
tr
(
Σy(s)

)
/N
]
, (17)

which quantifies the average how far the filter output realization of a
node is from its expected value.

Simulations. We simulate a noisy graph signal x = u + n,
where the graph signal of interest u varies smoothly w.r.t. the under-
lying graph G characterized by the heat kernel spectrum û = e−λn

with λn the eigenvalues of Ln. The noise n is considered as zero
mean Gaussian with standard deviation 0.1. We analyze the perfor-
mance of both FIRK for K = 1, 3, 5, 7 and 10 and ARMA1 graph
filters after t = 20×K iterations, i.e., when the transient behaviour
of the filter gets close to zero. The filter operations are performed
using as shift operators S = 1

λmax
Ld − 0.5I with sparsified filter

coefficients changed accordingly and S = Ln − I where the fil-
ter coefficients are not changed and kept the same as the one of the
deterministic output.

Results. From the results of Fig. 1 we can see that the mean
error between the sparsified filter output and the deterministic one
is of order 10−3, which suggests that the use of S = Ln − I does
not bring a big bias in the output even without changing the filter
coefficients. Fig. 2 shows the empirical average variance over nodes
and realizations for both choices of the shift operator. We can make
the following observations: (i) the ARMA1 graph filter seems to
survive better the stochastic sparsification than FIR for both choices
of S; (ii) for the FIR filter the choice of S has a bigger impact on
the variance, where S = 1

λmax
Ld − 0.5I , even with the guarantees

that the bias is zero comes with a higher variance; (iii) with the order
increasing, the FIR filter output experiences a higher variance.

For the ARMA1, the bound (15) for the considered values of p
is [0.0121, 0.1477, 5.3127, 0.5908, 0.1477, 0.1085]. On the other
hand, for the FIR filter the bound (12) tends to be loose for p < 0.25
and for K > 7. For the choice of p = 0.25 and for the considered
values ofK the bound (12) is [0.0014, 0.0113, 0.0532, 0.2267, 1.4570].

To wrap up, recalling also the filtering equivalence, the use of the
ARMA1 filter for the aforementioned tasks can replace any FIR filter
and it can be implemented distributively in a stochastic sparsifica-
tion fashion saving up to 95% of communication and computational
costs with a bias and variance of order 10−3. As future research we

3Note that for S = 1
λmax

Ld − 0.5I and changing the filter coefficients
according to Section 3 this is 0.
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S = Ln − I
S = 1/λmaxLd − 0.5I

Fig. 2. Average empirical variance among all nodes of the error
between the sparsified filter output and the original graph output for
different values of p.

aim evaluating influence that the graph topology has on the proposed
framework.

5. CONCLUSIONS
In this work we have presented a novel approach on how to spar-
sify the graph filtering operation in a stochastic way. Since the filter
output will now be stochastic, we show that if the filter coefficients
are changed accordingly the expected output is identical to the one
of the deterministic filter operating in a non-sparsified way. Further,
we show that the variance of the sparsified output is upper bounded.
Numerical results show that for the particular tasks of graph signal
denoising and diffusion the distributed costs can be reduced up to
95% differing very little from the original output.

6. APPENDIX
Proof of Proposition 1 We start by computing the trace of the covari-
ance matrix of the filter output at time t as

tr(Σy[t]) = tr(E[y
(s)
t y

(s)H
t ])− tr(E[y

(s)
t ]E[y

(s)
t ]H). (18)

By using the linearity of the expectation and the trace and substitut-
ing the expression of y(s)

t (8), we can expand the first term on the
right hand side of (18) as

tr(E[y
(s)
t y

(s)H
t ]) =

K∑
k=0,κ=0

φ
(s)
k φ(s)

κ Tk,κ(x,S), (19)

with

Tk,κ(x,S) = tr
(
xxHE

[
ΦS(t, t− κ+ 1)HΦS(t, t− k + 1)

])
,

(20)
where in (20) we have commuted the trace and the expectation and
also have applied the circular property4 of the trace. We can there-
fore use the inequality

tr (AB) ≤ 0.5‖A+AH‖tr(B) ≤ ‖A‖tr(B) (21)

valid for any symmetric matrix A and positive semi-definite matrix
B of appropriate dimensions [16], together with the triangle inequal-
ity of the norms and the fact that the realizations of the shift operator
are upper bounded as ‖St‖≤ %. Then, we can bound Tk,κ(x,S) as

Tk,κ(x,S)≤ tr
(
xxH

)
‖E

[(
t−κ+1∏
τ=t

Sτ

)(
t−k+1∏
τ=t

Sτ

)]
‖≤ ‖x‖2%κ+k.

(22)

The second term in the right hand side of (18), is positive so it can
be lower bounded by 0. Then, substituting the latter, (22) and (19)
into (18) and with simple algebra the upper bound (12) follows. �

4tr(ABC) = tr(CAB) = tr(BCA).
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