
AUTOREGRESSIVE MOVING AVERAGE GRAPH FILTERS
A STABLE DISTRIBUTED IMPLEMENTATION

Elvin Isufi†, Andreas Loukas‡ and Geert Leus†

† Circuits and Systems Group, Delft University of Technology, The Netherlands
‡ Swiss Federal Insitute of Technology in Lausanne (EPFL), Switzerland

e-mails: {e.isufi-1, g.j.t.leus}@tudelft.nl, andreas.loukas@epfl.ch

ABSTRACT
We present a novel implementation strategy for distributed autore-
gressive moving average (ARMA) graph filters. Differently from
the state of the art implementation, the proposed approach has the
following benefits: (i) the designed filter coefficients come with sta-
bility guarantees, (ii) the linear convergence time can now be con-
trolled by the filter coefficients, and (iii) the stable filter coefficients
that approximate a desired frequency response are optimal in a least
squares sense. Numerical results show that the proposed implemen-
tation outperforms the state of the art distributed infinite impulse
response (IIR) graph filters. Further, even at fixed distributed costs,
compared with the popular finite impulse response (FIR) filters, at
high orders our method achieves tighter low-pass responses, suggest-
ing that it should be preferable in accuracy-demanding applications.

Index Terms— graph signal processing, graph filters, autore-
gressive moving average graph filters.

1. INTRODUCTION

Graphs are a useful tool to mathematically represent pairwise rela-
tionships between entities of a network, such as in social, sensor or
biological networks. The field of signal processing on graphs [1], fo-
cuses on processing signals (data) that live on top of these networks.
Specifically, classical tools used in processing time and space sig-
nals, like the Fourier transform and filters [2], have now a well es-
tablished extension to these signals that have an irregular underlying
support. While the graph Fourier transform gives a specific defini-
tion to the graph frequency content of a signal [3], graph filters are
the tools that can shape the graph signal spectrum.

Graph filters find applications in signal denoising and smooth-
ing [4,5], interpolation [6] and solving diffusion tasks [7]. They also
enjoy a distributed implementation and have been used to distribu-
tively perform linear operations like finite time consensus and net-
work coding [8]. Generally, these tasks are solved with the so-called
finite impulse response (FIR) graph filter, i.e., the analog of the
homonym temporal filter characterized by a polynomial frequency
response, but now applied in the graph frequency domain.

In this work, we will focus on distributed implementation of au-
toregressive moving average (ARMA) graph filters [9]. Due to their
rational frequency response, these filters are particularly useful for
diffusion filtering [7], solving Tikhonov denoising problems [1] and
interpolation under smoothness prior [6, 10]. Further, they are ro-
bust to deterministic [9] and stochastic [11] time-variations in both
the graph topology and graph signal. However, distributed ARMA
filters achieve their designed frequency response theoretically only
after infinite iterations [9], thus two main challenges need to be ad-
dressed: (i) the guarantee that the filter will converge (i.e., stability)
and (ii) the convergence time.

Differently from our previous implementation of ARMA graph
filter implementation [9], in this paper we propose a novel imple-
mentation strategy where (i) the filter coefficients are designed to en-
sure stability, (ii) it preserves the linear convergence property of [9],
and (iii) it has the potential to achieve rational frequency responses
of different orders in the numerator and denominator. Further, in the
proposed filter we have a handle to control the convergence time and
we also came up with a design method which finds the optimal stable
filter coefficients in a least squares sense.

Our numerical results show that the proposed implementation
outperforms the distributed IIR filters [9, 12] and also for high filter
orders it performs better than distributed FIR graph filter even at
fixed distributed complexity.

2. BACKGROUND

In this section, we first recall the basics of signal processing on
graphs and then discuss the state of the art distributed FIR and
ARMA graph filters.

Basics. Consider an undirected graph G = (V, E), where V
indicates the set ofN vertices and E the set ofM edges. We indicate
with x the N × 1 vector, where the i-th entry xi ∈ C lives on the
i-th node of G. We will commonly refer to x as the graph signal.

The local structure of G is captured by the graph shift operator
S, defined as an N × N symmetric matrix with Si,j 6= 0 if there
exists a connection between the nodes i and j, or differently (i, j) ∈
E . Common choices of S are the adjacency matrix of the graph [2],
the graph discrete and normalized Laplacian [1] or their translated
versions [9]. For convenience let us indicate with % the spectral norm
of the shift operator matrix, i.e., ‖S‖= %.

Due to its symmetric structure, S can always be decomposed
as S = UΛUH, where the eigenvectors U = [u1, . . . ,un] and
eigenvalues Λ = diag[λ1, . . . , λN] carry the notion of frequency in
the graph setting [1,2]. The eigenvalues {λn}Nn=1 indicate the graph
frequencies and the eigenvector matrixU is used as the Fourier basis
for the graph spectral analysis of x. Specifically, the graph Fourier
transform x̂ of x and its inverse are respectively calculated as x̂ =
UHx and x = Ux̂.

Distributed FIR graph filters. An FIR filter of orderK (FIRK)
can be defined as a K-th order polynomial of S, which can be im-
plemented distributively due to the local structure of S. The output
signal and the graph frequency response of the filter are respectively
given by

y =
K∑
k=0

ϕkS
kx and h(λn) =

K∑
k=0

ϕkλ
k
n, (1)

whereϕk are the filter coefficients. SinceSKx = S(SK−1x), each

4119978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017

node can compute the K-th term from the values of the (K − 1)-th
terms in its neighborhood. In a distributed implementation, the over-
all communication and computational complexity is O(MK). For
time-varying graph signals, extensions to 2-dimensional FIR filters
are proposed in [13–15].

Distributed ARMA graph filters. We can obtain an ARMA
graph filter of order K (ARMAK) using a parallel bank of K
ARMA1 graph filters [9]. Let us denote with the superscript (k) the
corresponding terms of the k-th branch for k = 1, 2, . . . ,K. Then,
given a graph signal x, the output of the k-th branch y(k)

t and the
filter output yt at time instant t are

y
(k)
t = ψ(k)Sy

(k)
t−1 + ϕ(k)x and yt =

K∑
k=1

y
(k)
t , (2)

for arbitrary y(k)
0 , and where ψ(k) and ϕ(k) are the complex filter

coefficients. From [9], the graph frequency response of the parallel
ARMAK filter is

h(λn) =

K∑
k=1

rk
λn − pk

subject to |pk|> %, (3)

with residuals rk = −ϕ(k)/ψ(k) and poles pk = 1/ψ(k). In con-
trast to the FIR filters, where the output is obtained after K time
instants1, recursion (2) will achieve the frequency response (3) theo-
retically at infinity, yet it is characterized by a linear convergence in
practice. In a distributed implementation, to obtain the filter output
after T iterations, the communication and computational complex-
ity of the ARMAK is O(TMK). Extensions of distributed ARMA
filters for time-varying graph signals are proposed in [16].

The parallel design suffers from two main drawbacks: It is chal-
lenging to perform the filter design with theoretical guarantees that
always ensure a stable implementation of (2). Especially, this issue
is enhanced for shift operators S with a high spectral radius %. Fur-
ther, the convergence time of the ARMAK cannot be controlled and
it is directly imposed by the filter coefficients. What we propose next
is a novel distributed implementation of ARMA filters, which can be
designed with theoretical guarantees of convergence and where the
convergence time can now be controlled by the filter coefficients.

3. PROPOSED SOLUTION

This section contains our proposed solution to implement a dis-
tributed ARMA graph filter. We first introduce the new implemen-
tation algorithm and derive theoretical results on the convergence
time. Then, we propose a filter design strategy that ensures algo-
rithm stability while also allowing to trade off convergence time
with approximation accuracy. We conclude the section by analyzing
the distributed implementation cost of the algorithm,

Consider the recursion

yt = −
P∑
p=1

ψpS
pyt−1 +

Q∑
q=0

ϕqS
qx (4)

where ψp and ϕq will again indicate the complex filter coefficients.
In contrast to the implementation (2), in computing yt now we
perform P graph shifts of the past filter memory yt−1 and Q of
the graph signal x. We will refer to this implementation as an
ARMAP,Q graph filter.

Proposition 1 The graph frequency response of ARMAP,Q is

h(λn) =

∑Q
q=0 ϕqλ

q
n

1 +
∑P
p=1 ψpλ

p
n

subject to
P∑
p=1

|ψp|%p < 1. (5)

1We consider that one iteration is performed in one time instant.

Recursion (4) converges to it linearly independently from the initial
condition y0 and the choice of the shift operator S.

Proof (Sketch) To ease the notation, let’s set P = −
∑P
p=1 ψpS

p

andQ =
∑Q
q=0 ϕqS

q . Then, (4) can be written as

yt = P
ty0 +

t−1∑
τ=0

P τQx. (6)

When ‖P ‖< 1 and for t→∞ we approach the steady state

y = lim
t→∞

yt =

∞∑
τ=0

P τQx = (I − P)−1Qx. (7)

Substituting back the expressions for P and Q in (7) and applying
the graph Fourier transform, we obtain the relationship between the
n-th frequency component of the output ŷn and input x̂n:

ŷn =

(
1 +

P∑
p=1

ψpλ
p
n

)−1(Q∑
q=0

ϕqλ
q
n

)
x̂n. (8)

The frequency response ŷn in (5) can simply be obtained by a point-
wise division between ŷn and x̂n. The sufficient condition for con-
vergence can be obtained by substituting the expression of P in
‖P ‖< 1 and then applying the triangle and Cauchy-Schwarz in-
equality while remembering that ‖S‖= %. �

Proposition 1 formally states what we intuitively said regard-
ing recursion (4). Indeed, from (5) we can see that ARMAP,Q is
characterized by a rational frequency response of order P in the de-
nominator andQ in the numerator. Further, from (3) and (5) with the
ARMAP,Q we can easily obtain frequency responses of different or-
ders in the numerator and denominator. Even-though it is true that
with recursion (2) we can also obtain different orders, it is recom-
mended there to use the same order to obtain a stable recursion with
a decent approximation accuracy. Secondly, in contrast to recursion
(2), the stability condition in (5) is now convex in the denominator
coefficients ψp rather than in the poles2.

Similar to the ARMAK filter, the largest stability region is ob-
tained for a small %. This can be for instance the case when we con-
sider as a shift operator the translated normalized Laplacian (Ln),
i.e., S = Ln − I . In the latter case, the sufficient stability condition
reduces to

∑P
p=1|ψp|< 1.

Convergence Analysis. As the ARMAK filter, the ARMAP,Q
filter achieves the rational frequency response (5) theoretically for
t → ∞. However, in practice the output becomes close to the
steady state after few iterations due to the linear convergence of the
algorithm. The following proposition gives a characterizes the linear
convergence time of the algorithm and shows our handle on reducing
the convergence time.
Proposition 2 For a stable ARMAP,Q filter (4), the necessary num-
ber of iterations t to be ε-close to the frequency response (5) is

t ≥ ln(ε/α) (ln (‖P ‖))−1 , (9)

for a desired small error ε and α = ‖y0‖+(1− ‖P ‖)−1 ‖Q‖‖x‖,
where ‖·‖ indicates the 2-norm.

Proof (Sketch) Given the ARMAP,Q output in (6), the error norm
w.r.t. the steady state (7) at time t is

‖yt − y‖≤ ‖P ‖t‖y0‖+
∞∑
τ=t

‖P ‖τ‖Q‖‖x‖, (10)

2This can be observed by expressing (3) from the partial fraction form
into a ratio of two polynomials [9].

4120

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
1

10
2

10
3

‖P ‖

‖Q‖ = 0.1
‖Q‖ = 100
‖Q‖ = 100
‖Q‖ = 1000

ǫ = 10−3

t

25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

0

10
1

10
2

10
3

‖P ‖

‖Q‖ = 0.1
‖Q‖ = 100
‖Q‖ = 100
‖Q‖ = 1000

ǫ = 10−2

t

25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

0

10
1

10
2

10
3

‖P ‖

‖Q‖ = 0.1
‖Q‖ = 100
‖Q‖ = 100
‖Q‖ = 1000

ǫ = 10−1

t

25

Fig. 1. Convergence time of the ARMAP,Q (4) to be ε-close to the steady state (7) as a function of ‖P ‖. The results are analyzed for different
values of ‖Q‖ and for different values of the approximation error ε.

where in (10) we have applied the triangle and Cauchy-Schwarz in-
equality of the norms. Then, by considering that ARMAP,Q is sta-
ble, i.e., ‖P ‖< 1, we can express the geometric series in closed
form
‖yt − y‖ ≤ ‖P ‖t‖y0‖+(1− ‖P ‖)−1 ‖P ‖t‖Q‖‖x‖

≤ ‖P ‖t
(
‖y0‖+(1− ‖P ‖)−1 ‖Q‖‖x‖

)
.

(11)

Then, for ‖yt − y‖≤ ε we have

t (ln (‖P ‖)) ≤ ln
(

ε

‖y0‖+(1− ‖P ‖)−1 ‖Q‖‖x‖

)
, (12)

which can be reformulated into (9) by dividing both sides of (12) by
ln (‖P ‖) < 0. �

Proposition 2 asserts that there is a minimum number of itera-
tions t that algorithm (4) must be run in order to be ε-close to its
steady state. As we can see from (9), a handle to reduce t is the
spectral norm of P . From (ln (‖P ‖))−1 (where ‖P ‖≤ 1 to en-
sure stability) t can be reduced for a P with a smaller spectral norm.
However, this is in contrast to the effect of ‖P ‖ in ln(ε/α), where
a smaller spectral norm of P gives a larger ln(ε/α) and thus poten-
tially a higher t. The latter is shown to have a lower influence on
t. Further, since the ln(‖P ‖) < 0, t can also be reduced by choos-
ing the coefficients ϕq to reduce the spectral norm of Q (this is true
when ln(ε/α) < 0, otherwise we have directly t = 0).

To quantify what is said above, we consider a scenario where
ε = [10−3, 10−2, 10−1], ‖y0‖= 0 and ‖x‖= 1. Fig. 1 shows
the convergence time (rounded to the next integer) of the algorithm
when (9) is met with equality, as a function of ‖P ‖∈ [0, 1[and for
different values of ‖Q‖. The first thing to notice is the impact that
‖P ‖ has on (ln (‖P ‖))−1 prevails on that of ln(ε/α). Indeed, t
increases monotonically with ‖P ‖. Secondly, as previously men-
tioned, also a higher value ‖Q‖ will give a larger convergence time.
From these results we suggest to avoid values of ‖P ‖ close to 1 in
order to obtain reasonable convergence times. On the other hand,
this means that the stability region for convergence is reduced and
thus we have less degrees of freedom to design our coefficients. As
we will see next, this will potentially lead to a lower approximation
accuracy. Similar considerations hold also for ‖Q‖, but since it has
less effect on the convergence time we can allow a higher ‖Q‖ to
improve the approximation accuracy. To summarize this part, the
filter coefficients are designed as a trade-off between approximation
accuracy and convergence time.

ARMAP, Q design. Given an ARMAP,Q graph filter and a desired
frequency response ĥn : {λn}Nn=1 → R, we would like to find the
filter coefficients ψp and ϕq that make the frequency response (5)
as close as possible to ĥ(λn), yet ensuring a stable implementation.
Differently, we would like to minimize the error

e′(λn) = ĥ(λn)−
∑Q
q=0 ϕqλ

q
n

1 +
∑P
p=1 ψpλ

p
n

. (13)

Finding the filter coefficients by minimizing, in a least squares er-
ror sense, the error (13) leads to a set of nonlinear equations in the

filter coefficients. Similar to the Padé approximation in the time do-
main [17], we can multiply both sides of (13) by the denominator
expression of the frequency response to obtain the new (not equiva-
lent) error

e(λn)= ĥ(λn) + ĥ(λn)

P∑
p=1

ψpλ
p
n −

Q∑
q=0

ϕqλ
q
n, (14)

which is now linear in the filter coefficients. Then, by staking the
errors for different λn in e = [e(λ1), . . . e(λN)]> and definingψ =
[ψ1, . . . , ψP]

>, ϕ = [ϕ1, . . . , ϕQ]
> as the vectors containing the

filter coefficients, we rewrite (14) as

e = ĥ+ diag(ĥ)ΨPψ −ΦQ+1ϕ, (15)

where ĥ = [ĥ(λ1), . . . ĥ(λN)]> is the N × 1 vector containing the
desired frequency response, ΨP is a Vandermonde-like N × P ma-
trix with (r, p)-th entry [ΨP]r,p = λpr andΦQ+1 is theN × (Q+1)
matrix still with a Vandermonde-like structure, but with (r, q)-th en-
try [ΦQ+1]r,q = λq−1

r . With the new notation in place, the stability
condition of the filter ‖P ‖< 1 can be expressed as ‖ΨPψ‖∞< 1,
where the latter inequality can be derived from the expression of P
and by considering that S = UΛUH. Then, stable filter coefficients
that minimize e are obtained by solving the convex constrained least
squares problem

minimize
ψ,ϕ

‖ĥ+ diag(ĥ)ΨPψ −ΦQ+1ϕ‖2

subject to ‖ΨPψ‖∞≤ δP , δP < 1,
(16)

where δP is our handle to trade convergence speed with approxima-
tion accuracy. From our tests we suggest that a good choice for δP
is in the range [0.6, 0.8]. Such consideration comes from the fact
that a higher value of δP lead to slower convergence (see also Fig. 1)
and thus higher computational costs. On the other hand, values of
δP < 0.6 are generally not recommended since the approximation
accuracy is highly affected and the gain in convergence time is not
worth it.

While it is true that solving (16) will produce the stable filter
coefficients that minimize the error e(λn), we are more interested in
the minimization of e′(λn). As we previously said, this minimiza-
tion problem is highly non convex due to the denominator expresion
inψ. However, once the optimal solutionψ∗ of (16) is obtained, we
can plug it back into (13) and then simply minimize it w.r.t. ϕ.

Distributed complexity. To obtain in a distributed manner the
ARMAP,Q output after T iterations, recursion (4) considers the mul-
tiplication of the terms Spyt−1 for p = 1 . . . P and t = 0, . . . , T −
1. Further, we also need to compute Sqx for q = 1, . . . Q. While
for the past output yt−1 all terms S1yt−1 . . .S

Pyt−1 must be com-
puted, for the input signal the terms Sqx can be calculated only
once as S(Sq−1x). Thus, for obtaining yT , Q multiplications are
performed in the moving average and P multiplications for each
t ∈ [0, . . . , T − 1] in the autoregressive part. Considering that the
graph shift matrix S is a local matrix, the multiplication of S with

4121

0 10 20 30 40 50 60 70 80 90 100
10

-1

10
0

10
1

10
2

t

re
sp

on
se

er
ro

r

ARMAP,Q ARMAK FastIDIIR

K = 10
K = 20

δ Fig. 2. Normalized response error as a function of time for the three
distributed algorithms to implement a rational frequency response.
The results are shown for orders K = 10, 20. The ARMAP,Q is
designed such that P +Q ≤ K to ensure the same distributed cost.

any graph signal can be computed distributively by exchanging 2M
values. It follows that the overall communication complexity is of
order O(M(TP +Q)).

4. NUMERICAL RESULTS

In this section we evaluate the performance of the proposed method.
First we compare the ARMAP,Q filter with the parallel ARMAK
(2) [9] and with the parallel FastIDIIR algorithm of [12], which uses
a gradient descent algorithm implemented distributively. Then, we
compare the ARMAP,Q with some FIR filters.

We analyze the performance on a random geometric graph of
N = 100 nodes randomly distributed in a squared area with two
nodes being neighbors if they are closer than 15% of the maximum
distance. We consider as shift operator S = Ln − λmax(Ln)

2
I , with

λmax(Ln) the maximum eigenvalue of Ln for the particular graph.
All the filters are designed to approximate an ideal low pass filter
in the frequency domain of S. The cut-off frequency of the filter is
λc = λN/2(S), i.e., the half of the band. The input signal x is con-
sidered to have a white unitary spectrum w.r.t. the underlying graph
and the filters are initialized as y0 = x. Our results are averaged
over 10 iterations.

Rational distributed filters. We first compare the convergence
time of the three distributed algorithms that are characterized by a
rational frequency response for K = 10, 20. Note that the per
iteration complexity of the ARMAP,Q is at most equal to that of
the other two approaches (equality when P + Q = K). For the
ARMAK and for the FastIDIIR the Shank’s method proposed in [9]
is used to design the filter coefficients, while for the ARMAP,Q we
follow the design method proposed in Section 3. In the latter case,
for each graph, the values of P and Q (P +Q ≤ K to have at most
same cost) with the smallest approximation error are selected with
δP = 0.65.

Fig. 2 depicts the normalized approximation error between the
filter frequency responses and the desired one as a function of time.
We can see that ARMAP,Q converges faster than the other algo-
rithms yet ensuring the same approximation accuracy. The large val-
ues in the transition phase of ARMAK and FastIDIIR are due to their
large coefficients, while the ARMAP,Q error always reduces with t.

Comparison with FIR. We compare the performance of the
ARMAP,Q graph filter with the FIRK with the same distributed
cost. Specifically, we consider the FIR output after K iterations and
the ARMAP,Q output after T iterations such that TP + Q = K.
Then, we compare both filter outputs with the desired frequency
response to calculate the normalized response error. The FIR filter
coefficients are calculated in a least squares sense matching the

Table 1. Normalized response error as a function of filter order K
and convergence parameter δP for the ARMA and FIR filters. To
improve visibility we color in red the cell where FIR performs better,
in orange where the ARMAP,Q is worst by at most 0.05 and in green
where the ARMAP,Q performs better.

aaaaa
δ K 3 9 15 21 27 33 39

0.1 0.560 0.338 0.274 0.234 0.210 0.203 0.200
0.2 0.570 0.344 0.279 0.236 0.210 0.203 0.198
0.3 0.583 0.354 0.280 0.237 0.210 0.201 0.194
0.4 0.601 0.360 0.280 0.237 0.210 0.200 0.190
0.5 0.601 0.360 0.280 0.236 0.204 0.191 0.183
0.6 0.596 0.362 0.281 0.235 0.194 0.182 0.177
0.7 0.601 0.366 0.282 0.235 0.185 0.173 0.170
0.8 0.598 0.380 0.287 0.237 0.183 0.166 0.162
0.9 0.597 0.412 0.307 0.249 0.197 0.171 0.165

0.99 0.596 0.456 0.368 0.321 0.291 0.245 0.223
FIR 0.450 0.311 0.255 0.222 0.197 0.194 0.194

desired frequency response. These results are shown in Table 1.
Before comparing with the FIR filters, let us point out a couple

observations regarding the ARMAP,Q behaviour when the output is
not considered at steady state but in finite time: (i) for low filter
orders K ≤ 18, a choice of δP ≤ 0.6 is preferred to obtain a better
approximation accuracy; (ii) on the other hand, when K > 18 the
best choices for our trading handle are in the range δP ∈ [0.6, 0.9].

When analyzing the performance of the FIR filter for a specific
order K, we have that the FIR performance degrades for high filter
order (K > 24), especially when the graph frequencies are numeri-
cally close to each other. For this purpose, filter orders smaller than
K can also be used for the FIR filter if this leads to a better per-
formance. In comparison with the ARMAP,Q with fixed distributed
costs, the FIR filters performs much better for K < 9, and have still
a better performance but are closer to the ARMAP,Q for K ≤ 21.
On the other hand, when K > 21 the ARMAP,Q filter dominates
the FIR in terms of approximation accuracy. Specifically, for the
considered scenario, the approximation accuracy of the FIR does not
go below 0.2 while for the ARMAP,Q for K = 39 and δ = 0.8 we
have an approximation accuracy of 0.16.

We summarize this part with the following two observations: (i)
in a fixed distributed cost comparison the choice of the FIR is rec-
ommended for small filter orders, while the ARMAP,Q for higher
orders; (ii) in case the distributed cost is not limited, i.e., where the
ARMAP,Q can be run for enough iterations to be close to its steady
state, it has the potential to achieve much better approximation ac-
curacies. In the latter case, even FIRs with higher orders cannot
achieve the same performance.

5. CONCLUSIONS

In this work, we propose a novel strategy to distributively implement
rational graph filters. Similar to state of the art algorithms that imple-
ment IIR graph filters the designed frequency response is achieved
in linear convergence time. The proposed algorithm enjoys a sta-
ble distributed implementation and now the filter coefficients can be
designed as a tradeoff between the convergence time and approxima-
tion accuracy. Simulation results show that the proposed implemen-
tation strategy outperforms other distributed IIR graph filters and for
higher filter orders it also beats the distributed FIR filters.

4122

6. REFERENCES

[1] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and
P. Vandergheynst, “The Emerging Field of Signal Processing
on Graphs: Extending High-Dimensional Data Analysis to
Networks and Other Irregular Domains,” IEEE Signal Process-
ing Magazine, vol. 30, no. 3, pp. 83–98, 2013.

[2] A. Sandryhaila and J. M. Moura, “Discrete Signal Processing
on Graphs,” IEEE Transactions on Signal Processing, vol. 61,
no. 7, pp. 1644–1656, 2013.

[3] ——, “Discrete Signal Processing on Graphs: Frequency
Analysis,” IEEE Transactions on Signal Processing, vol. 62,
no. 12, pp. 3042–3054, 2014.

[4] F. Zhang and E. R. Hancock, “Graph Spectral Image Smooth-
ing Using the Heat Kernel,” Pattern Recognition, vol. 41,
no. 11, pp. 3328–3342, 2008.

[5] D. I. Shuman, P. Vandergheynst, and P. Frossard, “Chebyshev
Polynomial Approximation for Distributed Signal Processing,”
in IEEE International Conference on Distributed Computing in
Sensor Systems and Workshops (DCOSS), 2011, pp. 1–8.

[6] S. K. Narang, A. Gadde, and A. Ortega, “Signal Process-
ing Techniques for Interpolation in Graph Structured Data,”
in Acoustics, Speech and Signal Processing (ICASSP), 2013
IEEE International Conference on. IEEE, 2013, pp. 5445–
5449.

[7] J. Ma, W. Huang, S. Segarra, and A. Ribeiro, “Diffusion Fil-
tering of Graph Signals and Its Use in Recommendation Sys-
tems,” in 2016 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2016, pp.
4563–4567.

[8] S. Segarra, A. G. Marques, and A. Ribeiro, “Distributed Lin-
ear Network Operators Using Graph Filters,” arXiv preprint
arXiv:1510.03947, 2015.

[9] E. Isufi, A. Loukas, A. Simonetto, and G. Leus, “Autoregres-
sive Moving Average Graph Filtering,” IEEE Transactions on
Signal Processing, vol. 65, no. 2, pp. 274–288, 2017.

[10] M. Belkin and P. Niyogi, “Semi-Supervised Learning on Rie-
mannian Manifolds,” Machine learning, vol. 56, no. 1-3, pp.
209–239, 2004.

[11] E. Isufi, A. Simonetto, A. Loukas, and G. Leus, “Stochastic
Graph Filtering on Time-Varying Graphs,” in IEEE Interna-
tional Workshop on Computational Advances in Multi-Sensor
Adaptive Processing (CAMSAP), 2015.

[12] X. Shi, H. Feng, M. Zhai, T. Yang, and B. Hu, “Infinite Impulse
Response Graph Filters in Wireless Sensor Networks,” IEEE
Signal Processing Letters, Jan 2015.

[13] A. Sandryhaila and J. M. Moura, “Big Data Analysis with Sig-
nal Processing on Graphs: Representation and Processing of
Massive Data Sets with Irregular Structure,” IEEE Signal Pro-
cessing Magazine, vol. 31, no. 5, pp. 80–90, 2014.

[14] E. Isufi, G. Leus, and P. Banelli, “2-Dimensional Finite Im-
pulse Response Graph-Temporal Filters,” in IEEE Global Con-
ference on Signal and Information Processing (GlobalSIP),
Washington D.C, USA, 2016.

[15] A. Loukas and D. Foucard, “Frequency Analysis of Temporal
Graph Signals,” in IEEE Global Conference on Signal and In-
formation Processing (GlobalSIP). Washington D.C, USA,
2016.

[16] E. Isufi, A. Loukas, A. Simonetto, and G. Leus, “Separable Au-
toregressive Moving Average Graph-Temporal Filters,” in Sig-
nal Processing Conference (EUSIPCO), 2016 24th European.
IEEE, 2016, pp. 200–204.

[17] M. H. Hayes, Statistical Digital Signal Processing and Model-
ing. John Wiley & Sons, 2009.

4123

