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ABSTRACT

Advancing a holistic theory of networks and network processes re-
quires the extension of existing results in the processing of time-
varying signals to signals supported on graphs. This paper focuses
on the definition of stationarity and power spectral density for ran-
dom graph signals, generalizes the concepts of autoregressive and
moving average random processes to the graph domain, and investi-
gates their parametric spectral estimation. Theoretical and algorith-
mic results are complemented with numerical tests on synthetic and
real-world graphs.

Index Terms— Graph signal processing, Stationarity, Power
spectral density, Parametric estimation, ARMA graph processes.

1. INTRODUCTION

To cope with challenges posed by network science and big data, cur-
rent results in modeling, analysis and processing of time-varying
signals must be extended to deal with signals supported on irreg-
ular domains represented by graphs [1]. This approach has been
successfully applied to a number of fundamental problems such as
frequency analysis [1,2], filtering [3—5], or sampling and reconstruc-
tion of graph signals [6-10], to name a few. The problems investi-
gated in this paper are the generalization of the notions of stationary
processes [11,12] and power spectral density (PSD) to the graph do-
main [13], along with schemes to estimate the parameters describing
the processes as well as their associated PSDs. To be more concrete,
we first define stationary graph processes as those that can be mod-
eled as the output of a linear shift-invariant graph filter applied to a
white input and discuss the implications of such a definition in terms
of the generalization of the power spectral density. Since stationary
graph processes are unequivocally characterized by their generating
filter, different types of processes (each associated with a type of fil-
ter) are considered. These include autoregressive (AR), moving av-
erage (MA) and ARMA processes. Such models are then leveraged
to develop parametric methods to estimate the filters’ parameters,
which also yield a means to estimate their PSD.

Preliminary results generalizing the definition of stationarity
to graph signals for Laplacian shifts were reported in [13, 14]. A
straightforward generalization is not trivial because the shift oper-
ation in the graph domain is more involved. It changes the energy
of the shifted signal (unless normalized [13]), and its effect in the
frequency domain is more difficult to analyze. Our contribution is
to consider general normal shifts and draw a parallel between the
time and graph domains. While our previous work dealt with non-
parametric PSD estimation methods [15], here the focus is on the
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definition of parametric models for random graph processes along
with efficient methods for their estimation.

1.1. Graph signals and filters

Let' G = (W, &) be a directed graph or network with a set of N
nodes N and directed edges £ such that (i,5) € & implies that
node 7 is connected to node j. We associate with G the graph-shift
operator S, defined as an N x N matrix whose entry S;; 7# 0 only
if i = jorif (¢,j) € £ [3]. The sparsity pattern of the matrix
S captures the local structure of G. Frequent choices for S are the
adjacency matrix of the graph and its Laplacian [1, 3]. The intuition
behind S is to represent a linear transformation that can be computed
locally at the nodes of the graph. More rigorously, if the set N; (%)
stands for the nodes within the {-hop neighborhood of node ¢ and
the signal y is defined as y = Sx, then node ¢ can compute y;
provided that it has access to the values of x; at j € Ni(i). We
assume henceforth that S is normal, so that it can be decomposed as
S = VAV¥ with V being unitary and A diagonal.

Graph signals: We do not focus on G, but rather on graph signals
defined on the set of nodes . Formally, each of these signals can be
represented as a vector X = [1, ..., znx]" € RY where the i-th ele-
ment represents the value of the signal at node ¢ or, alternatively, as
a function f : N — R, defined on the vertices of the graph. Given a
graph signal x, we refer to X := V¥ x as the frequency representa-
tion of x, with V¥ being the graph Fourier transform (GFT) [2].
Graph filters: A graph filter is a linear graph-signal operator
H: RY — RY of the foom H := /' iiS', where h =
[ho, .-, hL_l}T is a vector of L < N scalar coefficients. Graph
filters are then polynomials of degree L — 1 in the graph-shift
operator S [3], which due to the local structure of the shift can
be implemented locally [4,5]. It is easy to see that graph fil-
ters are invariant to applications of the shift in the sense that if
y = Hx, it must hold that Sy = H(Sx). Using the factoriza-
tion S = VAV the filter H := ZZL:_Ol hyS! can be rewritten as
H=V(X, ' AV := Vdiag(h) V. The N x 1 vector h
is termed the frequency response of the filter. To relate h with the
filter coefficients h let A\, = [A]xx be the kth eigenvalue of S and
define the N x N Vandermonde matrix W with entries Wy; = AL~ '
Further define ¥, as a tall matrix containing the first L columns of
W to write h = ¥rh and conclude that the filter can be alterna-
tively written as H = Vdiag(h)V"” = Vdiag(¥h)V*. This

I Notation: Entries of a vector x are written as z; and entries of a matrix
X as X;;; X*, XT and X* denote conjugate, transpose, and conjugate
transpose, respectively. For a square matrix X, diag(X) returns a vector with
the diagonal elements of X; for a vector x, diag(x) denotes a diagonal matrix
with diagonal elements diag[diag(x)] = x; and x o y is the elementwise
product of x and y. We use O and 1 to denote the all-zero and all-one vectors.
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expression implies that if y is defined as y = Hx, its frequency
representation ¥ = Vy satisfies

y = diag(¥ h)V7x = diag(h)x = hox, )

demonstrating that filters are orthogonal frequency operators.

2. STATIONARITY AND PSD OF GRAPH PROCESSES

For motivation purposes, let us first analyze the covariance matrix of
a graph random process generated by applying a linear graph filter
to a white input. Mathematically, consider a graph G with associated
shift operator S and suppose that w is a random graph process with
mean w = E[w] = 0 and covariance C,, = E [ww”] = L
Suppose now that we have a random process x whose realizations
are generated by applying the graph filter H = Zl]igl S to a
realization of w. Then it holds that the mean of that process is X =
E[x] = E[Hw] = HW = 0 and its covariance C, = E[xx"] =
HE[ww”]H" is

C,=HH"=Vdiag(h)V"” Vdiag(h*\V "= Vdiag(|h|*) V" (2)

The expression in (2) not only reveals that the color of x is given
by the filter H but, equally important, that the eigenvectors of the
covariance matrix C, and those of the shift S are the same.

2.1. Definition of stationarity

Three conditions under which a graph process can be considered
(weakly) stationary are given next. Under the assumption that the
eigenvalues of S are distinct, it can be shown that these three con-
ditions are equivalent — proofs are omitted due to space limitations,
but they can be found in [16].

Definition 1 Given a normal graph-shift operator S, the zero-mean
random process x is said to be weakly stationary in S if it satisfies
any of the following conditions: a) The process x can be modeled
as the output of a graph filter H = 3 lL:_Ol hiS" applied to an un-
correlated input w with w = 0 and C,, = I; b) Matrices C, and
S are simultaneously diagonalizable; or c) The cross-correlation of

the shifted versions of the process satisfies E [[S*x];[(S")*x]}] =

IE,[[S(“*C)x]i[(SH)(HC)X]J'} for any positive a, b, and ¢ < a.

It is important to notice that the condition of stationarity is defined
with respect to (w.r.t.) a graph-shift operator S, which is required to
be normal. Note also that b) implies that C, is diagonalized by the
graph Fourier basis, and that the * operator in c) is not required if S
is symmetric.

When particularizing Def. 1 to time-varying signals (this can be
done by setting S to the adjacency matrix of a directed cycle [1]),
the classical definition of stationarity is recovered, requiring C, to
be circulant (if S is set to the adjacency matrix of the directed path,
then C, is Toeplitz). One example of a stationary graph processes
is zero-mean white noise, which is stationary in any graph shift S.
Moreover, it is also true that any random process is stationary w.r.t.:
i) the graph shift S = C, given by its covariance matrix; and ii) the
graph shift S = C ! given by its precision matrix.

2.2. Definition of PSD

The GFT together with Def. 1 can be readily used to generalize the
concept of PSD to random graph processes.

Definition 2 The PSD of a random graph process x that is stationary
w.rt. S = VAVH is the nonnegative N x 1 vector p, where

p = diag(V”C,V). A3)

Since C, is diagonalized by V, the definition in (3) corresponds to
the eigenvalues of the positive-semidefinite matrix C,, which are
always nonnegative. Thus, it holds that C, = Vdiag(p)V*. Note
also that if x is interpreted as the output of a graph filter applied to
a white input with unitary variance, it also holds that p = \‘I’h|2 =
|h|?, where h are the filter coefficients and |-|* is applied entry-wise.

Property 1 Let y be the random process modeling the output of a
linear graph filter H = le\gl hyS! applied to an input x that is
stationary in S with covariance C, and PSD p,. Then it holds that
process y: a) Is stationary in S with covariance C, = HC.HF;
and b) Has a PSD p,, given by p, = |¥h|? o p, = |h|? 0 p,.

Property 2 Let x be a random stationary process in S = VAV
and x = VFx its frequency representation. Then, it holds that
C; = E [xx"] — E[XJE[X]"” = diag(p), so that &) and ;. are
uncorrelated for k # k.

Prop. 1 is the counterpart of the spectral convolution theorem for
graph processes, Prop. 2 provides motivation for the analysis and
modeling of stationary graph processes in the spectral domain. It
also shows that if a process x is stationary in the shift S = VAVEH,
then the GFT V* provides the Karhunen-Logve expansion of the
process. This is as it should be because C is diagonalized by V.

3. PARAMETRIC PSD ESTIMATION

We address PSD estimation assuming that the graph process x is
the filtered version of a white input, with the filter H being well ap-
proximated by a parametric model. As per Def. 1.a, this is always
possible if the degree L — 1 of H is N — 1. The goal here is to
devise filter representations of an order much smaller than N. Mim-
icking time processes, we devise MA, AR, and ARMA models [5].
To run the estimation algorithms we assume that a set {x, }7*; of

realizations of the random process x is available and use those to
1

form the sample covariance C3¥ =

periodogram pY® = & Zle [VEx, |2

R T
~—1 XrX, and the average

3.1. MA graph processes

Consider a vector of coefficients 8 = [Bo, ..., Br—1]" and assume
that x is stationary in S and generated by the FIR filter H(3) =
> f;ol B;S!. The degree of the filter is less than N — 1 although we
want in practice to have L < N. If the process is indeed generated
as the response of H((3) to a white input, the covariance matrix of
the process can be written as

C.(8) =HBH"(8) = X[ (BSH(BS™). 4

The PSD corresponding to the covariance in (4) is the magni-
tude squared of the frequency representation of the filter. To
see this formally, notice that it follows from the definition in (3)
that p(8) = diag (V¥ C.(B)V). Writing the covariance ma-
trix as C,(8) = H(B)H" (8) and the frequency representation
of the filter as h(8) = diag(VH(B)V), it follows readily that
p(B) = |h(B)|?. For the purposes of this section it is convenient to
write the latter explicitly in terms of 3 as [cf. (1)]

p(B) = h(B)* = [T.6°. )

The covariance and PSD expressions in (4) and (5) are graph coun-
terparts of MA time processes generated by FIR filters.

The estimation of the coefficients 3 can be addressed in either
the graph or graph frequency domains. In the graph domain we com-
pute the sample covariance Cip and introduce a distortion function
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D (C3P, C.(8)) to measure the similarity of C5P and C., (3). The
coefficients (3 are then selected as the ones with minimal distortion

B = argming Do(CF, Co(B)). ©)

The expression for C,(3) in (4) is a quadratic function of 3 that is
generally indefinite. Hence, (6) will be not convex in general.

To perform estimation in the frequency domain we first com-
pute the periodogram pr®. We then introduce a distortion measure
Dy (P8, ¥ B|%) to compare L& with the PSD | ¥ 1, 3|2 and select
the coefficients 3 that solve the following optimization

B = argming Dy (pLe, |'IIL,8\2) @)

Since the quadratic form |® 1, 3|? in (7) is also indefinite, the prob-
lem in (7) is not necessarily convex. In the particular case when
the distortion Dy (pES, | ¥ 3]%) = ||p2¢ — |[¥.B|%||3 is the Eu-
clidean 2-norm, efficient (phase-retrieval) solvers with probabilistic
guarantees are available [17, 18]. Tractable formulations of (6) and
(7) when S is symmetric, or, when S is positive semidefinite and the
filter coefficients h are nonnegative are discussed below.

Symmetric shifts. If S is symmetric, the expression for C, in (4)
can be simplified to a polynomial of degree 2(L — 1) in S

Ca(B) = SiZgy—o AiBrS"= 35T St = Ca(). ®)
In the second equality in (8) we have defined the coefficients
v o= Zl’Jrl”:l By By summing all the coefficient crossproducts

that multiply S’ and introduced C, (=) to denote the covariance
matrix written in terms of the ~ coefficients. We propose now a
relaxation of (6) in which C, () is used in lieu of C,(3) to yield

4 = argmin., D¢ (CP,Ca(y)) ©)

If we add the constraints v, =3, L=y B Brr, (9) is equivalent to
(6). By dropping them, we end up with a tractable relaxation because
(9) is convex for all convex distortion metrics Dc(C5P, Co(7)). A
tractable relaxation of (7) can be derived analogously.

Nonnegative filter coefficients. When the shift S is positive
semidefinite, the elements of the matrix ¥ are all nonnegative.
If we further restrict the coefficients 3 to be nonnegative, all the
elements in the product W3 are also nonnegative. This means
that in (7) we can replace the comparison Dy, (pte, | ¥ 3|%) by

Dy (+/DP2E, ®LB3) . We can then replace (7) by

B := argming. o Dp(\/Phe, ¥13). 10

The optimization problem in (10) is convex, therefore tractable, for
all convex distortion metrics Dp(+/p5%, ¥ 3). Do notice that the
objective costs in (10) and (7) are not equivalent and that (10) re-
quires positive semidefinite shifts —such as the Laplacian— and re-
stricts coefficients to satisfy 3 > 0. A tractable restriction of (6) can
be derived analogously.

3.2. AR graph processes

For some processes it is more convenient to use a parametric model
that generates an infinite impulse response through an AR filter. As
a simple example consider a heat diffusion process of the form x; =
aSx¢—1 + apw, which is completely characterized by the diffusion
rate « and the scaling coefficient avg. As t — oo, this process can
be represented as x.. = Hw with the filter H = ap Zzo 'St If
the series is summable, the filter can be rewritten as H = a(I —
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aS) ™! from where we can conclude that its frequency response is
h = diag(VZHV) = aodiag(I — aA™"). This demonstrates that
H can be viewed as a single pole AR filter — see also [5].

Suppose now that x is a random graph process whose realiza-
tions are generated by applying H = ao (I — S) ™! to a white input
w. Then, it readily holds that its covariance C; is [cf. (2)]

C.(ap,0) =HH” = o3(I—-aS) '@ —-aS)" 7, 1)
which implies that the PSD of x is
p(ao, a) = diag [af|T — aA| %], (12)

confirming the fact that the expression for the PSD of x is simi-
lar to that of a first-order AR time-varying process. We can now
proceed to estimate the PSD utilizing the AR parametric models in
(11) and (12) as we did in Section 3.1 for MA models. Substituting
C.(ao, @) for C;(B) in (6) yields a graph domain formulation, and
substituting p(cv, @) for |[¥ 1 B|* in (7) yields a graph frequency
domain formulation. Since only two parameters must be estimated
the corresponding optimization problems are tractable.
Higher order AR processes: If the filter H = (I — aS) ™' is the
equivalent of an AR process of order one, an AR process of order
M can be written as H = ayg H%ZI(I — am,S) ™! for some set
of diffusion rates o = [ao,...,an]”. The frequency response
h = diag(VFHV) is given by h = o diag[[[}_, (I— amA) Y.
If we define the graph process x = Hw with w white and of
unitary energy, the covariance matrix C, can be written as

Cola) =ad [IV_,(I—anS) "I — anS) . (13)
The process x is stationary in S and its PSD is
p(a) = o diag[ni\f:l I - ozmA|_2]. (14)

As before, we substitute C,(a) for C,(3) in (6) to obtain a graph
domain formulation and substitute p(cx) for |¥ 1 3|? in (7) to obtain
a graph frequency domain formulation. For large degree M the prob-
lems can become intractable. Design of Yule-Walker schemes [12,
Sec. 3.4] for graph signals may help, which is left as future work.

3.3. ARMA graph processes

The techniques in Secs. 3.1 and 3.2 can be combined to form ARMA
models for PSD estimation. However, as is also done for time sig-
nals, we formulate ARMA filters directly in the frequency domain as
aratio of polynomials in the graph eigenvalues. We then define coef-

ficients a := [aq, ..., aM]T and b := [bo, ..., bL_l]T and postulate
filters with frequency response
h = ding [ (/5 A (1= S0, and™) ] (15)

To find the counterpart of (15) in the graph domain define the ma-
trices B = ZlL:_OI bS" and A = 2%21 amS™. Tt then fol-
lows readily that the filter whose frequency response is in (15) is
H=(I-A)"'B=B(I—- A)". These expressions confirm that
we can interpret the filter as the sequential application of finite and
infinite response filters.

If we now define the graph process x = Hw, its covariance
matrix follows readily as

C.(a,b)=(I—-A)"'BB”(I-A)". (16)

Since C(a, b) is diagonalized by the Fourier basis V, the process
x is stationary with PSD [cf. (15)]

p(a, b):diag“ SE AP - amAmr?]. (17)
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Fig. 1: Error performance for different PSD estimation schemes and networks.

As in the AR and MA models, we can identify the model coefficients
by minimizing the covariance distortion D¢ (C3P, C.,(a, b)) or the
PSD distortion Dy (P58, p(a, b)) [cf. (5) and (6)]. These optimiza-
tion problems are computationally difficult.

Alternative estimation schemes can be obtained by reordering
(16) into (I — A)C,(I — A)¥ = BB* and minimizing either the
graph domain distortion D¢ ((I — A)CP(I — A)7 BB¥) or the
graph frequency domain distortion Dp (|1 — fozl am A™ |2 PRE,
diag(] ZZL;OI biA'?)). While these formulations can still be in-
tractable, they have the same structure as their counterparts in Sec.
3.1. Hence, the tractable relaxation that we discussed for symmetric
shifts and the tractable restriction to nonnegative filter coefficients
for positive semidefinite shifts can be then used here for ARMA (and
AR) processes as well.

Remark 1 The methods proposed for PSD estimation can be used
for covariance estimation as well. This only requires substituting the
optimal filter parameters into (4), (13) or (16).

4. NUMERICAL EXPERIMENTS

Two test cases (TC) are considered. The results shown in Fig. 1 are
averages across 100 realizations of the particular experiment.

TC1. Synthetic graphs: We start with MA estimation. Consider the
Laplacian of an Erdds-Rényi (ER) graph with N = 100 nodes and
edge probability p = 0.2 [19], and processes generated by filtering
white Gaussian noise with an FIR filter of length L whose coeffi-
cients 3 are selected randomly. The performance of an average peri-
odogram PL® is contrasted with that of two parametric approaches:
i) an algorithm that estimates the L values in B by minimizing (7)
via phase-retrieval [18]; and ii) a least squares (LS) algorithm that
estimates the 2L — 1 values in « by minimizing (8). The results are
shown in Fig. 1a (solid lines). It can be observed that both paramet-
ric methods outperform ph® since they leverage the FIR structure
of the generating filter. The gap is larger for smaller values of the
degree, since in these cases a few parameters are sufficient to com-
pletely characterize the generating filter. We also test our schemes
for a model mismatch (MM) scenario where the MA schemes as-
sume that the order of the process is L + 2 instead of L (dashed lines
in Fig. 1a). The results show that, although the MM degrades the
performance, the parametric estimates are still superior to p%®.

The second experiment considers ARMA processes with L
poles and L zeros. The coefficients are drawn randomly from a
uniform distribution with support [0, 1] and the shift is selected as
in the previous experiment. We compare pL® with two schemes: i)
an LS algorithm that estimates 2L coefficients, i.e., the counterpart
of (8) for an ARMA process; and ii) an LS algorithm that estimates
L nonnegative coefficients, i.e., the counterpart of (10). The latter
is computationally tractable because both the eigenvalues of S and
the coefficients of the filters are nonnegative. The algorithms are

tested with both one and two signal realizations available. Fig. 1b
shows that the parametric methods attain smaller Mean Squared
Error (MSE) compared to pb®. Moreover, while increasing the
number of observations reduces the MSE for all tested schemes, the
reduction is more pronounced for nonparametric schemes. This is a
manifestation of the fact that parametric approaches tend to be more
robust to noisy or imperfect observations.

TC2. Real-world graphs: Consider the social network of Zachary’s
karate club [20] represented by a graph G with 34 nodes or members
of the club and 78 undirected edges symbolizing friendships among
members. Denoting by L the Laplacian of G, we define the graph
shift operator S =I—aL with o =1/Anax(L), modeling the diffu-
sion of opinions between the members of the club. A signal x can be
regarded as a unidimensional opinion of each club member regarding
a specific topic, and each application of S can be seen as an opinion
update. We assume that an opinion profile x is generated by the dif-
fusion through the network of an initially sparse (rumor) signal w.
More precisely, we model w as a white process such that w; = 1
with probability 0.05, w; = —1 with probability 0.05, and w; = 0
otherwise. We are given a set {x,.}/_; of opinion profiles generated
from different sources {wr}f‘t:l diffused through a filter of unknown
nonnegative coefficients 3. Our goal is to identify the sources of the
different opinions, i.e., the nonzero entries of w, for every r. Our
approach proceeds in two phases. First, we use {x, }7; to iden-
tify the parameters (3 of the generating filter. We do this by solving
(10) via LS. Second, given the set of coefficients 3, we have that
X, = ZZL;OI B:S'w,.. Thus, we estimate the sources w, by solv-
ing a ¢;-regularized LS problem to promote sparsity in the input. In
Fig. 1c (blue) we show the proportion of sources misidentified as
a function of the number of observations R. As R increases, the
estimates of the parameters 3 become more reliable, thus leading
to a higher success rate. Finally, we consider cases where the ob-
servations are noisy. Formally, we define noisy observations X, by
perturbing the original ones X, = x, 4+ 0z o x,, where o denotes the
magnitude of the perturbation and z is a vector with elements drawn
from a standard normal distribution. As expected, higher levels of
noise have detrimental effects on the recovery of sources. Neverthe-
less, for moderate noise levels (o = 0.1) a performance comparable
to the noiseless case can be achieved when observing 20 signals or
more. These findings are consistent for other types of graphs.

5. CONCLUSION

After generalizing the notions of stationarity, power spectral density
and ARMA processes to random graph signals, different methods for
parametric estimation were proposed. While the general estimation
problem is nonconvex, several reformulations were discussed and
particular cases where the problem is tractable were identified.
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