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ABSTRACT

The combination of baseband and analog precoding for
multiple-input multiple-output (MIMO) systems is consid-
ered in this paper which is referred to as hybrid precoding.
The system capacity, as a design criterion, is maximized sub-
ject to unit modulus constraints on the elements of the analog
precoder (phase shifters), and a total power constraint. This
is a non-convex problem due to the product of the analog
and baseband precoder variables. The proposed technique
suggests computing non-trivial complex derivatives of the
objective and constraints, analytically, in order to develop an
iterative gradient-based sequential optimization algorithm to
solve the non-convex problem. Promising simulation results
show that the solution of the proposed algorithm is suffi-
ciently close to the optimal (full-baseband) precoder solution,
regardless of the channel characteristics.

Index Terms— multiple-input multiple-output (MIMO),
hybrid precoding, nonlinear optimization, sequential quadratic
programming.

1. INTRODUCTION

Modern multiple-input multiple-output (MIMO) communica-
tion networks aim at reducing the number of radio frequency
(RF) chains due to energy consumption and high fabrication
cost of the RF components. Hybrid precoding which is also
referred to as soft antenna selection is an attractive approach
to balance the precoding performance and the underlying
hardware complexity. Hybrid processing is initially intro-
duced in [1] by using a network of analog phase shifters in the
RF domain and a low dimensional baseband (BB) precoder
for receive beamforming. Similarly, in hybrid precoding the
transmitter communicates by passing the multiplexed data
through a BB precoderPBB ∈ CLt×Ns , followed by an RF
precoderPRF ∈ CNt×Lt , whereNt andNs denote the num-
ber of transmit antennas and streams, respectively, andLt is
the number of available transmit RF chains. The formulation
of the precoding problem leads to a non-convex objective
function for the product of a BB and RF precoder and a
non-convex feasible set due to the unit modulus constraints
on the RF precoder elements. A common approach in the
literature is to perform alternate programming by solving for

one parameter at a time in order to overcome the nonlinearity
issue, and further restraining the hybrid processor to a unitary
matrix for simplification of the objective.

In [1], unitary hybrid beamforming is considered sepa-
rately for multiplexing (capacity maximization) and diversity
combining (SNR maximization), to match the eigen direc-
tions of the channel matrix. The matrix of the phase shifters
is chosen as the conjugate phase of theLr (number of avail-
able receive RF chains) eigenvectors corresponding to theLr

largest eigenvalues of the channel gain matrix. Given the RF
precoder, the optimization problem is solved only with re-
spect to the BB precoder. In [2], the sum-rate capacity max-
imization is considered with a hybrid structure at both the
transmitter and receiver for a large multi-user MIMO system.
Exploiting the properties of large MIMO channels, the BB
precoder is determined, and then the RF precoder is found by
an iterative column update approach. Phased zero forcing is
considered in [3], where the RF precoder is designed to align
the phase of the channel matrix and then the equivalent low
dimensional real channel matrix is used to solve for the BB
precoder which serves as a power allocator.

Hybrid unitary processing for both the transmitter and re-
ceiver is specialized for millimeter wave systems in [4–12].
In [4], a low-complexity spatially sparse hybrid precoder is
proposed using the concept of orthogonal matching pursuit
(OMP) where the precoder vectors are chosen iteratively as
a linear combination of the steering vectors for a known ar-
ray geometry. In [5], an adaptive algorithm is proposed to
estimate the millimeter wave complex channel gains and then
the steering vectors are chosen based on the quantized beam-
steering directions of the estimated channel using the same
OMP algorithm. In [6], a similar technique is used, however
instead of correlation matching over a dictionary to find each
column of the RF precoder, an element-wise normalization
of the first singular vector of the error matrix (between the
optimal precoder and hybrid precoder) is used at each itera-
tion. Reduced complexity codebook-based precoding algo-
rithms are proposed in [7]. In [8–11], sparse approximation
problems are formulated to design hybrid precoders. An alter-
nating minimization algorithm is considered in [12] in which
digital and analog precoders are separately calculated perit-
eration.

This paper is distinguished from the existing literature

3489978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017



mainly because it offers a generic approach for solving the
non-convex hybrid precoding problem. This is summarized
below as

1. There are no prior assumptions on the channel statistical
properties or matrix structure such as sparsity or rank con-
straints, which makes the proposed algorithm nonexclusive
and widely applicable.

2. The mutual information can be maximized directly instead
of minimizing the Euclidian distance between the optimal
and the hybrid precoder (error matrix), hence the full base-
band precoder (Popt) is not required, a priori.

3. The proposed algorithm, based on the analytical gradient
derivations, leverages a simple function evaluation in iter-
ative updates, making the algorithm scalable and extensions
to alternative precoding schemes can be readily envisioned.

4. Both the RF and BB precoder are updated simultaneously in
the algorithm thus no alternate optimization is used.

The notation is defined as follows: bold upper case and
bold lower case symbols indicate matrices and vectors, re-
spectively. The conjugate transpose, conjugate, transpose and
the inverse of a matrixA are denoted asAH , A∗, AT and
A−1. IN denotes an identity matrix of sizeN and0MN is
the zero matrix of sizeM ×N . |A(i, j)| denotes the absolute
value of the(i, j)th element ofA and‖A‖F is the Frobenius
norm ofA. The operation diag(a) forms a diagonal matrix
with the entries ofa on its diagonal, and vec(A) (vecT (A))
lists the columns ofA in a column (row) vector. The Kro-
necker product is denoted by⊗.

2. PROBLEM FORMULATION

2.1. Signal Model

Consider a multiplexing MIMO system whereNt andNr de-
note the number of transmit and receive antennas, respec-
tively. The discrete-time transmit vector, at each time in-
stance, is given by

x = PRFPBBs, (1)

wherePRF ∈ CNt×Lt andPBB ∈ CLt×Ns are the RF and BB
precoders, respectively. The number of transmit streams can
beNs ≤ Lt. we consider maximum rate soNs = Lt. The
transmit data sequence is a vectors ∈ C

Ns×1 with a scaled
identity covariance matrixE[ssH ] = 1

Ns
INs

. The elements
of the RF precoder are constant modulus so,PRF can be im-
plemented using analog phase shifters. In turn, the received
noisy signal is given by

y =
√
pHPRFPBB s+ n, (2)

wherep is the average received power, the complex channel
matrix is denoted byH ∈ CNr×Nt , andn is assumed to be a
spatially white, zero mean Gaussian noise vector with covari-
ance matrixσ2

nINr
. We also assume that the instantaneous

channel matrix is known at the transmitter soH is given.
The product ofPRFPBB is referred to as the full linear pre-
coder. We introduce two precoding problems in the following
of which the solutions are discussed in the next section.

2.2. Unitary Precoding

The optimal joint precoder and receiver for a point to point
MIMO system is known to decompose the interference
MIMO channel toR = rank{H} independent single-input
single-output (SISO) channels. Focusing on the precoding
problem, the full unitary precoding matrix includes the right
eigen vectors of the channel. By taking the singular value
decomposition of the channel,H = UΣVH , we introduce
Σ1 ∈ CLt×Lt andV1 ∈ CNt×Lt such that

Σ =

(

Σ1 0

0 Σ2

)

,V =
(

V1 V2

)

. (3)

The full unitary precoder in this setting isV1, (excluding the
diagonal power allocation matrix). Once we know the full
precoder, the hybrid precoder is the solution of the following
problem

P1 :

minimize ‖Popt −PRFPBB‖2F
PRF,PBB

subject to |PRF(i, j)| = 1; ∀i, j
i = 1, ..., Nt, j = 1, ..., Lt

‖PRFPBB‖2F = Lt

wherePopt is V1 for unitary precoding. The first (constant
modulus) constraint concerns the analog phase shifters and
the last constraint is imposed to limit the total transmit power.

2.3. Non-Unitary Precoding

For a MIMO system with a linear precoding matrixPRFPBB

at the transmitter, the mutual information between the two
ends of the system using Gaussian signaling is given by

I(x;y) = log

(

det[ INr
+

p

Ltσ2
n

HPRFPBBP
H
BBP

H
RFH

H ]

)

,

in unit of bits per second per Hz when the basis of the loga-
rithm is two. The full precoder is designed to maximize the
mutual information betweenx andy which gives the capac-
ity of the system [13]. The corresponding hybrid precoding
optimization problem is then expressed as

P2 :

maximize I(x;y)
PRF,PBB

subject to |PRF(i, j)| = 1; ∀i, j
i = 1, ..., Nt, j = 1, ..., Lt

‖PRFPBB‖2F = Lt

Both optimization problems ofP1 andP2 are non-convex
for two reasons: 1) The objectives are non-convex functions
of the optimization variables (product ofPRF and PBB).
2) The feasible set is not convex due to the nonlinear equal-
ity constraints. The proposed algorithm to solve these two
non-convex problems is given next.

3490



3. PROPOSED APPROACH

The proposed solution for the non-convex problems ofP1

andP2 is based on gradient descent minimization which re-
quires at least the first-order differentiability of the objective
and constraints. First, we use a simple variable change, i.e.,
PRF = exp(jΦ) ,which is an element-wise exponential func-
tion, to lift the first constraint and simplify the problem. Ac-
cordingly,P1 andP2 can be written in terms of two variables
{Φ ∈ RNt×Lt ,PBB ∈ CLt×Lt}, so the constant modulus
constraints are dropped. Further, we invoke the augmented
complex-valued derivation (ACVD) technique [14] to obtain
the gradient of the objective and constraint with respect tothe
variables. This is the key step to approach the nonlinear op-
timization problem. The elegance of the ACVD technique is
evident here since the common variable decomposition to real
and imaginary components yields an extremely tedious and
impractical representation of the problem, while the ACVD
preserves the compact formulation.

3.1. Complex-Valued Gradient

The crucial step towards the calculation of the gradient of
the objective and the constraint is to write them as a func-
tion of the optimization variables and their conjugates, i.e.,
{PBB,P

∗
BB,Φ}. For this purpose, a new variable is intro-

duced asZ := PRFPBB = exp(jΦ)PBB, accordingly

z ∈ C
NtLt×1 = vec(PRFPBB) = vec(exp(jΦ)PBB)

= ( ILt
⊗ exp(jΦ) ) vec(PBB)

︸ ︷︷ ︸
pBB

= (PBB
T ⊗ INt

)
︸ ︷︷ ︸

IBB

vec(exp(jΦ))
︸ ︷︷ ︸

exp(jvec(Φ))=exp(jφ)

(4)

where the optimal precoder is vectorized aspopt = vec(Popt).
Let f, g : {Z ∈ CNt×Lt ,Z∗ ∈ CNt×Lt} → R be

real-valued and differentiable mappings of the objective and
the constraint, respectively. We follow the same notation
and formulation for ACVD as in [14] to calculate the an-
alytical expression for the gradient. The gradient vector
of the objective with respect to two optimization variables
∇f(pBB,p

∗
BB,φ) ∈ R(2LtLt+LtNt)×1 is given by

∇f(pBB,p
∗
BB,φ)

T =
(
∂f
∂z

∂f
∂z∗

)

(
∂z

∂pBB

∂z
∂p∗

BB

∂z
∂φ

∂z∗

∂pBB

∂z∗

∂p∗

BB

∂z∗

∂φ

)

, (5)

using the chain rule properties. The gradient of the constraint
(∇g) is derived in a similar way, by substitutingf with g in
the first term of (5).

The equivalent formulation ofP1 in terms ofz is given by

P1 :
minimize f1(Z,Z

∗) = (popt − z)H(popt − z)
z = vec(Z)

s.t. g(Z,Z∗) = zHz− Lt = 0

In turn,P2 can be reformulated as

P2 :
minimize f2(Z,Z

∗) = log
(

det[INr + p

Ltσ2
n

HZZHHH ]
)

z = vec(Z)
s.t. g(Z,Z∗) = zHz− Lt = 0

The gradient of the objective functions and the constraint for
both problemsP1 andP2 can be explicitly derived using (5).
Note that the first term in (5) differs forP1 andP2 while the
second term is common and is given by
(
ILt

⊗ exp(jΦ) 0NtLt×LtLt
jIBB diag(exp(jφ))

0NtLt×LtLt
ILt

⊗ exp(−jΦ) −jIBB diag(exp(−jφ))

)

.

Forf1 in P1, the first term is readily calculated as
(
∂f1
∂z

∂f1
∂z∗

)
=
(
pH

opt − zH zT − pT
opt

)
. (6)

Forf2 in P2, takingR = (INr
+ p

Ltσ2
n

HZZHHH) yields

(

∂f2
∂z

∂f2
∂z∗

)

=
(

vecT ( p

Ltσ2
n

HTR−TH∗Z∗) vecT ( p

Ltσ2
n

HHR−1HZ)
)

.

Using the analytical gradient vectors that are derived in this
section, we can take the next step to find a proper optimiza-
tion algorithm that provides the required accuracy. Note that
problemsP1 andP2 are non-convex with respect to the orig-
inal variables(PBB,Φ) so the optimal global solution can
not be found, theoretically. Therefore, to evaluate the perfor-
mance of the proposed algorithms we use statistical measures,
in Section 4, which verify the accuracy (convergence) of the
solution in an average sense.

3.2. Optimization Algorithm
Knowing the gradient and the Hessian of the objective and
the equality constraint, problemsP1 andP2 can be solved
using the Lagrange multiplier (LM) method. The Hessian
matrix is the Jacobian of the gradient vector. However, the
explicit evaluation of the Hessian matrix and its inverse are
commonly computationally inefficient and sometimes infea-
sible due to the singularity of the matrix. Here the Hessian,
∇2f(pBBk,p

∗
BBk,φk), is found to be singular because the

problem is ill-conditioned due to the exponential relaxation
of PRF. Hence, the inverse of the Hessian matrix is approx-
imated using the Broyden Fletcher Goldfarb Shanno (BFGS)
updating method [15].

The main competence of LM method is to transform a
constrained optimization problem to an unconstrained root-
finding problem. The roots of the gradient of the Lagrangian
function associated with the problem can be found using
Newton like methods [16]. The simulation results suggest
that the performance of LM is not satisfying for the consid-
ered hybrid precoding problems.

The sequential quadratic programming (SQP) algorithm
[17] is used as an alternative robust technique to solve the
non-convex hybrid precoding problemsP1 and P2. SQP
solves a sequence of quadratic programming (QP) optimiza-
tion subproblems, i.e., by considering the second-order and
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the first order Taylor expansion of the objective and con-
straint functions of the original problem, respectively, at
each iteration. As a result, the objective function for QP is
quadratic and the constraints are linear, so a convex prob-
lem with an standard iterative solution. To formulate a real
cost and constraint functions for the QP problem, a con-
catenation of two optimization variables is represented by
pk ∈ R(2LtLt+LtNt)×1 = [ℜ{pT

BBk},ℑ{pT
BBk},φ

T
k ]

T . The
gradients with respect to(pBB,p

∗
BB,φ), that are derived in

Sec. 3.1, needs to be translated to the ones with respect to the
real and imaginary parts of the variables [14]. Accordingly,
∇f(pk) = ( ∂f

∂ℜ{pBB}
, ∂f
∂ℑ{pBB}

, ∂f
∂φ

) is calculated using

∂f

∂ℜ{pBB}
=

1

2
(

∂f

∂pBB
+

∂f

∂p∗

BB

) , (7)

∂f

∂ℑ{pBB}
=

1

2j
(

∂f

∂pBB
−

∂f

∂p∗

BB

). (8)

The QP optimization problem of the hybrid precoding prob-
lem atkth iteration is given by

minimize 1
2p

T
k ∇2f(pk)pk +∇f(pk)

Tpk

pk

s.t. ∇g(pk)
Tpk + g(pk) = 0

where the Hessian is approximated at each iteration. The QP
subproblem is solved at each iteration using a Matlab built-
in function (quadprog) and the solution is used to construct
the next approximation of the problem, until the solution con-
verges to the optimum.

4. SIMULATION RESULTS
In this section, we present simulation results to evaluate the
performance of different algorithms. Each algorithm is eval-
uated using 1000 random channel realizations to evaluate the
performance statistically. Next, a complementary cumulative
density function (CCDF) is derived to show the probability
that the maximum mutual information (capacity) is greater
than a specified value (C > C0). To model the propagation
environment, we consider the geometric channel model with
L paths from the transmitter to the receiver from [5]. The
simulations compare the proposed algorithm to the optimal
full linear precoder which is obtained using CVX [18] forP2.

In Fig. 1, problemsP1 andP2 are solved using SQP for
8× 8 and a128× 64 MIMO system usingNs = Lt = 3. The
results are compared with the full unitary precoder (V1 in (3))
for two different numbers of channel paths (L = 3, 100). The
higher theL, the richer the propagation environment which
deviates from the sparse channel assumption in millimeter-
wave MIMO systems. The parameters of the model in [5] are
selected asM = 2 andN = 128 whereM andN are re-
spectively the number of beamforming vectors per stage and
the desired resolution parameter. The most left CCDF curve
(worse) in Fig. 1(a) (8× 8 MIMO) corresponds to the capac-
ity of the unitary precoder (P1) using the LM algorithm. The
SQP solution forP1 coincides with the optimal solution and
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Fig. 1: CCDF of capacity forP1 andP2 usingL = 3 andL = 100
received paths (a)8× 8 MIMO (b) 128× 64 MIMO.
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Fig. 2: Number of iterations in average for SQP, versus number of
transmit antennas for (a)P1 (b)P2. Solid line and dots represent the
fitted curve and experimental data, respectively.

is close to optimal forP2, while the sparse precoder of [5]
underperforms in a non-sparse channel (L = 100), as ex-
pected. For a sparse channel (L = 3) both the SQP and
sparse precoder reach the optimum. In Fig. 1(b), the results
for 128 × 64 MIMO are presented, where the optimal full
precoder is known using water-filling algorithm [19]. Simi-
larly, the SQP algorithm outperforms the sparse precoder for
a large MIMO setting, however, it is more complex compared
to the sparse precoder. Note, the sparse precoder considers
only unitary precoding (P1) while the proposed approach can
be used to design other precoding problems such asP2.

The complexity of the SQP algorithm isK × O(QP ),
whereK is the number of SQP iterations. The complexity
of the QP problem is almost scale-independent, whileK is
changing by the size of the MIMO channel. In Fig. 2 the
average number of iterations is plotted versus the number of
transmit antennas forP1 andP2, which shows a cubic growth
with respect toNt.

To conclude, an effective optimization scheme is pro-
posed in this paper for the hybrid precoding problem in
MIMO systems. The SQP algorithm shows a satisfying per-
formance compared to the sparse precoder of [5] and LM
method, while the complexity is higher. Note that the pro-
posed approach overreaches many types of precoding while
the available literature concerns unitary precoding.
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