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ABSTRACT one parameter at a time in order to overcome the nonlinearity

The combination of baseband and analog precoding fdssue, and further restraining the hybrid processor to aoni

Lo : . >, matrix for simplification of the objective.
multiple-input multiple-output (MIMO) systems is consid- In M ) hvbrid b forming i idered
ered in this paper which is referred to as hybrid precoding. n [1], unitary hybrid beamforming is considered sepa-

The system capacity, as a design criterion, is maximized Sutgately for multiplexing (capacity maximization) and disety

ject to unit modulus constraints on the elements of the @alocombmlng (SNR maximization), to match the eigen direc-

precoder (phase shifters), and a total power constrairis Thf[ions of the channel matrix. The matrix of the phase shifters
chosen as the conjugate phase of thgnumber of avail-

is a non-convex problem due to the product of the analo | ve RE chai ) dina té th
and baseband precoder variables. The proposed techniq lae receive chains) eigenvectors corresponding téthe

suggests computing non-trivial complex derivatives of théargest e|genvalue_‘s pf the channel gan matrix. G|ven.the RF
objective and constraints, analytically, in order to depedn precoder, the optimization problem is solved only W'th re-
iterative gradient-based sequential optimization atbarito spect to the BB precoder. In [2], the sum-rate capacity max-

solve the non-convex problem. Promising simulation resyltiMization is considered with a hybrid structure at both the
' transmitter and receiver for a large multi-user MIMO system

show that the solution of the proposed algorithm is suffi- . .
ciently close to the optimal (full-baseband) precoder oy Explomng_ the prOPe”'es of large MIMO channels., the BB
regardless of the channel characteristics. prepode_r is determined, and then the RF precoder is fou_nd py
an iterative column update approach. Phased zero forcing is
Index Terms— multiple-input multiple-output (MIMO),  considered in [3], where the RF precoder is designed to align
hybrid precoding, nonlinear optimization, sequentialdfasic  the phase of the channel matrix and then the equivalent low
programming. dimensional real channel matrix is used to solve for the BB
precoder which serves as a power allocator.
1. INTRODUCTION Hybrid unitary processing for both the transmitter and re-
ceiver is specialized for millimeter wave systems in [4=12]
Modern multiple-input multiple-output (MIMO) communica- In [4], a low-complexity spatially sparse hybrid precoder i
tion networks aim at reducing the number of radio frequencyroposed using the concept of orthogonal matching pursuit
(RF) chains due to energy consumption and high fabricatiofOMP) where the precoder vectors are chosen iteratively as
cost of the RF components. Hybrid precoding which is als@ linear combination of the steering vectors for a known ar-
referred to as soft antenna selection is an attractive appro ray geometry. In [5], an adaptive algorithm is proposed to
to balance the precoding performance and the underlyingstimate the millimeter wave complex channel gains and then
hardware complexity. Hybrid processing is initially intro the steering vectors are chosen based on the quantized beam-
duced in [1] by using a network of analog phase shifters in theteering directions of the estimated channel using the same
RF domain and a low dimensional baseband (BB) precod€?MP algorithm. In [6], a similar technique is used, however
for receive beamforming. Similarly, in hybrid precodingeth instead of correlation matching over a dictionary to findreac
transmitter communicates by passing the multiplexed dateolumn of the RF precoder, an element-wise normalization
through a BB precoddPgg € CL+*Ns followed by an RF  of the first singular vector of the error matrix (between the
precodePrr € CV+*L+ whereN, and N, denote the num- optimal precoder and hybrid precoder) is used at each itera-
ber of transmit antennas and streams, respectively/ansl  tion. Reduced complexity codebook-based precoding algo-
the number of available transmit RF chains. The formulatioriithms are proposed in [7]. In [8=11], sparse approximation
of the precoding problem leads to a non-convex objectivgroblems are formulated to design hybrid precoders. Am-alte
function for the product of a BB and RF precoder and ahating minimization algorithm is considered in [12] in whic
non-convex feasible set due to the unit modulus constrain@igital and analog precoders are separately calculated-per
on the RF precoder elements. A common approach in theration.
literature is to perform alternate programming by solviag f This paper is distinguished from the existing literature
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mainly because it offers a generic approach for solving thehannel matrix is known at the transmitter Ebis given.
non-convex hybrid precoding problem. This is summarizedhe product ofPrePgg is referred to as the full linear pre-
below as coder. We introduce two precoding problems in the following

) . .. of which the solutions are discussed in the next section.
. There are no prior assumptions on the channel statistical

properties or matrix structure such as sparsity or rank conz-
straints, which makes the proposed algorithm nonexclusive’
and widely applicable. The optimal joint precoder and receiver for a point to point
. The mutual information can be maximized directly insteadMIMO system is known to decompose the interference
of minimizing the Euclidian distance between the optimal'\/_”'\/IO channel toR? = rank{H} independent single-input
and the hybrid precoder (error matrix), hence the full baseSingle-output (SISO) channels. Focusing on the precoding
band precodeioy) is not required, a priori. problem, the full unitary precoding matrix includes thehtig

. . ._eigen vectors of the channel. By taking the singular value
. The proposed algorithm, based on the analytical grad'erafecomposition of the channdl = UXV#, we introduce

derivations, leverages a simple function evaluation inite 53, « cL:xLi andV, € CNexLt such that
ative updates, making the algorithm scalable and extession

2. Unitary Precoding

to alternative precoding schemes can be readily envisioned 3= (2(:)1 Z(:) ) , V= (Vi V). (3)
. Both the RF and BB precoder are updated simultaneously in . 2. . _ .
the algorithm thus no alternate optimization is used. The full unitary precoder in this setting ¥;, (excluding the

diagonal power allocation matrix). Once we know the full
The notation is defined as follows: bold upper case angrecoder, the hybrid precoder is the solution of the folluyvi
bold lower case symbols indicate matrices and vectors, rgsroblem

spectively. The conjugate transpose, conjugate, traesgpos

the inverse of a matriA are denoted ad”’, A*, AT and minimize  ||P,,: — PrePgsl%
A~!. Iy denotes an identity matrix of siz& and0,;y is Prr, Pgs

the zero matrix of sizdZ x N. |A(i, j)| denotes the absolute P1: subjectto |Pre(i,j)| =1; Vi,
value of the(i, j)th element ofA and||A||. is the Frobenius i=1,.., Ny, g=1,..., Ly
norm of A. The operation dia@) forms a diagonal matrix |PrePgsl|7 = L:

with the entries oh on its diagonal, and véd) (vec (A))
lists the columns ofA in a column (row) vector. The Kro-
necker product is denoted lay.

whereP,,, is V; for unitary precoding. The first (constant
modulus) constraint concerns the analog phase shifters and
the last constraint is imposed to limit the total transmitpa

2. PROBLEM FORMULATION 2.3. Non-Unitary Precoding

2.1. Signal Model For a MIMO system with a linear precoding mati®grPgg
at the transmitter, the mutual information between the two

Consider a multiplexing MIMO system wherg and N, de-  ends of the system using Gaussian signaling is given by
note the number of transmit and receive antennas, respec-

. . . . : : p
tively. The discrete-time transmit vector, at each time in-I(x;y) = log (det[IN,‘ t1 3 HPRFPBBPé{BPgFHH]) ;
stance, is given by !

n

in unit of bits per second per Hz when the basis of the loga-
rithm is two. The full precoder is designed to maximize the
wherePgg € CVe*Lt andPgg € CL+*N: are the RF and BB mutual information betweer andy which gives tlhe capac-
precoders, respectively. The number of transmit streams cd Of the system [13]. The corresponding hybrid precoding
be N, < L,. we consider maximum rate 6, = L,. The optimization problem is then expressed as

transmit data sequence is a veatog CV=*! with a scaled
identity covariance matrif[ss”] = {-Iy,. The elements
of the RF precoder are constant modsulusBﬁ.; can be im-
plemented using analog phase shifters. In turn, the redeive
noisy signal is given by

x = PrrPagss, 1)

maximize I(x;y)
Prr, Pes
P, : subjectto [Pre(i,j)| =1; Vi,j
i=1, Ny, j=1,. L
|PrePss||7 = Lt

y = VPHPrrPggs +n, (@) Both optimization problems dP; andP, are non-convex

. . fPr two reasons: 1) The objectives are non-convex functions
wherep is the average received power, the complex channe

matrix is denoted b € CV+*"t andn is assumed to be a of the optimization variables (product drr and Pes).
. . . . L 2) The feasible set is not convex due to the nonlinear equal-
spatially white, zero mean Gaussian noise vector with ¢ovar: . .
y constraints. The proposed algorithm to solve these two

. . t
ance matrixo2Iy,. We also assume that the instantaneous oo
non-convex problems is given next.
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3. PROPOSED APPROACH In turn, Py can be reformulated as

The proposed solution for the non-convex problemsPef minimize  f2(Z,Z") = log (det[INr + JT%HZZHHH])
andP; is based on gradient descent minimization which re P2i g =vedZ)
quires at least the first-order differentiability of the ettive s.t. 9(2,Z") =2"2 - L =0

and constraints. First, we use a simple variable change, i.e ] . ] ]
Pre = exp(j®) ,which is an element-wise exponential func- The gradient of the objective functions and the constraint f

tion, to lift the first constraint and simplify the problemcA  POth problemsP, andP; can be explicitly derived using (5).

cordingly, P, andP, can be written in terms of two variables NOt€ that the first term in (5) differs fop, and’P; while the
{® € RNxLt Pgg € CLixIt}, so the constant modulus second term is common and is given by

constraints are dropped. Further, we invoke the augmente © exp(i® 0 Ten diag(exo i
complex-valued derivation (ACVD) technique [14] to obtain LdNL XS(jL ) 1, %tgé;f_?q)) —;IEE diaggexéi(?)gg)))'

the gradient of the objective and constraint with respetti¢o
variables. This is the key step to approach the nonlinear og-or f; in Py, the first term is readily calculated as
timization problem. The elegance of the ACVD technique is

. ) . . af Af1\ _ (wH _ H T T
evident here since the common variable decomposition to rea (8_21 oz ) - (pOpt z z popt) : (6)
and imaginary components yields an extremely tedious an . . B » HrrH o
impractical representation of the problem, while the ACVD'gorf2 in Pz, takingR = (I, + .5z HZZ"H") yields
reserves the compact formulation. S _
p P (92 52) = (ved(zZzH'R TH'Z') ved'(;ZzH"R 'HZ)).

3.1. Complex-Valued Gradient Using the analytical gradient vectors that are derivedi th

1section, we can take the next step to find a proper optimiza-

The crucial step towards the calculation of the gradient of laorithm th ides th ed N h
the objective and the constraint is to write them as a function algorithm that provides the required accuracy. No& t

tion of the optimization variables and their conjugates,, i. problemSPl andp; are non-convex with respect to fche org-
(Pgs, Pis, ®). For this purpose, a new variable is intro- inal variables(Pgg, ®) so the optimal global solution can

duced aZ :— PrePgg — exp(j®)Pas, accordingly not be found, theoretically. T_herefore, to evaIl_Ja_te théquer
mance of the proposed algorithms we use statistical megsure

z € CNLexl = vec(PgePgg) = vec(exp(j®)Pgs) in Section 4, which verify the accuracy (convergence) of the

_ (1., ® exp(j®) ) vec(Pes) solution in an average sense.

e 3.2. Optimization Algorithm
= (Pgs” @1Iy,) vec(exp(j®)) (4) Knowing the gradient and the Hessian of the objective and
the equality constraint, problenf®, and P, can be solved
using the Lagrange multiplier (LM) method. The Hessian
matrix is the Jacobian of the gradient vector. However, the
explicit evaluation of the Hessian matrix and its inverse ar
commonly computationally inefficient and sometimes infea-
sible due to the singularity of the matrix. Here the Hessian,
%Qf(pBBk,pEBk,d)k), is found to be singular because the
Iproblem is ill-conditioned due to the exponential relagati
of Prr. Hence, the inverse of the Hessian matrix is approx-
imated using the Broyden Fletcher Goldfarb Shanno (BFGS)
updating method [15].
) < Oz Oz Oz ) The main competence of LM method is to transform a

Igs exp(jvec(®))=exp(j¢)

where the optimal precoder is vectorizedag: = veqPop).

Let f,g : {Z € CNexLe Zx ¢ CNexIe} — R be
real-valued and differentiable mappings of the objectivé a
the constraint, respectively. We follow the same notatio
and formulation for ACVD as in [14] to calculate the an-
alytical expression for the gradient. The gradient vecto
of the objective with respect to two optimization variables
Vf(pes, Pag, ¢) € RELeLetLeNOx s given by

655*3 6553 aaf , (5)constrained optimization problem to an unconstrained-root
opss  OPpp 0P finding problem. The roots of the gradient of the Lagrangian
function associated with the problem can be found using
Newton like methods [16]. The simulation results suggest
that the performance of LM is not satisfying for the consid-
ered hybrid precoding problems.
The sequential quadratic programming (SQP) algorithm
[17] is used as an alternative robust technique to solve the

* o 0
Vf(pes, Pag, @)" = (a_i Bz]i

using the chain rule properties. The gradient of the coimttra
(Vyg) is derived in a similar way, by substitutingwith g in
the first term of (5).

The equivalent formulation d?; in terms ofz is given by

minimize  f1(Z,Z*) = (popt — )" (Popt — 2) non-convex hybrid precoding probler® and P,. SQP
Pi: z=vedZ) . solves a sequence of quadratic programming (QP) optimiza-
S.t. 9(2,2")=2"2—L; =0 tion subproblems, i.e., by considering the second-orddr an
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the first order Taylor expansion of the objective and con- ** 10’
straint functions of the original problem, respectively, a
each iteration. As a result, the objective function for QP is & 2 w0
quadratic and the constraints are linear, so a convex prok / A
lem with an standard iterative solution. To formulate a real g 0> % -
. . o
cost and constraint functions for the QP problem, a con- & e
catenation of two optimization variables is represented by - .
2L+ L+ L N 1 _ T T T ° 5. 10 o 10
Pk 6. R(2L: .t+ tNe)x1 [%{pBEk}v%{pBBk}v(ﬁk] : The_ capacity (bits/s/Hz) capacity (bits/s/Hz)
gradients with respect t0pgg, pgg, ¢), that are derived in b Mmethod ¢ = 100) sparse precoding [SJ. = 100)
Sec. 3.1, needs to be translated to the ones with respee to tl o ;”gg?;?u’ﬁgﬂ“f;;‘g,[fl?;;j’gz)) Tal fiﬁﬁnﬁ;):;?gf‘;”’lloﬁg = 100)
real and |mag|(glfary par(gsf of tg(? variables [14]. Accordingly T e L 00 oo :i:g 3P soluion o (I, = 100)
- (£ _ _<9J J Y i - -uni = L di =
VI (k) = (7Tpmr 55Tom] 59 1S CalCUlated using T e ) e, TR,
‘=4 SQP solutionforPy (L = 3) :z::: fsug;r;igalngu()ﬁ;ms)@ .
L — l( af af ) (7) - ngllli’usrg}s{iyog;o;;()L =3) =<€= full non—unilary(Lzz 3)_
a%{pBB} 2 (9PBB 8pEB ’ == full non-unitary (L. = 3)
of 1. of of (@) (b)
3S{pes} 2/ \Opes  Opia) ® . .
psB J UPeB Pgs Fig. 1. CCDF of capacity fof?; andP» usingL = 3 andL = 100

The QP optimization problem of the hybrid precoding prob-réceived paths (& x 8 MIMO (b) 128 x 64 MIMO.
lem atkth iteration is given by

o
Q
5]

"
a
o

minimize Ip} V2 f(pr) pr + V.f(Pr)" Pr g g S
Pk 5 o0 o
st Vi) pr+9(pr) =0 5 5w
O 20 o

where the Hessian is approximated at each iteration. The QPC oL = - o =
subproblem is solved at each iteration using a Matlab built- number of antennas\() number of antennas\()
in function (quadprog) and the solution is used to construct (@) (b)
the next approximation of the problem, until the solutionco Fig. 2: Number of iterations in average for SQP, versus number of
verges to the optimum. transmit antennas for (&), (b) P-. Solid line and dots represent the

fitted curve and experimental data, respectively.
4. SIMULATION RESULTS

In this section, we present simulation results to evaluage t is close to optimal forP,, while the sparse precoder of [3]
performance of different algorithms. Each algorithm isleva underperforms in a non-sparse channel £ 100), as ex-
uated using 1000 random channel realizations to evaluate gpected. For a sparse channé_] € 3) bOth the SQP and
performance statistically. Next, a complementary cunigat SParse precoder reach the optimum. In Fig. 1(b), the results
density function (CCDF) is derived to show the probability 0" 128 > 64 MIMO are presented, where the optimal full
that the maximum mutual information (capacity) is greatePr€coder is known using water-filling algorithm [19]. Simi-
than a specified valug( > C). To model the propagation larly, the SQP algprlthm outperf_o_rms the sparse precoder fo
environment, we consider the geometric channel model witf 1arge MIMO setting, however, itis more complex compar_ed
L paths from the transmitter to the receiver from [5]. Thel© the sparse precoder. Note, the sparse precoder considers
simulations compare the proposed algorithm to the optimafnly unitary precoding®:) while the proposed approach can
full linear precoder which is obtained using CVX [18] fas. P& used to design other precoding problems sudh,as
The complexity of the SQP algorithm & x O(QP),

In Fig. 1, problemsP; andP, are solved using SQP for WhereK is the number of SQP iterations. The complexity
8 x 8 and al28 x 64 MIMO system usingV, = L, = 3. The of the QP problem is almost scale-independent, whilés
results are compared with the full unitary precodéi {n (3)) ~ changing by the size of the MIMO channel. In Fig. 2 the
for two different numbers of channel paths £ 3,100). The ~ average number of iterations is plotted versus the number of
higher theL, the richer the propagation environment whichtransmit antennas fgf, andP,, which shows a cubic growth
deviates from the sparse channel assumption in millimetetvith respect taV;.
wave MIMO systems. The parameters of the model in [5]are To conclude, an effective optimization scheme is pro-
selected as\/ = 2 and N = 128 whereM and N are re- posed in this paper for the hybrid precoding problem in
spectively the number of beamforming vectors per stage andlIMO systems. The SQP algorithm shows a satisfying per-
the desired resolution parameter. The most left CCDF curviermance compared to the sparse precoder of [5] and LM
(worse) in Fig. 1(a)§ x 8 MIMO) corresponds to the capac- method, while the complexity is higher. Note that the pro-
ity of the unitary precoder#;) using the LM algorithm. The posed approach overreaches many types of precoding while
SQP solution forP; coincides with the optimal solution and the available literature concerns unitary precoding.
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