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a b s t r a c t 

In wireless sensor networks, where energy is scarce, it is inefficient to have all nodes active because they 

consume a non-negligible amount of battery. In this paper we consider the problem of jointly selecting 

sensors, relays and links in a wireless sensor network where the active sensors need to communicate 

their measurements to one or multiple access points. Information messages are routed stochastically in 

order to capture the inherent reliability of the broadcast links via multiple hops, where the nodes may 

be acting as sensors or as relays. We aim at finding optimal sparse solutions where both, the consis- 

tency between the selected subset of sensors, relays and links, and the graph connectivity in the selected 

subnetwork are guaranteed. Furthermore, active nodes should ensure a network performance in a pa- 

rameter estimation scenario. Two problems are studied: sensor and link selection; and sensor, relay and 

link selection. To solve such problems, we present tractable optimization formulations and propose two 

algorithms that satisfy the previous network requirements. We also explore an extension scenario: only 

link selection. Simulation results show the performance of the algorithms and illustrate how they provide 

a sparse solution, which not only saves energy but also guarantees the network requirements. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Nowadays, wireless sensor networks are developed to pro-

vide fast, cheap, reliable, and scalable hardware solutions for a

large number of industrial applications, ranging from surveillance

[1,2] and tracking [3,4] to exploration [5,6] , monitoring [7,8] , and

other sensing tasks [9] . From the software perspective, an increas-

ing effort is spent on designing algorithms that can provide high

reliability with limited computation, communication, and energy

requirements for the sensor nodes. 

In this paper, we consider a network of battery-powered sen-

sors that take measurements related to some important environ-

mental parameter and that need to communicate their measure-
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ents to one or multiple access points (APs), or sinks, which are

esponsible for processing the gathered information. Communica-

ion with the APs is achieved through multihop routes defined via

 connectivity graph which considers the sensors’ communication

ange. 

Resources (mainly energy) in this network are scarce so it is

nefficient to have all sensors active. Some sensors may not be in-

ormative enough and hardly contribute to achieve a minimum de-

ired network performance; nonetheless, if active, they would con-

ume a non-negligible amount of resources. Moreover, communica-

ion efforts are among the most energy demanding tasks in wire-

ess sensor networks [10] and they should be minimized by prop-

rly selecting not only the suitable sensors but also the proper ac-

ive links. Knowledge of the network topology should be exploited

n order to make a better selection of the links that are in charge of

onveying the information because information may be degraded

ver long distances and transmissions should be avoided to reduce

nergy expenditure. 

With the reduction of energy expenditure in mind, in this paper

e consider a distributed estimation scenario in wireless sensor

etworks, where each sensor takes local measurements of a phe-

omenon of interest at a particular rate and communicates them

n a multihop way to one or multiple APs. In this scenario, we
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tudy the problem of judiciously and consistently selecting the op-

imal minimum set of sensors and links that ought to be active in

he network, so that a prescribed network performance (e.g., the

ean squared error of the estimation of the parameter of inter-

st) as well as graph connectivity among the selected active sen-

ors are guaranteed. Only the measurements taken by the active

ensors must be reported back to the APs via the active sensors

nd active links. This is the reason for requiring graph connectivity

mong the selected active sensors. Moreover, the optimal sensing

ates supported by the active sensors are calculated. We analyze

he problem from a stochastic point of view, where information

essages are routed stochastically thereby capturing the inherent

eliability of the broadcast wireless links. 

.1. State of the art 

The concept of sensor selection has been extensively studied in

he context of parameter and state estimation. The resulting min-

mum cardinality combinatorial problem has been tackled by us-

ng different tools, from convex relaxations, e.g., [11–13] , to sub-

odularity [14–16] and frame theory [17,18] . These tools have their

ros and cons. More along the lines of this paper, in [19] not only

s the best subset of sensors selected that communicate with the

usion center but also the collaboration scheme that allows each

ensor to combine its raw measurements with those coming from

ther sensors according to certain weights. 

Stochastic routing in multihop networks has been introduced

n the literature in order to cope with the random nature of wire-

ess links [ 20 , 21 ]. Transmissions are based on a reliability matrix,

here each element of the matrix reflects the probability of satis-

actorily transmitting and receiving a message between two given

ensors. In [22] , the authors define the concept of connectivity

ithin a context of mobile robotic networks in terms of commu-

ication rates, and based on this definition, the authors propose a

istributed algorithm to find the optimal operating points of wire-

ess networks when the link metric is the link reliability. The work

f [23] considers the problem of optimizing the routing and sen-

or selection given a total budget constraint. Yet, the approach pre-

ented in [23] is heuristic and divides the estimation and routing

roblems, by tackling them in two separated phases, which could

ause additional suboptimality of the solution. 

Often times, a distinction is made between sensor and relay

odes. Relay nodes help the source nodes (sensing nodes) in for-

arding the messages to the APs: they receive a message from the

ource nodes, process it and forward it towards the intended APs.

elaying is especially beneficial when there is no line-of-sight path

etween the source and the destination. This distinction between

ensor types may be motivated, for instance, by economical rea-

ons (relay devices may be cheaper than sensors given that their

unctionality is more limited), or by design prerequisites (sensors

eed to achieve a certain performance while relays do not be-

ause they are only limited to forwarding the information). Previ-

us state-of-the-art works are only based on proposing relay selec-

ion schemes (e.g., [24,25] , and references therein): given a source

ensor and a sink, they try to choose the best relays among a col-

ection of available ones based on different criteria. Other works

re aimed at optimally placing wireless relay nodes and sinks [26] .

.2. Our contributions 

All the aforementioned state-of-the-art works either face the

ensor selection problem or the stochastic routing, but what has

ever been addressed in the literature before is the challenge of

ointly selecting the optimal minimum set of active sensors (and

heir corresponding sensing rates) which satisfies a prescribed es-

imation performance metric and consistently finding the optimal
ultihop routes so that the selected subgraph is connected. Hence,

n this paper we do not focus on devising new methods to solve

election problems or on comparing them, instead we are mainly

nterested in formulating a stochastic framework for consistent

ensor and link selection. Even the closest prior work [19] , which

s a “dual” problem w.r.t. ours, differs from this paper in several

ays: in [19] all sensors can directly communicate with the fusion

enter (i.e., it is not a multihop scenario so the graph connectivity

s not a problem), communication links are established based on

nter-sensor collaboration before transmitting a processed message

o the fusion center, and the optimal transmission rates of trans-

itting sensors are not determined. 

The problem at hand becomes even more challenging when

here is a distinction between sensor and relay nodes. In a sce-

ario where there are the two types of nodes, we want to con-

istently determine which of the nodes, placed at well-determined

ositions, should play the role of sensors (and hence their sensing

ate should be determined) and which ones the role of relays while

uaranteeing both a prescribed network performance and connec-

ivity in the selected subgraph. To find an optimal solution, a joint

ource and relay selection should be performed, which implicitly

mplies to activate suitable links. ( Fig. 1 ) 

The main contributions of this paper can be summarized as fol-

ows: 

1. From a stochastic point of view and in a multihop scenario,

we formulate a tractable optimization problem to select consis-

tently the optimal subsets of sensors (with their sensing rates)

and links that guarantee both, a required network performance

and graph connectivity in the selected subnetwork. To solve

this problem, we propose a sparsity-aware algorithm based on

a convex relaxation ( Sections 2 –4 ). 

2. The previous framework is also well-suited for the joint selec-

tion of sensors, relays and links (which is not the case for other

approaches in the literature, e.g., [23] ). Under a slight modifica-

tion of the previous optimization problem and applying a con-

vex relaxation technique, we propose another sparsity-aware

consistent sensor-relay-and-link selection algorithm. This algo- 

rithm assigns the optimal sensing rates to the active sensors

and ensures network connectivity as well as a prescribed net-

work performance ( Sections 5 and 6 ). 

3. Finally, we also extend the work to a special case where only

link selection is considered ( Section 7 ). 

Contributions (1)–(3) rely on a reformulation of the problems

s � 1 convex optimization problems. This allows for efficient and

ell performing algorithms. Different approaches, e.g. [27] , would

ield more complex problem formulations, which rely on dedicated

on-convex solvers. This is avoided here. In addition, based on the

act that a � 1 relaxation is leveraged, distributed algorithms can be

nvisioned (see Remark 1 ). 

Numerical simulation results support our claims and illustrate

 satisfactory performance of the proposed algorithms. As a last

ote, we highlight that the presented algorithms are exposed in a

tatic framework, i.e., given a certain network, we provide a selec-

ion strategy. Yet, they could be implemented in a dynamical way,

y repeating their execution, so to balance the energy level of the

ctive and non-active sensors and relays (see Remark 3 ). 

Notation: Notation is where possible standard: we indicate with

oldfaced small letters, such as x , real vectors, whereas capital

oldfaced letters, e.g. A , represent real matrices. Vector p -norms

re indicated with ‖ · ‖ p , while p -norms for matrices are intended

lement-wise , e.g., ‖ A ‖ 1 is the sum of the absolute values of the el-

ments of the matrix A . Pseudo-norms, such as the 0-norm, follow

he same notation. 
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Fig. 1. General structure of the paper with the three problem formulations and relations among them. 
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2. Problem formulation 

High-level problem description: In this paper, we are facing the

problem of consistently selecting the smallest subset of sensors

and links out of all available ones such that a certain performance

measure and network connectivity (which ensures a path from the

active sensors to the APs) is guaranteed. The motivation behind se-

lecting a low number of sensors (and subsequently, an appropriate

reduced amount of links) comes from the need of minimizing the

economical and communication costs in wireless sensor networks.

Clearly, this saving should not jeopardize the performance or the

network connectivity. Communication between the active sensors

and the APs as well as a network performance must be guaran-

teed. 

We consider a static wireless sensor network composed of J

sensor nodes and K access points (APs) or sinks. At this point, we

do not consider any relays yet. We denote with V = { 1 , 2 , . . . , J, J +
1 , . . . , J + K} the set of sensors and access points, where i ∈ V s =
{ 1 , . . . , J} are the indexes corresponding to the sensor nodes and

i ∈ V AP = { J + 1 , . . . , J + K} are the indexes corresponding to the

APs. The network topology is determined by the physical loca-

tions of the sensors and APs, collected in the stacked vector x =
[ x T 1 , . . . , x 

T 
J , x 

T 
J+1 , . . . , x 

T 
J+ K ] 

T , where the vector x i indicates the posi-

tion of sensor or AP i . 

2.1. Communication network 

Sensors need to communicate their measurement to the APs

in a multi-hop fashion (due to energy/power constraints). An im-

portant feature of this paper is that we can only use active sen-

sors to transmit messages. We model the communication qual-

ity among sensors and APs using a link reliability metric, denoted

as R ip := R (‖ x i − x p ‖ ) , which represents the probability that sen-

sor p (if p ≤ J ) or an AP (otherwise) receives successfully a mes-

sage sent from sensor i . We model this probability as a smooth

non-increasing function with compact support, and in particular,

R (0) = 1 and R (d) = 0 for all d ≥ d̄ , for a predefined cut-off dis-

tance d̄ . 

The link reliability metric induces a specific undirected com-

munication graph on the wireless sensor network: whenever R ip 
is nonzero, there is a possible link between sensor i and sensor or

AP p . We describe this communication graph in terms of the edge

set E, given by E = { (i, p) , i ∈ V s , p ∈ V| i � = p, R ip > 0 } , and we de-

note the graph as G = (V, E ) . 
.2. Sensing 

Sensors take measurements of a parameter θ ∈ R 

m , m � J , ac-

ording to the linear measurement model, 

 i = a T i θ + n i , i ∈ V s , (1)

here the vectors a i ∈ R 

m represent the regressors, while n i is a

aussian noise term with mean 0 and covariance σ 2 
i 

. Sensor i ac-

uires measurements y i with a rate r i ̄r i (we assume that the max-

mum relative rate r̄ i is known and fixed, while the relative rate r i 
 [0, 1] is a design parameter). If r i = 0 , the node will not take any

easurements and will not be active. 

As we mentioned, the collected measurements need to be com-

unicated back to the APs in a multi-hop fashion. The APs are in

harge of combining the measurements y i , coming from different

ensors at different rates, to estimate the value of the parameter

. The quality of the estimate can be evaluated a priori based on

hich sensors are measuring (more specifically their regressors a i 
nd noise variances σ 2 

i 
) and their rates. Examples of such qual-

ty metrics are rate versions of the mean square error (MSE), the

orst case error variance, or the volume of the confidence ellip-

oid [11] . For instance, if we select the MSE-rate as quality metric

nd assume that the noise experienced at different sensors is un-

orrelated, then we would have 

f (r ) := tr 

(∑ 

i ∈V s 
r i ̄r i a i a 

T 
i /σ

2 
i 

)−1 

, (2)

here we have collected the relative rates in r = [ r 1 , . . . , r J ] 
T . Re-

ark that if a sensor is not active, its relative rate is zero. The

igher the value of f ( r ), the higher the MSE-rate of the estimate,

nd vice versa. Other types of function f ( r ) can be found in [11,13] ,

oth for uncorrelated and correlated noise. In order to keep the

resentation as general as possible, we will not specify which qual-

ty metric we select: we will simply write the metric as the func-

ion f ( r ). 

.3. Connectivity modeling 

Before formalizing the problem mathematically, we need to in-

roduce how we will model the communication links and the in-

uced connectivity. In this paper, we use a stochastic point of view

nd we use the stochastic routing framework of [22] . 

In our multihop wireless network, messages will be routed

tochastically, i.e., sensor nodes select a neighbor, either a sensor

r an AP, to forward the message according to a certain probability.

 set of variables T ip ∈ [0, 1] will denote the probability that node

 selects node p , either a sensor or an AP, as a destination of the
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ransmitted messages. In this sense, the variables T ip can be seen

s the probability that node i selects the link that joins sensors i

nd p . The matrix T , of size J × (J + K) , gathers all these probabil-

ty values. Further, the matrix T needs to satisfy a certain number

f constraints. First, if either one of the sensors i or p is not ac-

ive, then T ip must be zero: this models the fact that if a sensor

s not active then it cannot send or receive messages. This can be

ormulated as 

 ip = 0 iff r i r p = 0 , i ∈ V s , p ∈ V, (3)

ince T ip will be nonzero if and only if both r i and r p are nonzero,

eaning that the sensors are active (we can fix r p = 1 for APs,

ithout loss of generality). Second, since we are dealing with link

robability values, the sum of all link probabilities of an active sen-

or should be at most 1: 
 

p∈V 
T ip ≤ 1 , i ∈ V s . (4)

e notice that we can use i ∈ V s in condition (4) , since non-active

ensors have T ip = 0 due to condition (3) , and therefore (4) is au-

omatically satisfied. 

To complete the formulation, we want to ensure the delivery of

essages to the APs, which is achieved by guaranteeing network

onnectivity among the active sensors and APs. To that aim, let R 0 
e the transmission rate of the sensors. Then the effective trans-

ission rate in the active link between nodes i and p is R 0 R ip (re-

all that R ip := R ( x i , x p ) is the link reliability between sensors or

Ps). We consider normalized rates by making R 0 = 1 , and we fur-

her assume that all sensors have the same transmission rate R 0 ,

hich is an easy-to-lift constraint. 

Each sensor stores messages in a queue between the genera-

ion or arrival from other sensors and their transmission. An active

ensor i , apart from generating messages locally at rate r i ̄r i , also

eceives messages from other sensors p with an active link T pi R pi .

hus, the aggregate rate at which messages arrive at sensor node i

s 

 

in 
i = r i ̄r i + 

∑ 

p∈V s 
T pi R pi . (5)

n a similar way, the rate at which sensor i sends messages to other

odes p , which may be sensors or APs, is given by 

 

out 
i = 

∑ 

p∈V 
T ip R ip . (6)

f we consider that the average rate at which messages leave the

ensor’s queue is higher than the rate at which messages arrive at

 sensor, i.e., r out 
i 

≥ r in 
i 

, i.e., 

 i ̄r i + 

∑ 

p∈V s 
T pi R pi ≤

∑ 

p∈V 
T ip R ip , i ∈ V s , (7)

hen the queue empties often with probability one and there is an

lmost sure guarantee that the messages are delivered to the AP

22] (a formal statement of this fact will be given in the following).

Problem statement: Given the measurement model for the dif-

erent sensors and a prescribed performance measure value γ >

, we want to find the relative rates r ∈ [0, 1] J , which select the

inimum subset of sensors, and the probabilistic routing matrix

 ∈ [0 , 1] J ×(J + K) , which selects the minimum subset of links, so that

he performance measure f ( r ) ≤ γ is satisfied and the messages are

elivered to the APs. This can be stated as 

inimize 
r , T 

α1 ‖ r ‖ 0 + α2 ‖ T ‖ 0 (8a) 

ubject to r i ∈ [0 , 1] , T ip ∈ [0 , 1] , i ∈ V s , p ∈ V (8b) 
(3) , (4) , (7) (8c) 

f (r ) ≤ γ , (8d) 

here the non-negative scalars α1 and α2 determine the impor-

ance of the sensors and the links. If α1 = 0 , then the problem

ecomes link selection with stochastic routing, while for α2 = 0 ,

he problem is sensor selection. We denote as ( r ∗, T ∗) any optimal

ouple determined by the solution of problem (8). 

We can readily notice that (8) is a nonconvex program, which

akes finding any optimal couple ( r ∗, T ∗) computationally expen-

ive in practice. In this paper, we are interested in finding an ap-

roximate solution of (8) by a suitable convex relaxation. 

. Convex relaxation 

We relax the nonconvex program (8) by substituting the � 0 -

seudo norm, with the � 1 norm, and by substituting the nonconvex

onstraint (3) with the convex surrogate 

 ip ≤ min { r i , r p } , i ∈ V s , p ∈ V . (9)

hese operations transform the original problem (8) into 

inimize 
r , T 

α1 ‖ r ‖ 1 + α2 ‖ T ‖ 1 (10a) 

ubject to r i ∈ [0 , 1] , T ip ∈ [0 , 1] , i ∈ V s , p ∈ V (10b) 

(9) , (4) , (7) (10c) 

f (r ) ≤ γ . (10d) 

With the assumption that the now continuous function f : R 

J →
 is convex in r (as it happens with all the aforementioned qual-

ty measurement examples [11] ), then the program (10) is convex.

n addition, for the mentioned examples of f ( r ), (10) is a semidef-

nite program, which makes its solution efficient to compute poly-

omially with off-the-shelf software. We indicate with ( ̂ r , ̂  T ) any

ossible solution of (10). 

It is important to note that the couple ( ̂ r , ̂  T ) is only an approx-

mation of the sought solution ( r ∗, T ∗). However, we will see in

he simulation section that ( ̂ r , ̂  T ) is usually a sparsely enough ap-

roximate solution. An additional feature of the approximate cou-

le ( ̂ r , ̂  T ) is that it is feasible w.r.t. the constraint set of the origi-

al problem (8), and therefore it does not have to be mapped into

 different set (as it usually happens in relaxed sensor selection

roblems). The reason for this is that we are working with rates

nd not Boolean variables. 

A strategy to increase the sparsity of the approximate couple

( ̂ r , ̂  T ) , which has been proposed in [28] , is to use a reweighted � 1 
inimization mechanism. In this paper, we also use this strategy,

hich goes as follows. Consider the relaxed problem (10), with the

ifferent cost function α1 ‖ w � r ‖ 1 + α2 ‖ W � T ‖ 1 , where w ∈ R 

J 

nd W ∈ R 

J ×(J + K) are a weighting vector and matrix, respectively.

he weights can be determined so to push small components of r

nd T to zero, and boost big ones to one. In particular, initialize

 

0 
i 

= 1 and W 

0 
ip 

= 1 , then for each τ ≥ 0 solve the problem 

inimize 
r , T 

α1 ‖ w 

τ
� r ‖ 1 + α2 ‖ W 

τ
� T ‖ 1 (11a) 

ubject to r i ∈ [0 , 1] , T ip ∈ [0 , 1] , i ∈ V s , p ∈ V (11b) 
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(9) , (4) , (7) (11c)

f (r ) ≤ γ , (11d)

whose solution is ( ̂ r τ , ̂  T τ ) , and whose weights for τ ≥ 1 are w 

τ
i 

=
w 

τ−1 
i 

/ (ε + ̂  r τ−1 
i 

) and W 

τ
ip 

= W 

τ−1 
ip 

/ (ε + 

ˆ T τ−1 
ip 

) , with ε a small posi-

tive constant. 

This iterative (reweighted) procedure delivers sparser solutions,

as we will show in the simulation results. We have summarized

the resulting sparse sensor and link selection (SSLS) iterative algo-

rithm in Algorithm 1 . 

Algorithm 1 Sparse sensor and link selection. 

Require: Number of iterations N, reweighting tolerance ε > 0 , sen-

sor importance α1 ≥ 0 , link importance α2 ≥ 0 . 

1: Set the weighting vector and matrix as w 

0 
i 

= 1 and W 

0 
ip 

= 1 for

all i ∈ V s and p ∈ V
2: for τ = 0 to N − 1 do 

3: Solve the convex program˜(11) with off-the-shelf interior

point methods (e.g., SDPT3˜[29] or SeDuMi˜[30]). Let the so-

lution be ( ̂ r τ , ̂  T τ ) . 

4: Compute the new weights w 

τ+1 and W 

τ+1 as 

w 

τ+1 
i 

= 

w 

τ
i 

ε + ̂

 r τ
i 

, W 

τ+1 
ip 

= 

W 

τ
ip 

ε + 

ˆ T τ
ip 

5: end for 

6: Output the solution couple ( ̂ r N , ̂  T N ) 

Connectivity guarantees of Algorithm 1 : We notice that due

to (7) , the solution coming from Algorithm 1 guarantees that the

measurements acquired at the sensors are delivered at the APs, i.e.,

each of the active sensors has a path back to at least one AP. To

formally prove this statement, consider (7) : 

r i ̄r i + 

∑ 

p∈V s 
T pi R pi ≤

∑ 

p∈V 
T ip R ip , i ∈ V s , 

this constraint has to be true for each active sensor (the one for

which r i > 0), and it reads 0 ≤ 0 for the not active ones (due to

constraint (9) , i.e., in this case also T pi and T ip are 0). Since it has

to be true for all active sensors, each of them has to send out more

rate than what it receives (and the difference is given by its mea-

surement rate), that is 
∑ 

p∈V s 
T pi R pi < 

∑ 

p∈V 
T ip R ip , i ∈ { j ∈ V s | r j > 0 } . 

Therefore, first: no active sensor can be a sink (it has to send out

more than it receives). Second: there cannot be loops of active sen-

sors not connected to a sink. In fact, if there were, since the rate

augments along the loop, constraint (7) would not be satisfied for

at least a pair of active sensors connected together. Thus, the only

possibility is that eventually each sensor has a path to a sink. This

is also what we observe in simulations. �

Remark 1. (Distributed algorithms) Although the algorithms in this

paper are centralized, one could devise distributed algorithms in

a standard fashion. For instance, Problems (10) and (19) with the

choice for f ( r ) of (2) fit the general structure presented in [29] . In

particular one needs to consider the local decision variables x i as

the vector (r i , { T ip } p∈V s ) . In this case, with the use of consensus-

based dual decomposition each sensor could decide their on/off

strategy and to whom to communicate. Nonetheless, first, the re-

weighting procedure is not trivial to implement in this case, and

second, the sensors could spend a considerable amount of battery

power to decide their on/off strategy. We believe that developing
istributed and yet efficient (i.e., power-aware) algorithms for sen-

or selection is still an open research area, which is left for future

nvestigations. 

emark 2. (Stochasticity of the reliability matrix R ip ) Although here

e assume to know each element R ip in a deterministic sense, one

ould also think of estimating R ip online. If then one possesses a

df for R ip , one could replace the deterministic constraint (7) with

 stochastic variant of it. Another approach in the estimation

ould be the one of [30] . Finally, a third approach would consider

 time-varying online algorithm to track R ij as it (possibly) varies

n time, which is in line with the research proposed in [31] . 

emark 3. (Energy efficiency) Energy efficiency can also be consid-

red in the proposed approach. For instance, one could re-run the

election algorithm to take into account that the battery charge of

he devices has changed, so to keep a balance in the usage of the

hole sensor network. A way to include battery charge into the

ptimization problem is, e.g., to initialize the weights w 

0 
i 
’s not to 1

ut to the inverse of the battery level: 1 if fully charged, ∞ if out

f charge. 

. Numerical results for sensors and links 

In this section, we assess the performance of the proposed SSLS

lgorithm in terms of the amount of resources that are used, i.e.,

he number of both, active sensors and links. We also verify the

onsistency and the subgraph connectivity. 

We consider an estimation scenario where sensors are ran-

omly deployed according to a uniform distribution in a square

rea of side 5 units. The regression matrix, A = 

[
a 1 , . . . , a J 

]ᵀ 
A ∈

 

J x m , is drawn from a zero-mean Gaussian distribution with vari-

nce 1. The variance of the noise is the same at all sensors, σi =
 / 
√ 

SNR , where SNR is set to 0 dB. We use the cost f ( r ) of (2) and

et the parameter γ in (11d) to 0.5. The link reliability metric that

e use in the simulations is given by: 

 ip = 

⎧ ⎨ 

⎩ 

1 − 1 
2 
( 

‖ x i −x p ‖ 
d 

) 2 β if 0 ≤‖ x i − x p ‖ < d 

1 
2 
(2 − ‖ x i −x p ‖ 

d 
) 2 β if d ≤‖ x i − x p ‖ < 2d 

0 otherwise 

(12)

ith β the power attenuation factor (2 ≤ β ≤ 6) and d the com-

unication radius. We have considered β = 2 and d = 1 . 74 [32] . 

The number of iterations in the reweighted � 1 minimization is

mpirically set to 30 to trade-off sparsity of the solution and com-

utational time. Due to the application of the reweighted � 1 min-

mization mechanism, only the sensors and links with relatively

igh acquisition rate and link probability are active. We round off

o 0 the link probabilities and sensor rates lower than a sufficiently

mall constant δ, which is set to δ = 2 · 10 −4 . Further, we consider

1 = α2 = 1 . Notice that rounding off the probabilities to 0 could

ncur in a loss of connectivity. This is however not likely in prac-

ice, due to the reweighting procedure that makes sure that the

on-zero probabilities have values well above the selected thresh-

ld δ. The experimental results support this claim, since we have

ot witnessed any loss in connectivity. 

Fig. 2 is an example of a 100-node sensor network with a single

P. The parameter to estimate has dimension m = 2 and the max-

mum rate is r̄ = 0 . 7 . Active sensors are colored in green while the

P is in black. The results show the sparsity of the solution since

nly a few sensors (4%) and links (0.072%) are active. It can be also

een that the selected subgraph is connected and there is always

 path between the active sensors and the AP. The solution also

atisfies the other constraints of the optimization problem. Fig. 3

hows the relative rates of the active sensors. 

Next, our purpose is to show average performance results.

ence, we run 250 Monte Carlo simulations for each network con-

guration. The number of deployed sensors, J , varies from 30 to
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Fig. 2. Active links and sensors in a one-AP network for J = 100 nodes. 
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Fig. 3. Relative rates of the active sensors. 

1  

0  

i  

s  

a  

t

 

t  

o  

I  

t  

o  

P

R  

t  

i  

p

Fig. 4. Average performance and its standard deviation for m = 2 and for different 

amount of sensors and r̄ . (For interpretation of the references to color in this figure, 

the reader is referred to the web version of this article.) 

Fig. 5. Average performance and its standard deviation for m = 4 and for different 

amount of sensors and r̄ . (For interpretation of the references to color in this figure, 

the reader is referred to the web version of this article.) 
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00 and there is one AP. Two values of r̄ are considered, 0.4 and

.7. Simulations are run considering that r̄ is identical for all nodes

n the sensor network. Also, we consider two values for the dimen-

ion of the parameter to estimate, m = 2 and m = 4 . Two metrics

re considered to assess the performance of the networks. They try

o measure the amount of resources that are used in the network. 

Since we are dealing with acquisition rates, let us first define

he total relative acquisition rate of the whole network as the sum

f the acquisition rates of the sensors in the network, i.e., 
∑ 

i ∈V s ˆ r N 
i 

.

n order to make the performance measurement independent of

he number of sensors in the network, we define the percentage

f the total relative acquisition rate of the whole network, P trr , as

 trr = 

∑ 

i ∈V s ˆ r N 
i 

J 
· 100 . (13) 

ecall that the relative acquisition rate ˆ r N 
i 

∈ [0 , 1] . Note that only

he active sensors contribute to the sum since their acquisition rate

s different from 0, so this measure gives us information about the

ercentage of active sensors. 
Considering that 
∑ 

p∈V ˆ T N 
ip 

≤ 1 for i ∈ V s , we next define the per-

entage of the aggregate network link probability, P alp , as 

 alp = 

∑ 

i ∈V s 
∑ 

p∈V ˆ T N 
ip 

J 
· 100 . (14) 

Note that only active sensors and APs contribute to the sum,

ince the remaining link probabilities are 0. In this case, the metric

s related to the percentage of active links in the network. In both

ases, the lower the metrics are, the fewer resources (in terms of

ctive sensors and links) are used. 

Figs. 4 and 5 show the average performance and the standard

eviation for m = 2 and m = 4 , respectively, for different amounts

f deployed sensors and the two values of r̄ . Even for the worst

ase scenario, i.e., for r̄ = 0 . 4 and a 30-node network, the P trr 

nd P alp values are 8% and 5.5% for m = 2 and 22% and 17% for

 = 4 , respectively (which represents a small percentage of used

esources). 

In order to verify if those metric values correspond to the ac-

ivation of a low number of sensors with high relative rate values

r correspond to a high number of active sensors with low rela-

ive rate values, Figs. 6 and 7 illustrate the average percentage of
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Fig. 6. Average percentage of active sensors and links and its standard deviation 

for m = 2 and for different amount of sensors and r̄ . (For interpretation of the ref- 

erences to color in this figure, the reader is referred to the web version of this 

article.) 

Fig. 7. Average percentage of active sensors and links and its standard deviation for 

m = 4 and for different amount of sensors and r̄ . 
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active sensors and links. For networks of 30 nodes and r̄ = 0 . 4 , the

average percentage of active sensors and links is 12% (i.e., 3.6 sen-

sors) and 0.55% for m = 2 and 30% (i.e., 9 sensors) and 1.7% for

m = 4 , respectively. Thus, this result corroborates that the amount

of used resources is conservative, i.e., there is a low percentage of

active sensors with high relative rates because the P trr values are

the highest in Figs. 4 and 5 . 

4.1. Case r̄ = 0 . 7 (yellow and red bars) 

From Figs. 4 and 5 it can be seen that the values of the two

metrics decrease with the increase of the number of sensors (re-

gardless of m ), reaching lower values than those of the network of

30 nodes. 

Let us examine the scenario with m = 2 (analogous conclusions

hold for networks with m = 4 ). If we also analyze the trend in

the percentage of active sensors ( Fig. 6 ), it first decreases and
ater increases slightly starting from networks of 80 nodes. Even

hough networks with 80–100 nodes have between 6% to 8% of ac-

ive nodes (i.e., 7 sensors), those networks have a slightly higher

mount of active resources than in networks of 30 nodes (10%, ap-

roximately 3 nodes). However, in general, the total number of ac-

ive sensors stay low in comparison to the total number of sensors,

hich corroborates the sparsity of the solution. 

.2. Case r̄ = 0 . 4 (dark and light blue bars) 

Let us analyze the behavior of the metrics for r̄ = 0 . 4 and m = 2

analogous conclusions are raised for networks with m = 4 ). In

ig. 4 , P trr values decrease from 7.5% at networks of 30 nodes

o 2.7% at networks of 70 nodes, and from that point increases

lightly up to a value of 3.2% at networks of 100 nodes. If we now

ave a look at Fig. 6 , the percentage of active sensors goes from

1.8% at 30-node networks (i.e., 3.5 sensors) to 8% at 50-node net-

orks (i.e., 4 sensors) and later increases until reaching a value of

2% at 90-node networks (i.e., 20 nodes). While the number of ac-

ive nodes is similar in networks with a low amount of sensors

30–50 nodes), it increases slightly for denser networks (60–100

odes). In this latter case, sensors are closer to each other so that

he reliability values among sensors are similar and more sensors

ay be activated. First, although not reported here, we have ob-

erved that increasing the number of reweighting iterations does

elp in the latter case in reducing the amount of active sensors, at

he cost of increasing the computational time requirements. Sec-

nd, we will see how this is not an issue when relays are consid-

red. 

In case of the percentage of active links, the values are below

.7% for m = 2 and 2% for m = 4 for all the network sizes. Hence,

he networks are sparse in the amount of active links. 

From the figures, it can be appreciated that, for a given num-

er of nodes, the percentage of used resources is lower in case of

stimating a parameter of 2 dimensions than one of 4 dimensions

compare the metric values as well as the percentage of active sen-

ors and links). Furthermore, the percentage of used resources (ac-

ive sensors and links) is lower in case of considering r̄ = 0 . 7 . 

Subgraph connectivity and consistency have been also checked

or every run. All the activated sensors have a path to the AP. Fur-

hermore, connectivity of the network in the sense of (7) is guar-

nteed. 

. Sensor and relay selection 

When dealing with wireless sensor networks which are de-

loyed in large areas, it is often useful to employ relays to facil-

tate the transmission of measurements back to the APs. In this

pirit, we also consider the possible presence of relays. In partic-

lar, from here on, all the nodes deployed in the sensor network

ay act as sensors or as relays. Note that sensors can also act as

 relay while sensing, as discussed in the previous section. Our

oal is to consistently determine which of the nodes, which are

laced at well-defined positions, should play the role of sensors

nd which ones the role of relays while guaranteeing both a pre-

cribed network performance and connectivity in the selected sub-

raph. Notice that relays have less energy requirements that sen-

ors, and therefore the distinction between sensors and relays is

eneficial to further reduce the overall energy consumption. No-

ice also that, as expressed in the introduction, the proposed solu-

ion may be reiterated in time, to assign different roles at different

imes. 

In order to model the possibility for a node to be acting as

 sensor or as a relay, we introduce a new Boolean variable ν ∈
 0 , 1 } J+ K , and we define that a node i ∈ V s , a sensor or relay, is on

f νi = 1 and it is off, otherwise ( νp = 1 for APs). From the nodes
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Algorithm 2 Sparse sensor, relay, and link selection. 

Require: Number of iterations N, reweighting tolerance ε > 0 , sen- 

sor importance α1 ≥ 0 , link importance α2 ≥ 0 , relay impor- 

tance α3 ≥ 0 . 

1: Set the weighting vectors and matrix as w 

0 
i 

= 1 , v 0 
i 

= 1 , and 

W 

0 
ip 

= 1 for all i ∈ V s and p ∈ V
2: for τ = 0 to N − 1 do 

3: Solve the convex program 

minimize 
r , T ,ν

α1 ‖ w 

τ
� r ‖ 1 + α2 ‖ W 

τ
� T ‖ 1 + α3 ‖ v τ � ν‖ 1 

subject to r i ∈ [0 , 1] , T ip ∈ [0 , 1] , 

νi ∈ [0 , 1] , i ∈ V s , p ∈ V 
(4) , (15) , (16) , (17) , 

f (r ) ≤ γ , 

with off-the-shelf interior point methods (e.g., SDPT3˜[29] or 

SeDuMi˜[30]). Let the solution be ( ̂ r τ , ̂  T τ , ̂  ντ ) . 

4: Compute the new weights w 

τ+1 , v τ+1 and W 

τ+1 as 

w 

τ+1 
i 

= 

w 

τ
i 

ε + ̂

 r τ
i 

, W 

τ+1 
ip 

= 

W 

τ
ip 

ε + 

ˆ T τ
ip 

, v τ+1 
i 

= 

v τ
i 

ε + ˆ ντ
i 

5: end for 

6: Project ˆ νN 
i 

to 1, if ˆ νN 
i 

> 0 . 

7: Output the solution triplet ( ̂ r N , ̂  T N , ̂  νN ) 
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hat are on, we will know they are sensors when their r i is strictly

ositive, while the others are acting as relays. 

We also reformulate the constraints accordingly. Con-

traint (3) gets reformulated as 

 ip ≤ min { νi , νp } , i ∈ V s , p ∈ V, (15)

s the relays can exchange information. Notice that the constraint

as a simplified form w.r.t. (3) , since the variable ν is Boolean. In

ddition, we need a constraint that makes sure that a sensor has a

ositive relative rate only when its node is activated, that is 

 i ≤ νi , i ∈ V s . (16)

inally, constraint (7) can be carried over as it is, 

 i ̄r i + 

∑ 

p∈V s 
T pi R pi ≤

∑ 

p∈V 
T ip R ip , i ∈ V s , (17)

With this in place, the problem we want to solve is how to con-

istently select minimum rates, relays, and links so to guarantee a

ertain network performance and connectivity. We can formulate

his as 

inimize 
r , T ,ν

α1 ‖ r ‖ 0 + α2 ‖ T ‖ 0 + α3 ‖ ν‖ 0 (18a) 

ubject to r i ∈ [0 , 1] , T ip ∈ [0 , 1] , 

νi ∈ { 0 , 1 } , i ∈ V s , p ∈ V (18b) 

(4) , (15) , (16) , (17) , (18c) 

f (r ) ≤ γ . (18d) 

Any possible solution of this problem is indicated as the triplet

 r ∗, T ∗, ν∗). This problem is a nonconvex mixed-integer program-

ing problem and therefore finding any triplet ( r ∗, T ∗, ν∗) would

e in general too computationally expensive. As done for the case

here the relays are not present, we relax the problem to a con-

ex one. In particular, we substitute the � 0 pseudo-norm with the

onvex surrogate � 1 norm, and we let the Boolean vector ν become

eal and live in the set [0 , 1] J+ K . With this, we arrive to the convex

roblem 

inimize 
r , T ,ν

α1 ‖ r ‖ 1 + α2 ‖ T ‖ 1 + α3 ‖ ν‖ 1 (19a) 

ubject to r i ∈ [0 , 1] , T ip ∈ [0 , 1] , 

νi ∈ [0 , 1] , i ∈ V s , p ∈ V (19b) 

(4) , (15) , (16) , (17) , (19c) 

f (r ) ≤ γ , (19d) 

hose solution is indicated with ( ̂ r , ̂  T , ̂  ν) . Once again, the approx-

mate triplet ( ̂ r , ̂  T , ̂  ν) is going to be different in general from the

ought one ( r ∗, T ∗, ν∗). An important difference with problem (8)

nd its relaxed version is the presence of the Boolean vector ν:

his makes the triplet ( ̂ r , ̂  T , ̂  ν) in general unfeasible w.r.t. the con-

traints of the nonconvex problem (18) (the reason is that ˆ νi does

ot have to be either 0 or 1). In this paper, we consider to project

ˆ i to 1 any time ˆ νi > 0 . In this way, the new triplet becomes feasi-

le w.r.t. constraints of the nonconvex problem (18). 
In Algorithm 2 , we summarize the procedure for consistent

parse sensor, relay, and link selection (SSRLS), where we have

sed once again the sparse-enhancement procedure of reweight-

ng. 

Connectivity guarantees of Algorithm 2 : We formalize now the

laim that from each active sensor there exists a path (formed

y relays and other active sensors) that goes to an AP. The ar-

ument that we use to prove this claim is the same as the

ne that we have used to prove the connectivity guarantees of

lgorithm 1 (where no relay were considered). Consider (17) : this

onstraint has to be true for each active sensor and active relay

the one for which r i = 0 and ν i > 0), and it reads 0 ≤ 0 for the

ot active ones (due to constraints (15) and (16) ). Since it has to

e true for all active sensors and relays, the sensors have to send

ut more rate than what they receive (and the difference is given

y r i ̄r i ), while the relays can send out exactly what they receive.

herefore, first: no active sensor or relay can be a sink. Second:

here cannot be loops containing active sensors not connected to

 sink, since the rate augments along the loop and (17) would not

e satisfied for at least one pair of connected active elements (ei-

her sensor–sensor, sensor–relay, or relay–relay). Third: there can-

ot be loops containing only active relays. The reason for the last

laim is that, although (17) would be satisfied along the loop for

ny T ip = T pi for all pairs of active relays ( i, p ) on the loop, the so-

ution T ip = 0 is the optimal one, given the selected cost function.

hich induces all the relays in the loop to become inactive. Thus,

he only possibility is that eventually each sensor has a path to a

ink, and no relays are used without purpose. �

. Numerical results with relays 

Similarly to the sensor and link selection scenario, in this sec-

ion we assess the performance of the new SSRLS algorithm in

erms of the amount of resources that are used. We also verify the

onsistency and the subgraph connectivity. 
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Fig. 8. Selected sensors, relays and links in a two-AP 50-sensor network where m = 

4 . (For interpretation of the references to color in this figure, the reader is referred 

to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Average performance and its standard deviation for m = 2 and for different 

amount of sensors and r̄ . 

Fig. 10. Average performance and its standard for m = 4 and for different amount 

of sensors and r̄ . 
Once again, we consider an estimation scenario, where the pa-

rameters are the same 3 as those used in the sensor and link se-

lection case ( Section 4 ). We consider α1 = α2 = α3 = 1 . Fig. 8 is an

example of a 50-node sensor network with two APs with m = 4

and r̄ = 0 . 4 . The active sensors are colored in green, the active re-

lays in blue and the APs are colored in black. Looking at the fig-

ure, it is evident that the obtained solution is sparse. From the 50

nodes (excluding the APs), 5 are selected as sensors and 3 as re-

lays. The amount of active links (i.e., those that have a probability

value higher than 0) is 8%. Observe the connectivity of the selected

subgraph, where there is a path from each active sensor to the APs

via the relays, where messages are routed stochastically according

to the link probability. The solution also satisfies the other con-

straints of the optimization problem. 

Next, and following a parallel analysis to the one made in the

sensor and link selection scenario, we show average performance

results. The number of sensors varies from 30 to 100, r̄ is 0.4 or

0.7 and m is either 2 or 4. 250 Monte Carlo simulations are run

for each network configuration. The metrics to assess the network

performance are the ones exposed in Section 4 . To check the spar-

sity in the number of relays, we also evaluate the percentage of

active relays in the network. 

Figs. 9 and 10 show the average performance and the standard

deviation, for m = 2 and m = 4 , respectively, for different num-

bers of deployed sensor nodes and the two values of the maxi-

mum acquisition rate. From these figures it can be seen that the

P trr and P alp values decrease when the number of sensor nodes in-

creases, going from a value of 6.3% ( m = 2 , r̄ = 0 . 4 ) or 19% ( m = 4 ,

r̄ = 0 . 4 ) for networks of 30 nodes to values lower than 2% ( m = 2 ,

r̄ = 0 . 4 ) or 5% ( m = 4 , r̄ = 0 . 4 ) for networks of 100 nodes. To verify

if those metric values correspond to the activation of a few sen-

sors with high relative rate value, Figs. 11 and 12 illustrate the av-

erage percentage of active sensors and links. For r̄ = 0 . 4 , the av-

erage percentage of sensors goes from approximately 8% (i.e., 2.4
3 In particular, the number of iterations in the reweighted � 1 minimization is set 

to 30 while δ = 2 · 10 −4 . 

Fig. 11. Average percentage of active sensors and links and its standard deviation 

for m = 2 and for different amount of sensors and r̄ . 
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Fig. 12. Average percentage of active sensors and links and its standard deviation 

for m = 4 and for different amount of sensors and r̄ . 

Fig. 13. Average percentage of active relays and its standard deviation for different 

amount of sensors, r̄ and m . 
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Fig. 14. Selected sensors, relays and links in a one-AP 100-sensor network where 

m = 4 and r̄ = 0 . 7 . 
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7

ensors for m = 2 ) or 22% (i.e., 6.5 sensors for m = 4 ) in 30-node

etworks to around 2% (i.e., 2 sensors for m = 2 ) or 5% (i.e., 5 sen-

ors for m = 4 ) in 100-node networks, respectively. Fig. 13 also il-

ustrates the percentage of active relays for sensor networks of dif-

erent sizes, r̄ and m . For m = 4 and r̄ = 0 . 4 , 2 relays (or 5.5% of

he nodes) are active in 30-sensor networks, while 1 relay (0.9%)

s active in 100-sensor networks. 

The conclusions from these figures are two-fold: First, indepen-

ently of the total number of available nodes, the algorithm ro-

ustly selects a similar number of sensors, relays and links to sat-

sfy the constraint on the measurement errors. This strongly sug-

ests that the optimality of the sensing, given the constraints, is

chieved. Second, the active sensors are those with high relative

ates. And even more, we obtain sparse solutions not only in the

mount of active sensors but also in the amount of active links and

elays. 

As observed for the sensor and link selection scenario, the de-

and of resources (percentage of active sensors, links and relays)

s less when considering higher maximum rates (see Figs. 11 –13 ).

lso, for a given number of nodes, the amount of used resources

rows whenever the dimension of the parameter to estimate in-
reases. Besides, the variability in the results of the sensor, relay

nd link selection problem is lower than in the sensor and link se-

ection problem. This can be observed by taking into account the

tandard deviation in the figures. All in all, it appears that when

ne considers also the presence of relays, one obtains better per-

ormance in terms of reduced active resources than in the case of

o relays. A more in depth characterization is left as future re-

earch. 

Therefore, the SSRLS algorithm provides a consistent solution

o the sensor and relay selection problem by always finding a con-

ected path among the active sensors, relays and APs no matter

he size of the network and the dimension m of the parameter to

stimate, and which satisfies the network performance constraint

or the active sensors. 

However, the following question may arise: are the active sen-

ors obtained after solving the SSRLS algorithm the same as those

hat would be active in a problem which aims at selecting the min-

mum number of sensors and their corresponding acquisition rates

o satisfy a certain MSE-rate, i.e., solve the relaxed version of the

ollowing problem: minimize r ‖ r ‖ 0 subject to f ( r ) ≤ γ , where

ensors that satisfy r i > δ (have an acquisition rate different from

) are selected? 

Clearly, the answer is no. As an example, compare the active

ensors in Figs. 14 and 15 , for a one-AP 100-sensor network where

 = 4 and r̄ = 0 . 7 . The solution provided by the SSRLS algorithm

ot only takes into account the sensors with the highest acquisi-

ion rates (to satisfy the MSE-rate constraint), but also selects in

 robust, coherent and consistent way relays and probability links

uch that the active sensors are connected to the APs (it consid-

rs the sensor deployment, too). On the contrary, the solution pro-

ided by the sensor selection problem does not consider the spa-

ial distribution of sensors, and the only issue that matters is the

election of the sensors with the best acquisition rates. Obviously,

his does not mean that both solutions do not activate some com-

on sensors. In the previous example, sensors with indexes 26, 49,

4 and 93 are selected in both solutions. 
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Fig. 15. Selected sensors in a one-AP 100-sensor network where m = 4 and r̄ = 0 . 7 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16. Selected links in a one-AP 50-node network or α = 1 , and using partial 

reweighted l 1 . Sensors are colored in red, the AP in black and different colors in 

the links represent the different probability ranges. (For interpretation of the refer- 

ences to color in this figure legend, the reader is referred to the web version of this 

article.) 
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7. Link selection 

This last scenario is a particular case of the general one where

we assume that all sensors are active, acquire measurements with

relative rate at least r i 0 , and communicate with the APs in a multi-

hop fashion. The problem that remains is to determine the proba-

bilistic routing matrix T , that selects the minimum subset of links

so that a certain constraint is satisfied. In particular, we want to

ensure network integrity, defined according to [22] as the ability

of the network to support the desired communication rates in a

certain network topology. 

As in the general scenario, the network needs to satisfy the flow

inequality constraint given by (7) in order to guarantee that mes-

sages are delivered to the APs. Furthermore, it is also required that

sensors communicate their measurements with the APs at a nom-

inal rate of r i 0 messages per time unit. This means that the rel-

ative acquisition rate should satisfy the following inequality: r i ≥
r i 0 . Thus, we aim at finding the appropriate relative rates r ∈ [0,

1] J and the sparse probabilistic routing matrix T . 

The network’s objective function to be optimized is the so-

cial utility value of the optimization variables, U i ( r i ) for the rel-

ative rate r i , and V ip ( T ip ) for the links T ip , which is defined as∑ J 
i =1 

U(r i ) + 

∑ J 
i =1 

∑ J+ K 
p=1 

V ip (T ip ) . Following [22] , we measure the

utility value associated to the rate as U(r i ) = log (r i ) , which penal-

izes small rates r i , and the utility value of the links as V ip (T ip ) =
−T 2 

ip 
. 

Then, the optimization problem that we have to solve is given

by 4 

maximize 
r , T 

∑ 

i ∈V s 
U(r i ) + 

∑ 

i ∈V s 

∑ 

p∈V 
V ip (T ip ) − α‖ T ‖ 0 (20a)

subject to r i ∈ [0 , 1] , T ip ∈ [0 , 1] , i ∈ V s , p ∈ V (20b)
4 Note that these utilities can be also incorporated in the objection functions of 

the previous optimization problems. However, and for the sake of simplicity, we 

only consider them in this scenario. 

t  

s  

i  

t  

r  
(4) , (7) (20c)

r i ≥ r i 0 , i ∈ V s , (20d)

The problem in (20) is not convex due to the � 0 -norm in the

bjective function. Thus, we relax the non-convex term of (20)

y substituting the � 0 -pseudo norm, with the � 1 norm. Then, the

revious optimization problem is transformed into the following

ne: 

aximize 
r , T 

∑ 

i ∈V s 
U(r i ) + 

∑ 

i ∈V s 

∑ 

p∈V 
V ip (T ip ) − α‖ T ‖ 1 (21a)

ubject to r i ∈ [0 , 1] , T ip ∈ [0 , 1] , i ∈ V s , p ∈ V (21b)

(4) , (7) (21c)

r i ≥ r i 0 , i ∈ V s , (21d)

The objective function is strictly concave and the constraints

re linear inequalities, so the problem can be solved efficiently by

sing convex optimization tools. Note that the optimal utility de-

ends on the spatial configuration of the sensors, and consequently

he optimal link probabilities and rate variables do too, which are

enoted as r ∗
x ,i 

, and T ∗
x ,ip 

. 

The amount of selected links depends on parameter α, which

ontrols the sparsity level (the higher it is, the fewer links are se-

ected). In order to increase sparsity and avoid the tuning of pa-

ameter α, we apply the iterative reweighted � 1 minimization al-

orithm only to the third term of the objective function (we call

his partial reweighted � 1 minimization), which diminishes the in-

uence of that parameter and helps in the link selection process.

e round off to 0 the link probabilities lower than a sufficiently

mall constant δ. 

In the remaining of this section, we show the performance of

he link selection scheme. Fig. 16 is an example of a 50-node sen-

or network with one AP. Sensors are colored in red and the AP

n black. The nominal rate is r i 0 = 0 . 2 , which is identical for all

he sensor nodes; another weighting parameter is α = 1 . δ and the

est of the parameters are identical to those defined in Section 4 .
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Fig. 17. Average percentage of total active links and its standard deviation for dif- 

ferent number of sensor nodes, and when link probabilities are graded in different 

ranges. 
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he color and the thickness of the links are related to the rout-

ng probability values, which are graded into different ranges. Blue

inks have a probability value between δ and 0.25 and their line is

he finest. The red ones have a probability between 0.25 and 0.5,

he black links between 0.5 and 0.75 and the green ones between

.75 and 1, having the thickest line. 

Note that only 51 links are active (i.e., it is a sparse solution).

very sensor is connected via multiple hops (links that connect the

ensors) to the AP, where the links with higher probabilities are

lways established between the AP and some of its neighboring

odes. This is logical given that a message that has been routed

hrough multiple sensors should have a higher probability of arriv-

ng successfully to the AP. In general, the sensors which are placed

ar from the AP tend to establish links with low probability values.

Fig. 17 illustrates the average percentage of active links (the to-

al percentage and the percentage by probability ranges) for sensor

etworks composed of a number of sensors whose amount varies

etween 30 and 100 and r i 0 = 0 . 2 . 250 Monte Carlo simulations are

un for each network configuration. First, the figure shows the low

mount of active links, so that the matrix T is sparse. For 30-node

etworks, the average percentage of active links is slightly higher

han 5 %. The percentage values decrease whenever the number of

odes in the network increases. Regarding the different probability

anges, the highest percentage of active links corresponds to values

f T ij between δ and 0.25, and it is followed by links with prob-

bilities T ij between 0.75 and 1. As in the earlier example, most

f those links are established between the AP and its neighbors,

hich ensures that messages arrive to the AP. 

. Conclusions 

In this paper we have proposed two optimization methods for

electing optimally and consistently the minimum set of sensors

and their corresponding sensing rates) and links (and their link

robability values); or sensors, relays and links, in wireless sen-

or networks. The chosen scenario has been parameter estimation,

here the selected sensors have to guarantee a prescribed network

erformance based on the MSE-rate. Numerical results showed the

parsity of the solution, which translates into a smart use of the

etwork resources. The proposed algorithms have provided a con-

istent solution to the selection problem by always finding a con-

ected path among the selected set of sensors, relays and APs no
atter the size of the network and the dimension of the param-

ter to estimate. This ensures the compliance of the network per-

ormance constraint by the selected sensors. 

Future work will consider the study of these algorithms from a

ecentralized point of view, eliminating the need of having an AP

hat collects all the measurements. The application of these algo-

ithms to other scenarios is also a matter of further studies. 
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