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Abstract—New schemes to recover signals defined in the nodes of
a graph are proposed. Our focus is on reconstructing bandlimited
graph signals, which are signals that admit a sparse representation
in a frequency domain related to the structure of the graph. Most
existing formulations focus on estimating an unknown graph signal
by observing its value on a subset of nodes. By contrast, in this pa-
per, we study the problem of inducing a known graph signal using
as input a graph signal that is nonzero only for a small subset of
nodes. The sparse signal is then percolated (interpolated) across the
graph using a graph filter. Alternatively, one can interpret graph
signals as network states and study graph-signal reconstruction as
a network-control problem where the target class of states is rep-
resented by bandlimited signals. Three setups are investigated. In
the first one, a single simultaneous injection takes place on several
nodes in the graph. In the second one, successive value injections
take place on a single node. The third one is a generalization where
multiple nodes inject multiple signal values. For noiseless settings,
conditions under which perfect reconstruction is feasible are given,
and the corresponding schemes to recover the desired signal are
specified. Scenarios leading to imperfect reconstruction, either due
to insufficient or noisy signal value injections, are also analyzed.
Moreover, connections with classical interpolation in the time do-
main are discussed. Specifically, for time-varying signals, where
the ideal interpolator after uniform sampling is a (low-pass) filter,
our proposed approach and the reconstruction of a sampled sig-
nal coincide. Nevertheless, for general graph signals, we show that
these two approaches differ. The last part of the paper presents nu-
merical experiments that illustrate the results developed through
synthetic and real-world signal reconstruction problems.

Index Terms—Graph signal processing, signal reconstruction,
interpolation, percolation, graph-shift operator, bandlimited graph
signals.

I. INTRODUCTION

SAMPLING and reconstruction of bandlimited signals are
cornerstone problems in classical signal processing. The
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emergence of new fields of knowledge such as network science
and big data is generating a pressing need to extend the results
existing for classical time-varying signals to signals defined on
graphs [3]–[5]. This not only entails modifying the existing al-
gorithms, but also gaining intuition on the concepts that are
preserved and lost when a signal is defined not in the time grid,
but in a more general graph domain. In the context of recon-
struction of graph signals, two different approaches have been
developed. A first approach is related to the interpolation of ban-
dlimited signals, which consists in inferring unobserved values
by leveraging the fact that the signal lives in a low-dimensional
space [6]–[10]. Although most interpolation approaches are cen-
tralized, iterative [11] and distributed [12], [13] interpolation
schemes have also been developed. A different approach to-
wards graph signal reconstruction is graph regularization [14],
[15] where a notion of smoothness is assumed on the signal and
the unobserved values are estimated based on this notion. Both
approaches coincide in that they estimate a graph signal from
the observation of a subset of the signal values. By contrast, the
approach in this paper is to preserve the two-step methodology
used when recovering bandlimited time-varying signals, which
consists in the generation of a sparse signal followed by the ap-
plication of a low-pass filter to reconstruct the missing entries,
and extend it to the more general graph domain.

To be more specific, we study the reconstruction of bandlim-
ited graph signals through the application of low-pass graph fil-
ters to sparse seeding signals. Graph filters are the generalization
of classical time-invariant systems when the signals are defined
on a general graph as opposed to the classical time domain [4].
Seeding signals are graph signals attaining nonzero values on a
subset of the nodes in the graph, called seeding nodes. Alterna-
tively, one can view graph signals as network states and, thus,
reinterpret the seeding values as local control inputs designed to
steer the network to a target state associated with a bandlimited
signal. Further connections between our proposed approach and
the study of controllability for complex networks [16]–[22] are
detailed in Section II.B. To describe our contribution more pre-
cisely, let y stand for the graph signal that we want to induce
in the graph. Our goal is to design a graph filter H and a sparse
signal x such that y can be obtained upon applying H to x. The
design is accomplished in two steps. In the first step, we design
the filter H leveraging the bandlimitedness of y, to eliminate
the frequencies not present in y. Then, we use the H designed
in the first step and the specific value of y to design the signal
x. The challenge is that x cannot be chosen freely but is rather
the output of a seeding phase where only a few seeding nodes
inject values. The seeding phase requires more elaboration than
its counterpart for time-varying signals, not only because graph
signals are less regular, but also because it will be shown that in
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general the seeding values cannot coincide with those of the sig-
nal to recover. For a rigorous problem definition see Section II.B
and Fig. 1 in Section III. Since graph filters act on graph signals
through the successive application of local operators, the output
of a graph filter can be viewed as the outcome of a diffusion
or percolation process. Applications include the generation of
an opinion profile in a social network [23] by influencing a few
agents (Section VII.B) and the synthesis of brain signals [24]
by exciting a few neural regions (Section VII.C). Other poten-
tial applications for signal reconstruction via local interactions
include molecular communications in nanonetworks [25], [26],
wireless sensor networks [27], and control of epidemics [28].

The setting considered here differs from the reconstruction of
graph signals after sampling [7]–[9]. In the latter, the signal to
be recovered is unknown but has some parsimonious (bandlim-
ited) representation, and the goal is to estimate the unknown
signal by observing a few values of it. The interpolation op-
erator to obtain the estimated signal from the samples is not
constrained to any particular class and, in general, cannot be ap-
plied via local interactions. By contrast, in our setting, the signal
to reconstruct is given–either pre-specified or estimated via the
aforementioned sampling procedure–and we want to induce this
signal from just a few seeding values, which in general are not
samples of the signal to reconstruct. However, we restrict the
interpolation operator to the class of graph filters, since we want
the reconstruction process to be implemented locally. Notice
that this dichotomy–our approach and the reconstruction after
sampling–is a feature that arises in graph signal processing but
is not present for classical time-varying signals. In classical sig-
nal processing, the optimal interpolator of a uniformly sampled
signal is a (low-pass) filter, hence, the sampled values coincide
with the seeding values and both mentioned settings collapse
into one. See Section IV.B for related details.

With these considerations in mind, the paper proposes three
different reconstruction schemes, each of them associated with
a different seeding phase. In Section III, the seeding phase con-
sists of a unique seeding signal with several nonzero values,
which coincides with the intermediate signal x. By contrast, in
Section IV the seeding phase consists of several seeding signals
injected by a single seeding node. At each instant, the signal is
percolated (diffused) within one-hop neighborhoods. The sup-
port of x depends on the duration of the seeding phase and
the connectivity of the seeding node. Finally, in Section V we
consider a more general scheme which merges the two earlier
approaches. In this scheme, the seeding phase consists of several
time instants and, in each of them, multiple nodes are allowed to
inject a signal. The schemes will be referred to as multiple node-
single time (MN-ST), single node-multiple time (SN-MT) and
multiple node-multiple time (MN-MT) seeding, respectively.
For the three of them, we state conditions on the underlying
graph and the seeding nodes to guarantee perfect reconstruction
of any bandlimited signal. We also show that, in general, if the
interpolator takes the form of a graph filter, the seeding values
cannot coincide with those of the signal to interpolate. Further-
more, we discuss how additional seeding values can be used
to reduce the complexity of the graph filter needed for perfect
recovery and draw connections with classical interpolation of
time-varying signals. In Section VI we study the reconstruction
performance in imperfect settings, either because the seeding

values are insufficient in number or corrupted by noise. Numer-
ical experiments in Section VII illustrate the reconstruction of
signals in noiseless and noisy scenarios using both synthetic and
real-world graphs.1

II. BANDLIMITED GRAPH SIGNALS AND GRAPH FILTERS

LetG denote a directed graph with a set of N nodes or vertices
N and a set of links E , such that if node i is connected to j, then
(i, j) ∈ E . The (incoming) neighborhood of i is defined as the
set of nodes Ni = {j | (j, i) ∈ E} connected to i. For any given
graph we define the adjacency matrix A as a sparse N × N
matrix with nonzero elements Aji if and only if (i, j) ∈ E . The
value of Aji captures the strength of the connection from i to
j. The focus of this paper is not on analyzing G, but a graph
signal defined on the set of nodes N . Formally, such a signal can
be represented as a vector x = [x1 , . . . , xN ]T ∈ RN where the
i-th component represents the value of the signal at node i or,
alternatively, as a function f : N → R, defined on the vertices
of the graph.

The graph G is endowed with a graph-shift operator S [4],
[29]. The shift S is a N × N matrix whose entry Sji can be
nonzero only if i = j or if (i, j) ∈ E . The sparsity pattern of
the matrix S captures the local structure of G, but we make
no specific assumptions on the values of the nonzero entries
of S. Choices for S are the adjacency matrix of the graph [4],
[29], its Laplacian [3], and their respective generalizations [30].
The intuition behind S is to represent a linear transformation
that can be computed locally at the nodes of the graph. More
rigorously, if y is defined as y = Sx, then node i can compute
yi provided that it has access to the value of xj at j ∈ Ni . We
assume henceforth that S is diagonalizable, so that there exists
a N × N matrix V and a N × N diagonal matrix Λ that can
be used to decompose S as S = VΛV−1 . In particular, S is
diagonalizable when it is normal, i.e., it satisfies SSH = SH S
where SH denotes the conjugate transpose of S. In that case, we
have that V is unitary, which implies V−1 = VH , and leads to
the decomposition S = VΛVH .

We are interested in cases where the graph-shift operator S
plays a role in explaining the graph signal x. More specifically,
cases where x can be expressed as a linear combination of a sub-
set of the columns of V = [v1 , . . . ,vN ], or, equivalently, where
the vector x̂ = V−1x is sparse [9]. In this context, vectors vi are
interpreted as the graph frequency basis, x̂i as the correspond-
ing signal frequency coefficients, and x as a bandlimited graph
signal. We assume that the set of active frequencies are known
and, without loss of generality, that those are the first K ones
associated with the eigenvalues of largest magnitude [9], [31].
Under this assumption, if we denote by x̂K := [x̂1 , . . . , x̂K ]T a
K × 1 vector collecting the coefficients corresponding to those
frequencies, it holds that x is a K-bandlimited signal if

x̂ =
[

x̂T
K , 0, . . . , 0

]T
, x = Vx̂ := VK x̂K , (1)

1Notation: ei is the ith N × 1 canonical basis vector (all entries of ei are
zero except the ith one, which is one); EK := [e1 , . . . , eK ] is a tall matrix
collecting the K first canonical basis vectors while EK := [eK +1 , . . . , eN ]
collects the last N − K canonical basis vectors; 0 and 1 are, respectively,
the all-zero and all-one matrices (when not clear from the context, a subscript
indicating the dimensions will be used).
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where we have defined the tall matrix VK := [v1 , . . . ,vK ] con-
taining the first K eigenvectors of the shift operator S.

A. Graph Filters

Graph filters H : RN → RN are linear graph-signal opera-
tors of the form H :=

∑L−1
l=0 hlSl ; i.e., polynomials (of degree

L − 1) of the graph-shift operator [4]. A particularity of graph
filters is that they can be implemented locally, e.g., with L − 1
exchanges of information among neighbors. This is true because
the application of S on a signal x can be computed through local
interactions.

The graph filter H can also be written as H =
V(

∑L−1
l=0 hlΛl)V−1 . The diagonal matrix ̂H :=

∑L−1
l=0 hlΛl

can then be viewed as the frequency response of H and it can be
alternatively written as ̂H = diag(̂h), where vector ̂h is a vector
that contains the frequency response of the filter. Let λi denote
the i-th eigenvalue of S and define the N × L Vandermonde
matrix

Ψ :=

⎛

⎜

⎜

⎝

1 λ1 . . . λL−1
1

...
...

...

1 λN . . . λL−1
N

⎞

⎟

⎟

⎠

. (2)

Upon defining the vector containing the coefficients of the filter
as h := [h0 , . . . , hL−1 ]

T , it holds that ̂h = Ψh and therefore

H =
L−1
∑

l=0

hlSl = Vdiag(Ψh)V−1 = Vdiag(̂h)V−1 . (3)

This implies that if y is defined as y = Hx, its frequency rep-
resentation ŷ satisfies

ŷ = diag (Ψh) x̂. (4)

Within this context, a low-pass graph filter of bandwidth K is
one where the frequency response ̂h := Ψh is given by

̂h =
[

̂hT
K , 0, . . . , 0

]T
, (5)

where ̂hK contains the frequency response for the first K fre-
quencies. Notice that when the low-pass filter in (5) is applied
to an arbitrary signal x, the output signal is K-bandlimited as
described in (1). An alternative expression to define a graph
filter is [32]

H = a0

L−1
∏

l=1

(S − alI) , (6)

which also gives rise to a polynomial on S of degree L − 1. A
specific advantage of the representation in (6) is that it provides
a straightforward way to design low-pass filters via successive
annihilation of graph frequencies. In particular, if we fix al = λk

for some eigenvalue λk of S then the filter H will eliminate the
frequency basis vk , i.e., the eigenvector associated with λk .
For future reference, we denote by D the number of distinct
eigenvalues in {λk}N

k=K +1 .
Remark 1 (Discrete-Time Signals): To establish connections

with classical time-varying signals, we define the directed cy-
cle graph Gdc , with node set N = {1, 2, . . . , N} and edge
set Edc = {(i,modN (i) + 1)}N

i=1 , where modN (i) denotes

the remainder obtained after dividing i by N . Its adjacency
and Laplacian matrices are denoted, respectively, as Adc and
Ldc:= I − Adc . Discrete-time periodic signals can be thought as
graph signals on the directed cycle Gdc . Setting the shift operator
either to S = Adc or S = Ldc gives rise to the Fourier basis F.
More formally, the right eigenvectors of S satisfy V = F, with
Fij := exp (+j2π (i − 1) (j − 1) /N) /

√
N where j :=

√
−1.

Selecting S = Adc has the additional advantage of satisfying
Λii = exp (−j2π (i − 1) /N), i.e., the eigenvalues of the shift
operator correspond to the classical discrete frequencies. In-
terpretations for the eigenvalues of Ldc also exist [3]. The
frequency representation x̂ of a graph signal x is given by
x̂ = V−1x whereas the frequency response of a filter with co-
efficients h is given by ̂h = Ψh. For general graphs, matrices
V−1 and Ψ need not be related. However, for the case of Gdc ,
if Sdc = Adc , then Ψ =

√
NFH and V−1 = FH . Thus, the

Fourier transforms for signals and filter coefficients are equiva-
lent up to a constant for time-varying signals but this is not true
for general graph signals.

B. Signal Reconstruction Using Graph Filters

Our objective is to reconstruct a given K-bandlimited signal y
by applying a graph filter H to a signal x, where x is the result
of a seeding procedure. More specifically, the reconstruction
scheme proceeds in two phases:

1) Seeding phase. The input to this phase is a set of τ

graph signals {s(t)}τ−1
t=0 , denominated seeding signals.

These signals percolate through the graph following the
dynamics

x(t) = Sx(t−1) + s(t) , x(−1) = 0. (7)

The output of this phase is set as x := x(τ−1) .

2) Filtering phase. The graph signal x is used as input to a
low-pass graph filter H, generating the output z := Hx.

The purpose of the seeding phase, which has duration τ , is to
inject into the graph the information needed to interpolate the
signal y. The filtering phase further propagates the information
available from the seeding phase while annihilating the frequen-
cies with indices k > K that are present in x but not in y. This
phase has duration L − 1, which is the order of the filter H.

The goal of this paper is to design {s(t)}τ−1
t=0 and H such that

z = y. We assume that S is given, thus, the design of H consists
in determining the filter coefficients h. In Sections III, IV, and
V we present this design for three different seeding schemes,
where we impose additional restrictions on the structure and the
number of seeding signals.

Remark 2 (Network Controllability): The dynamics of the
seeding phase in (7) is reminiscent of a control setting where
S represents a discrete time, linear, and time-invariant network
dynamics and s(t) stands for the control input at time t. Hence,
inducing a particular graph signal is related to the problem of
controllability of complex networks, which has attracted con-
siderable attention in the past years. The controllability focus
has recently shifted from qualitative claims [17] to quantitative
analysis that takes into account the energy needed to steer the
network to a desired state [18]–[21]. Though related to net-
work controllability, the framework proposed here differs in
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a few points from the existing works in the area, as detailed
next. Firstly, although variants exist, the term controllability
usually refers to the ability to drive the network to an arbitrary
state whereas we are interested in driving the network to a par-
ticular class of (bandlimited) graph signals. Secondly, control
approaches are typically concerned with the number of control
nodes as well as with the energy needed to drive the network to
the desired state based on the controllability Gramian–measured
in terms of, e.g., its smallest eigenvalue [18], [19] or its trace
[20] –, whereas here the concern is with the number of seed-
ing values needed to be injected at the seeding (control) nodes.
Equivalently, here we are interested in the �0 norm of the con-
troller needed. Lastly, even though the seeding phase in (7) is
similar to a classical control setting, the filtering phase is not.
During this phase, no additional seeding values are injected and
one only needs to slightly control the dynamics S at iteration l
via the scalar parameter al [cf. (6)]. Consequently, our frame-
work can be seen as one which combines external control input
during the seeding phase and internal control of the dynamics
during the filtering phase.

Remark 3 (Classical Recovery): In classical discrete-time
signal processing, recovery of bandlimited signals is a two-step
process. Firstly, a sparse regular signal whose nonzero values
coincide with those of the signal to recover is generated. Sec-
ondly, the (zero) values not specified in the sparse signal are
extrapolated from the nonzero ones using a low-pass filter. Our
approach in this paper is to preserve this two-step methodology
and use it to recover bandlimited graph signals. This provides a
way to regenerate a desired signal in a graph–either estimated
from samples or otherwise–by acting on a subset of (seeding)
nodes. As it will be shown in the ensuing sections, for signals
defined on a general graph, the nonzero values of the sparse
signal in the first step will not coincide with those of the signal
to recover. This deviates from the classical concept of inter-
polation, which assumes that the nonzero values are the same
than those of the signal to reconstruct. The practical advantage
of studying recovery schemes that use graph filters is twofold.
First, they can be implemented distributedly, using only local
exchanges among neighbors. Second, since graph filters can be
used to model diffusion processes (e.g., the spread of an opin-
ion in a social network), our results can be used to reconstruct
signals in network applications that implement linear diffusion
dynamics.

III. MULTIPLE NODE–SINGLE TIME SEEDING

In multiple node - single time (MN-ST) seeding we consider
the particular case where there is only τ = 1 seeding signal s
so that x = s [cf. (7)]. Denoting by P the amount of nonzero
values in s, we interpret MN-ST seeding as having P seeding
nodes that inject a single value, while the remaining N − P
nodes keep silent; see left and center panels in Fig. 1. Define
the signal injected by node i as si and assume, without loss
of generality, that the seeding nodes are the P first ones. We
therefore define the P × 1 and N × 1 seeding vectors as

sP = [s1 , . . . , sP ]T , (8)

s = [s1 , . . . , sP , 0, . . . , 0]T . (9)

Then, given a bandlimited signal y = VK ŷK [cf. (1)], our goal
is to design H and s such that

y = Hs, (10)

where H has the particular structure of a graph filter (cf.
Section II.A). Exploiting the fact that y is bandlimited, it is
reasonable to write (10) in the frequency domain. To do this,
both sides of (10) are left multiplied by V−1 , which yields

ŷ = V−1Hs = V−1Vdiag (Ψh)V−1s = diag (Ψh) ŝ, (11)

where we used (3) for the second equality. Utilizing the fact that
the seeding signal s is sparse [cf. (9)] we may write its frequency
representation as

ŝ = V−1s = V−1EP sP , (12)

where, we recall, EP := [e1 , . . . , eP ] is a tall matrix collecting
the P first canonical basis vectors of size N × 1. By substituting
(12) into (11), our goal of designing H and s such that y = Hs
can be reformulated as designing h and sP such that

ŷ = diag (Ψh)V−1EP sP , (13)

which is a bilinear system of N equations and L + P variables.
Leveraging the sparsity of ŷ [cf. (1)], the system of N equations
in (13) can be split into two

ŷK = ET
K diag (Ψh) V−1EP sP , (14)

0N −K = E
T
K diag (Ψh) V−1EP sP , (15)

where, we recall, EK := [eK +1 , . . . , eN ] collects the last N −
K canonical basis vectors and 0N −K denotes the (N − K) × 1
vector of all zeros. Note that the conditions in (15) are the same
for any K-bandlimited signal. On the other hand, the conditions
in (14) depend on the specific signal to be interpolated. A natural
approach is to use the filter coefficients h–which are related to
the global behavior of the graph–to guarantee that (15) holds,
while using the seeding signal sP to satisfy (14) and, hence, to
guarantee that the output of the interpolation is y. In this way,
the filter coefficients h to be designed do not depend on the
particular signal to reconstruct.

The conditions under which the mentioned approach is guar-
anteed to find a feasible solution are given in the form of two
propositions. Ensuing discussions describe the actual procedure
to interpolate the signal.

Proposition 1: If L > D (cf. Section II.A), there exist in-
finitely many nonzero L × 1 vectors h∗ such that, after setting
h = h∗, (15) is satisfied for any V−1 and sP .

Proof: Since (15) has to hold for any seeding signal sP , we

need E
T
K Ψh = 0. This requires h to belong to the kernel of

the (N − K) × L matrix E
T
K Ψ. Since E

T
K Ψ is a Vandermonde

matrix, its number of linearly independent rows is equal to
the number of distinct eigenvalues in {λk}N

k=K +1 , which is D.
Thus, the existence of a solution h∗ �= 0 requires L > D. �

For L > D, i.e., when the number of filter coefficients ex-
ceeds that of distinct eigenvalues in the inactive frequencies,

E
T
K Ψ is rank deficient and the dimension of its kernel space is

L − D. Hence, setting h to any nonzero element of the kernel
space will satisfy (15). In what follows, we will assume that
L = D + 1 and set the coefficients h∗ that solve (15) as the unit
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Fig. 1. Two different schemes to reconstruct signal y. On the left, MN-ST seeding injects P = 2 values simultaneously (blue arrows), after which the low-pass
filter H is applied. On the right, SN-MT seeding first injects a single value that percolates to the two neighboring nodes. After a second value injection at the same
node, filter H completes the reconstruction.

vector spanning the unidimensional kernel space of E
T
K Ψ. For

the case where all the eigenvalues {λk}N
k=K +1 are distinct, this

implies that L = N − K + 1.
Once the coefficients of the filter are designed, the next step

is to find the optimum seeding signal. With ̂h∗
K := ET

K Ψh∗

denoting the frequency response of the low-pass filter in the
active frequencies, substituting h = h∗ into (14) yields

ŷK = diag
(

̂h∗
K

)

ET
K V−1EP sP . (16)

For which the following result holds.
Proposition 2: The system of K equations in (16) is guaran-

teed to have a solution with respect to sP if the following two
conditions hold:

i) λk1 �= λk2 for all (λk1 , λk2 ) such that k1 ≤K and k2 >K,
ii) rank

(

ET
K V−1EP

)

≥ K.
Proof: Condition i) is required to guarantee that all the el-

ements of ̂h∗
K are nonzero. We prove this by contradiction.

Recall that the following facts hold true (cf. Proposition 1): a)

E
T
K Ψh∗ = 0N −K ; b) h∗ �= 0L and c) rank of E

T
K Ψ is L − 1.

Assume, without loss of generality, that the element of ̂h∗
K

that is zero is the K-th one. Then, we can use a) to write
E

T
K−1Ψh∗ = 0N −K +1 . Condition i) and fact c) guarantee that

E
T
K−1Ψ has rank L; then, satisfying E

T
K−1Ψh∗ = 0N −K +1 re-

quires h∗ = 0L , which contradicts b). Hence, all the elements
of ̂h∗

K are nonzero. This guarantees that diag(̂h∗
K ) is invertible,

so that (16) can be written as

diag
(

̂h∗
K

)−1
ŷK =

(

ET
K V−1EP

)

sP , (17)

where ET
K V−1EP is a K × P submatrix of V−1 . To guarantee

that the system of equations in (17) has at least one solution, we
need condition ii) to hold. �

Different from the time domain, where all the eigenvalues of
S (frequencies) are distinct, in the more general graph domain
there can be graph topologies that give rise to S with repeated
eigenvalues. Condition i) is required because a graph filter H
always produces the same frequency response if the correspond-
ing eigenvalues are the same. Therefore, it is not possible for
H to eliminate one of the frequencies without eliminating the
other. An alternative to bypass this problem is discussed in
Section III.A. Condition ii) requires the rank of the K × P ma-
trix ET

K V−1EP being at least K. At the very least, this requires
P , the number of seeding nodes, to be equal to K, the number
of frequencies present in y. For the particular case of P = K,
if the conditions in the proposition are satisfied, the sP that

recovers y is

sP =
(

ET
K V−1EP

)−1
diag

(

̂h∗
K

)−1
ŷK . (18)

However, if condition ii) is not satisfied, there may be cases
where setting P = K fails. To see why this is true, notice that
[V−1 ]k,p can be viewed as how strongly node p expresses fre-
quency k. Suppose for example that there exists a k such that
[V−1 ]k,p = 0 for all nodes p = 1, . . . , P , then it is not possible
to reconstruct a signal y with ŷk �= 0 using that set of nodes.
This problem is also present when sampling graph signals by
observing the value of the signal in a subset of nodes [7]. Recall
that from a control perspective, sP in (18) can be interpreted as
a controller that acts in a single time instant. The control input
sP is designed such that, after the application of the filtering
phase, the network is steered to the desired state represented by
the bandlimited signal y. Note finally that Proposition 2 states
conditions for perfect reconstruction in a noiseless setting. In
noisy scenarios, the specific set of nodes selected to inject the
seeding signal has an impact on the reconstruction error. This is
analyzed in Section VI.

Once the mathematical description of the MN-ST has been
presented, it is instructive to revisit the differences between our
approach and that of sampling and subsequent reconstruction
of bandlimited graph signal. More specifically, in the context
of sampling of graph signals, we define C as a binary selection
matrix (K rows out of the N × N identity matrix) that iden-
tifies the set of K nodes where the signal is observed or sam-
pled. The sampled signal is then x = Cx, which can be used
to recover the K-bandlimited signal x as x = VK (CVK )−1x,
assuming that (CVK ) is full rank [7], [8]. The previous ex-
pression reveals that interpolation amounts to multiplying x by
the N × K matrix VK (CVK )−1 , which does not correspond
to a graph filter; hence, it cannot be implemented distributedly
using local percolation dynamics, as we require in our con-
text. Nevertheless, the sampling schemes studied in [7]–[10]
can be used as a preprocessing step for our algorithms in or-
der to estimate the desired signal y from a few observations.
Formally, if one wants y = x, then the input to our algorithm
can be found as ŷK = (CVK )−1x in the frequency domain or
y = VK (CVK )−1x in the graph domain.

Remark 4 (Computational Complexity): Given S and y, we
have outlined a procedure to compute the optimal graph filter h∗

and seeding signal sP . To do this, first we need to have access
to the spectrum of S to obtain V−1 and Ψ, which requires, in
general, in the order of O

(

N 3
)

computations. Designing the
filter response h∗ amounts to finding a vector in the null space

of E
T
K Ψ, which can be done, e.g., via a QR decomposition
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[33] and requires O((N − K)3) computations. Finally, when
P = K obtaining the seeding values in sP using as input the
target signal y [cf. (18)] requires either O

(

K3
)

operations, if the
frequency coefficients ŷK are known, or O

(

K3 + NK
)

, if only
the signal y is available. Note however that the computations to
find the spectrum of S, the filter coefficients h∗ and the mapping
from y to sP depend only on S and not on y. As a result, in
scenarios where we want to induce multiple signals y on the
same graph, most of the computations can be reused and the
cost of computing a new set of seeding signals sp is reduced to
O

(

K2
)

or O (NK) depending on whether we are given ŷK or
y as input [cf. (18)].

A. Filter Degree Reduction in MN-ST Seeding

The MN-ST reconstruction scheme requires a low-pass filter
H of degree D, equal to the number of distinct eigenvalues
in the inactive frequencies, which grows with the size of the
graph. Since the degree of H corresponds to the number of local
interactions needed to implement the filter, the communication
overhead can be a problem for large graphs. In this context, we
look for solutions that reduce the degree of H by increasing the
number of seeding nodes P . This can be done by splitting the
system of equations in (13) as [cf. (14)–(15)]

[

ŷT
K ,0T

P −K

]T
= ET

P diag (Ψh) V−1EP sP , (19)

0N −P = E
T
P diag (Ψh) V−1EP sP . (20)

The filter coefficients must be obtained now to annihilate the
N − P frequencies in (20) and the P seeding nodes must inject
a signal whose spectrum, after being filtered by H, matches that
of the desired signal (19). Notice that (19)–(20) can also be used
when (14)–(15) fail due to a violation of condition i) in Propo-
sition 2. More specifically, for every frequency index k2 > K
with the same eigenvalue as a frequency index k1 ≤ K we can
induce a zero frequency coefficient in the reconstructed signal
via the seeding values [cf. (19)] instead of through the low-pass
filter [cf. (20)] and, hence, drop condition i) as a requirement
for recovery. Further notice that for (20) to hold for any sP ,
the degree of the filter needs to be at least equal to the number
of distinct eigenvalues in {λk}N

k=P +1(cf. Proposition 1). In the
extreme case of P = N , i.e., when every node has an associated
seeding value, the trivial solution h = [1, 0, . . . , 0]T (0-order fil-
ter) and sP = y satisfies (19)–(20).

B. Relation to Classical Interpolation

In the classical time domain, sinc (low-pass) interpolation
of a bandlimited signal leads to perfect reconstruction. If the
sampling is performed at the minimum possible rate, the band-
width of the low-pass filter has to be exactly the same than that
of y. By contrast, if the signal is oversampled, the bandwidth
can be larger. Equivalently, if more samples than the minimum
required number are available, then the low-pass filter does not
have to cancel all the frequencies not present in y. The analysis
in Section III.A reveals that this is also the case when signals
are defined in more general graph domains.

The main differences between the MN-ST reconstruction
scheme and classical time interpolation come from the fact that

the basis V of a general graph shift S is not as structured as
the Fourier basis F. A difference of particular relevance is that,
for general graphs, the seeding values sP do not coincide with
the values of the desired signal y. This contrasts with the clas-
sical interpolation of uniformly sampled time-varying signals,
where sP is a subset of the signal y. In fact, it can be rigorously
shown that requiring such a condition for general graphs would
lead to an infeasible interpolation. To be concrete, suppose that
P = K, so that s =

[

sT
K ,0T

]T
[cf. (9)], and that sK is equal to

the first entries of y. We can then leverage the fact that s and ŷ
are sparse to write

sK = ET
K y = ET

K Vŷ = ET
K VEK ŷK . (21)

Secondly, we write the goal of y = Hs into the frequency do-
main as ŷ = diag(̂h)V−1s and use again the sparsity of s and
ŷ to write

ŷK = ET
K diag(̂h)V−1EK sK = ET

K diag(̂h)EK ET
K V−1EK sK

= diag(̂hK )ET
K V−1EK sK , (22)

where ̂hK := ET
K

̂h contains the first K components of ̂h. Sub-
stituting (21) into (22) yields

ŷK = diag(̂hK )ET
K V−1EK ET

K VEK ŷK . (23)

Since (23) must hold for all ŷK , it can only be satisfied
if diag(̂hK )ET

K V−1EK ET
K VEK = I. This requires matrix

(

ET
K V−1EK ET

K VEK

)

to be diagonal. While this is true when
K = N , it is not true for a general K. However, in the time
domain where V = F (see Remark 1), for some cases the mul-
tiplication of submatrices of F is guaranteed to be diagonal. For
example, if the K seeding nodes are chosen uniformly (equally)
spaced, then

(

ET
K V−1EK ET

K VEK

)

= K/N I. This implies

not only that (23) is satisfied, but also that all the entries in ̂hK

must be set to N/K. In other words, the optimal low-pass inter-
polator after uniform sampling in the time domain has the same
response for all the active frequencies, as known from classical
signal processing.

IV. SINGLE NODE–MULTIPLE TIME SEEDING

In single node - multiple time (SN-MT) seeding, we consider
the particular case where all the τ = P seeding values are in-
jected at a single node; see right and center panels in Fig. 1. To
be more specific, assume without loss of generality that the first
node is the one injecting the seeding values, so that the seeding

signal s(t) at time t is of the form s(t) = [s(t) , 0, . . . , 0]
T

. Then,

define sP := [s(P −1) , . . . , s(0) ]
T

to be a P × 1 vector grouping
the seeding values. We present the relation between the seeding
values sP and the output of the seeding phase x in the following
lemma.

Lemma 1: The frequency representation of the intermediate
signal x in SN-MT seeding is given by

x̂ = diag (ê1)ΨsP , (24)

where ê1 := V−1e1 is the frequency representation of the first
canonical basis vector.
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Proof: Since x is obtained after P injections of seeding val-
ues following the dynamics in (7), it holds that

x = x(P −1) =
P −1
∑

l=0

Sls(P −1−l) =
P −1
∑

l=0

Sls(P −1−l)e1 . (25)

Equation (25) relates the signal x to the successive inputs s( · )

of the seeding node and can be interpreted as the application of
the graph filter

H :=
P −1
∑

l=0

s(P −1−l)Sl (26)

of degree P − 1 to the canonical basis vector e1 . Building on
this interpretation, we may use (4) to write

x̂ = diag (ΨsP ) ê1 , (27)

and, by exploiting the fact that for generic vectors a and b it
holds that diag(a)b = diag(b)a, the lemma follows. �

The proof of Lemma 1 exploits the reinterpretation of the
seeding phase as the application of a graph filter H, whose
coefficients are given by the seeding values, to the canonical
basis vector e1 . Equation (24) reveals how x̂ depends on the
structure of the graph Ψ and the seeding values sP , as well as
on the particular node chosen to inject the values via ê1 , whose
elements represent how strongly the node expresses each of the
graph frequencies.

The next step is to analyze the output of the filtering phase in
the frequency domain ẑ. To do this, recall that h∗ denotes the co-
efficients of a low-pass filter (cf. Section II.A) that eliminates all
frequencies with indices k > K. Defining ̂h∗ := Ψh∗, we may
analyze the application of the low-pass filter in the frequency
domain as

ẑK = ET
K diag(̂h∗)x̂ = ET

K diag(̂h∗)EK ET
K x̂. (28)

Further recalling that ̂h∗
K := ET

K
̂h∗ and substituting (24) into

(28), we obtain [cf. (16)]

ŷK = diag(̂h∗
K )ET

K diag (ê1)ΨsP . (29)

Expression (29) relates the frequencies present in y to the seed-
ing values sP . Provided that the amount of seeding values is not
smaller than the bandwidth of the signal y, i.e., K ≤ P , the fol-
lowing proposition states the conditions under which (29) can
be solved with respect to sP .

Proposition 3: Let U1 be the number of values in {[ê1 ]k}
K
k=1

that are zero and let D1 be the number of repeated values in
{λk}K

k=1 . Then, the system of K equations in (29) is guaran-
teed to have a solution with respect to sP if the following two
conditions hold:

i) λk1 �= λk2 for all (λk1 , λk2 ) such that k1 ≤K and k2 >K,
ii) U1 = 0 and D1 = 0.
Proof: If we rewrite (29) as

ŷK = (diag(̂h∗
K ))

(

ET
K diag (ê1)EK

) (

ET
K Ψ

)

sP , (30)

then it becomes clear that conditions i) and ii) ensure invertibility
of the two square matrices, and full row rank of the rectangular
matrixET

K Ψ. To be specific, condition i) is required to guarantee
that all the entries of vector ̂h∗

K are nonzero and, hence, matrix

diag(̂h∗
K ) is invertible (cf. proof of Proposition 2). Condition

U1 = 0 in ii) ensures that ET
K diag (ê1)EK is invertible since

it is a diagonal matrix with no zero elements in its diagonal.
Finally, D1 = 0 guarantees that ET

K Ψ has rank K whenever
K ≤ P since it is a row-wise Vandermonde matrix with no
repeated rows. �

Condition i), which is equivalent to that in Proposition 2,
guarantees that the low-pass filter with coefficients h∗ does not
eliminate any of the frequencies present in y. Condition ii)
states requirements for recovery on both the seeding node and
the global structure of the graph. The seeding node is required
to be able to act on every active frequency (U1 = 0), while the
graph is required to have every active frequency distinguishable
from each other (D1 = 0). Condition ii) ensures that the rank of
matrixET

K diag (ê1)Ψ is equal to K when P ≥ K, guaranteeing
that (29) can be solved with respect to sP . For the particular
case of P = K, i.e., the amount of seeding values equals the
bandwidth, the seeding values can be found as

sP =
(

ET
K diag(ê1)Ψ

)−1
diag(̂h∗

K )
−1

ŷK . (31)

When comparing the conditions ii) in Propositions 2 and 3,
we observe that for MN-ST seeding we should require a rank
condition on a submatrix of V−1 . By contrast, for SN-MT seed-
ing, the Vandermonde structure of Ψ allows reformulating the
rank condition in terms of the graph related quantities U1 and
D1 , providing further insight on specifying the situations when
recovery is possible. This dual behavior is also present when
sampling graph signals. When following “selection sampling”
[7], which is the counterpart of MN-ST interpolation, perfect
reconstruction depends on the invertibility of a submatrix of
V, whereas when following an “aggregation sampling” scheme
[8], which is the counterpart of SN-MT interpolation, the con-
ditions for perfect reconstruction can be written in terms of
specific graph related quantities. From a network controllability
viewpoint, sP in (31) contains the successive control inputs that
have to be injected at the single seeding node such that, after
the application of the filtering phase, the desired network state
is achieved.

Even though Proposition 3 guarantees perfect recovery un-
der SN-MT seeding in a noiseless case, in noisy scenarios the
selection of the seeding node is essential to reduce the recon-
struction error. This is analyzed in Section VI under a more
general seeding scheme.

A. Filter Degree Reduction in SN-MT Seeding

Mimicking the filter degree reduction technique presented
in Section III.A, SN-MT seeding can also implement a lower-
degree filter if a higher number of seeding values is injected. To
achieve this, we need the additional seeding values to generate
a signal whose spectrum is zero for the inactive frequencies that
are not eliminated by the filter. More specifically, the seeding
values sP and the filter coefficients h have to satisfy [cf. (19)–
(20)]

[

ŷT
K ,0T

P −K

]T
= diag

(

ET
P Ψh

)

ET
P diag (ê1)ΨsP , (32)

0N −P = diag
(

E
T
P Ψh

)

E
T
P diag (ê1)ΨsP , (33)
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where N − P is the number of frequency coefficients eliminated
by the low-pass filter h. As done in Section III.A, h will be
designed to solve (33) for any choice of sP , while sP will be
chosen to solve the P equations in (32). A sufficient degree for
h is presented next.

Proposition 4: Let U2 be the number of values in
{[ê1 ]k}

N
k=K +1 that are zero and D2 be the number of

repeated values in {λk}k∈KU
, where KU := {k |K < k ≤

N and [ê1 ]k �= 0}. Then, (33) can be solved with respect to h
for any choice of sP provided that L − 1 ≥ max(0, N − P −
U2 − D2).

Proof: Notice that in (33) the filter eliminates the last N − P
frequencies, however, since the ordering is arbitrary, any subset
of N − P frequencies (not containing the K first ones) can be
chosen to be annihilated by h. Thus, our objective it to show
that the proposed degree is enough to nullify a particular choice
of N − P frequency coefficients. Define as R the set of indices
corresponding to zero elements in ê1 or repeated rows in Ψ.
Since condition ii) in Proposition 3 must be satisfied–otherwise,
perfect recovery would be infeasible–, the cardinality of R is
U2 + D2 and every index in R must be greater than K.

First assume that U2 + D2 < N − P and pick the N − P
frequencies to be eliminated to include the ones in R. This is
equivalent to picking a frequency ordering such that every index
in R is greater than P . Based on R, define the selection matri-
ces ER :=

[

ek1 , ek2 , . . . , ekU 2 + D 2

]

for all ki ∈ R and ER :=
[

ek1 , ek2 , . . . , ekN −P −U 2 −D 2

]

for all ki ∈ {P + 1, . . . , N} \ R
where \ represents the set difference operator. Hence, the sys-
tem of equations in (33) can be split into two

0N −P −U2 −D2 = diag
(

E
T
RΨh

)

E
T
Rdiag (ê1)ΨsP , (34)

0U2 +D2 = diag
(

ET
RΨh

)

ET
Rdiag (ê1)ΨsP . (35)

Condition (34) can be guaranteed for any sP if h = h∗,
where h∗ are the coefficients of a low-pass filter of degree
L − 1 = N − P − U2 − D2 , as stated by the proposition. To
complete the proof, we need to show that h = h∗ also guaran-
tees that (35) holds. To see why this is the case, notice that U2
rows of ET

Rdiag (ê1)Ψ are exactly zero, trivially satisfying (35)
for any sP . Also, each of the remaining D2 equations in (35) cor-
responds to a repeated eigenvalue and, thus, can be obtained by
multiplying one of the N − K − U2 − D2 homogenous equa-
tions in (34) and (32) by a scalar, guaranteeing that h∗ also
solves these D2 equations.

For the case where U2 + D2 ≥ N − P , we pick a frequency
ordering such that every index greater than P is contained in R.
Thus, (33) is implied by the homogenous equations in (32), and
no filter (degree 0) is needed. �

Proposition 4 explicitly states that every additional seeding
value decreases the required filter degree. However, in contrast
to the situation for MN-ST, this reduction of the filter degree
does not entail a reduction in the number of applications of the
graph-shift operator, because it requires the length of the seeding
phase to be extended. More interestingly, the additional seeding
values can be used as a mean to guarantee perfect reconstruction
when condition i) in Proposition 3 is not satisfied, as explained
in Section III.A for MN-ST seeding.

When P ≥ N − U2 − D2 the seeding phase suffices to re-
cover the signal. This can be of interest in scenarios where the

graph-shift operator S describes an intrinsic graph diffusion dy-
namic and the design of the filter coefficients is not feasible. It
is also of interest if y is not bandlimited. By rendering the filter-
ing phase unnecessary, SN-MT seeding can be used to induce
arbitrary (non-bandlimited) signals provided that the amount
of seeding values is large enough. See Section VII for further
discussions.

B. Relation to Classical Interpolation

When S = Adc , applying the lth power of S to a signal
amounts to shifting the signal l time instants. Consequently, the
intermediate signal x obtained after the seeding phase in SN-
MT reconstruction coincides with the seeding signal s in MN-ST
reconstruction, provided that the seeding nodes are chosen ad-
jacent to each other. Moreover, for the extreme case of the num-
ber of seeding values P being enough to eliminate the filtering
phase, which entails L − 1 = 0, Proposition 4 requires setting
P = N , because both U2 and D2 are zero if S = Adc . The de-
sign of the P = N seeding values sP that guarantee that x = y
can be carried out trivially by setting sP = [x1 , . . . , xN ] = y.

V. MULTIPLE NODE–MULTIPLE TIME SEEDING

In the more general multiple node–multiple time (MN-MT)
seeding scheme, we can have several seeding signals (τ > 1)
and we do not assume any structure on s(t) , so that any node
may inject a seeding value at any given time. We concatenate
the τ seeding signals into the Nτ × 1 vector s defined as s :=
vec([s(τ−1) , s(τ−2) , . . . , s(0) ]

T
).

Defining the N × N 2 matrix Θ := [diag(ê1), . . . ,
diag(êN )], we may relate x to s as stated in the follow-
ing lemma.

Lemma 2: The frequency representation of the intermediate
signal x in MN-MT seeding is given by

x̂ = Θ (I ⊗ Ψ) s, (36)

where ⊗ represents the Kronecker product.
Proof: If we denote by x := x(τ−1) the signal obtained after

the seeding phase, it holds that [cf. (7)]

x =
τ−1
∑

l=0

Sls(τ−1−l) =
τ−1
∑

l=0

Sl

(

N
∑

i=1

s
(τ−1−l)
i ei

)

=
N

∑

i=1

Hiei ,

(37)

where the filter Hi is given by

Hi =
τ−1
∑

l=0

s
(τ−1−l)
i Sl . (38)

Writing the input-output relationship of those filters in the fre-
quency domain, we have that [cf. (4)]

x̂ =
N

∑

i=1

diag (Ψsi) êi =
N

∑

i=1

diag (êi)Ψsi . (39)

Recalling the definitions of Θ and s, the sum in (39) can be
written in matrix form, giving rise to (36). �

As was the case for Lemma 1 in SN-MT seeding, Lemma 1
leverages the reinterpretation of the seeding phase as the appli-
cation of a filter–in this case, N different filters, one per node–to
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the canonical basis vectors [cf. (37)]. The coefficients of the fil-
ter associated with the i-th node are given by the values injected
by that i-th node [cf. (38)]. Notice that, as expected, (36) reduces
to (24) whenever the seeding values are forced to be zero for
every seeding node except for the first one.

To analyze the output of the filtering phase z, recall that
̂h∗

K = ET
K Ψh∗ denotes the response of a low-pass filter in the

active frequencies. Mimicking the procedure in Section IV, we
find that the active frequency coefficients in y can be written in
terms of the seeding values s as

ŷK = ẑK = diag(̂h∗
K )ET

K Θ (I ⊗ Ψ) s. (40)

The system of equations in (40) is underdetermined, since the
K values in ŷK can be reconstructed using the Nτ values in s.
However, our focus is on the case where only P 
 Nτ seeding
values are injected during the seeding phase. To this extent, we
introduce the P × Nτ selection matrix C whose elements are
binary Cij ∈ {0, 1} and satisfy

∑

j Cij = 1 and
∑

i Cij ≤ 1 for
all i and j, respectively. Since the matrix has exactly one 1 in
every row, C selects P seeding values among the Nτ node-time
pairs. If we denote by sP := Cs the vector containing these P
seeding values, (40) can be rewritten as [cf. (16) and (29)]

ŷK = diag(̂h∗
K )ET

K Θ (I ⊗ Ψ)CT sP . (41)

The conditions under which (41) can be solved with respect to
sP are given in the form of the following proposition.

Proposition 5: The system of K equations in (41) is guaran-
teed to have a solution with respect to sP if the following two
conditions hold:

i) λk1 �= λk2 for all (λk1 , λk2 ) such that k1 ≤K and k2 >K,
ii) rank(ET

K Θ(I ⊗ Ψ)CT ) ≥ K.
Proof: Condition i) is required to guarantee that diag(̂h∗

K ) is
invertible (cf. proof of Proposition 2). This allows us to rewrite
(41) as

diag
(

̂h∗
K

)−1
ŷK = ET

K Θ (I ⊗ Ψ)CT sP . (42)

To guarantee that the system of equations in (42) has at least
one solution, we need condition ii) to hold. �

Condition i), also present in Propositions 2 and 3, guarantees
that the filtering phase does not annihilate any of the frequencies
present in y. Condition ii) requires, at the very least, P ≥ K,
i.e., the number of seeding values cannot be smaller than the
bandwidth of the desired signal. However, there may be cases
where setting P = K can fail as stated in the discussion ensuing
Proposition 2. Moreover, since MN-MT subsumes the particular
cases of MN-ST and SN-MT seeding, the result in Proposition
5 generalizes those in Propositions 2 and 3; see Remark 5.

Mimicking the developments in Sections III.A and IV.A, for
the general case of MN-MT seeding, additional seeding values
can be used to reduce the degree of the low-pass filter. Indeed,
for every extra seeding value the degree of the filter needed
decreases by one, reducing the communication cost of the re-
construction scheme. Moreover, these extra seeding values can
be used either to obtain perfect reconstruction even when condi-
tion i) in Proposition 5 is violated, as explained in Section III.A,
or even to induce a non-bandlimited signal y by rendering the
filtering phase unnecessary.

The selection matrix C can be designed so that condition
ii) in Proposition 5 is satisfied, guaranteeing perfect recovery.
Furthermore, for the cases in which perfect reconstruction is
infeasible due to, e.g., the presence of noise, the choice of C
can be optimized to achieve robust recovery, as analyzed in the
following section.

We want to emphasize that there is no particular seeding
scheme–MN-ST, SN-MT, or MN-MT–preferred over others in
general but, rather, their relevance depends on the application
of interest. E.g., for graphs where we can only act on a few
nodes (or just one) and the graph-shift S encodes a network
dynamic naturally applied by the medium [25], [34] then SN-
MT or MN-MT with few nodes are reasonable approaches.
On the other hand, if we can act on a large number of nodes
simultaneously, then MN-ST or MN-MT might be preferable to
reduce the duration of the seeding phase.

Remark 5 (Special cases of MN-MT): Denoting by ei,N τ

the ith canonical basis vector of size Nτ , define the
matrices CSN := [e1,N τ , e2,N τ , . . . , eP,N τ ]T and CST :=
[

e1,N τ , eτ +1,N τ , . . . , e(P −1)τ +1,N τ

]T
. Then, setting C =

CSN in (41) amounts to selecting the first P elements of s and
(41) reduces to (29), so that SN-MT reconstruction is recovered.
Similarly, by setting C = CST one selects the elements of s in
positions 1, τ + 1, . . . , (P − 1) τ + 1 and (41) reduces to (16),
as in MN-ST reconstruction.

VI. IMPERFECT RECONSTRUCTION

We study two settings where perfect reconstruction is infea-
sible: insufficient number of seeding values (Section VI.A) and
additive noise in the injections (Section VI.B). The analysis is
focused on the MN-MT seeding scheme, since the results for
MN-ST and SN-MT can be obtained by particularizing the value
of the selection matrix C (cf. Remark 5).

A. Insufficient Seeding Values

When the number of seeding values P is not enough to achieve
perfect reconstruction, the goal is to minimize a pre-specified
error metric between the reconstructed signal z and the origi-
nal K-bandlimited graph signal y. This situation can arise in
practice when, e.g., we want to induce an opinion profile in a
social network where only a few agents can be influenced (Sec-
tion VII.B) or when trying to induce a brain signal but we have
access to only a limited number of brain regions (Section VII.C).
Alternatively, settings where the seeding values are insufficient
arise, for example, when trying to reconstruct approximately K-
bandlimited signals. In these cases, perfect reconstruction would
require in the order of N seeding values but low reconstruction
errors can still be achieved with P < N seeding values by fol-
lowing the strategies described in this section. Three different
design scenarios are considered. In the first one, the seeding
values sP are designed assuming that both h and C are fixed.
The second scenario addresses the joint design of sP and h. In
the last one, the joint design of sP and C is performed.

1) Designing the Seeding Values sP : Assume that condi-
tion i) in Proposition 5 holds and recall that h∗ stands for
the coefficients of a low-pass filter that eliminates all the
frequencies k > K. Then, the first K frequency coefficients



4372 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 16, AUGUST 15, 2016

ẑK of the reconstructed signal z are obtained as [cf. (41)]

ẑK = diag(̂h∗
K )ET

K Θ (I ⊗ Ψ)CT sP . (43)

Since we assume insufficient seeding values, i.e., P < K, ob-
taining ŷK = ẑK is in general infeasible. A reasonable approach
is to design sP to minimize the energy of the reconstruction er-
ror. Defining the matrix

ΦK := diag(̂h∗
K )ET

K Θ (I ⊗ Ψ) , (44)

the optimal seeding values s∗P can be obtained as

s∗P := arg min
sP

‖ y − VK ΦK CT sP ‖2
2 , (45)

where, we recall, VK := VEK . The minimization problem in
(45) has the well-known closed-form solution [35]

s∗P =
(

CΦH
K ΦK CT

)−1
CΦH

K VH
K y, (46)

where we assume that the fixed seeding locations C lead to
a matrix ΦK CT that has full column rank. With ε := y − z
denoting the reconstruction error, its energy can be written as

‖ε‖2
2 = yH VK

(

I − ΦK CT
(

CΦH
K ΦK CT

)−1
CΦH

K

)

VH
K y.

(47)
Notice that, since h∗ is given, the reconstruction error is zero
for the frequency components k > K.

2) Designing the Seeding Values sP and the Filter Coeffi-
cientsh: When perfect reconstruction is infeasible, carrying out
a separate optimization of h and sP , where h is designed to filter
the frequencies not present in y and sP is designed to match the
spectrum of y in the active frequencies, is not jointly optimal.
Minimization of the reconstruction error by jointly designing
sP and h is briefly discussed next. Notice that the N frequency
coefficients–as opposed to just the first K coefficients–of the
reconstructed signal ẑ are [cf. (41)]

ẑ = diag (Ψh)ET
K Θ (I ⊗ Ψ)CT sP . (48)

Hence, if the objective is to minimize ‖ ε ‖2
2 , we have that

{s∗P , h∗}:= argmin
{sP ,h}

‖ y − V ẑ ‖2
2

= argmin
{sP ,h}

‖ y − Vdiag (Ψh)ET
K Θ (I ⊗ Ψ)CT sP ‖2

2 , (49)

which is a bilinear optimization. Bilinear problems are non-
convex, but there is a large amount of works dealing with their
analysis and efficient solution [36]–[38].

The formulation in (49) considers that h∗ can be chosen as
a function of the signal to reconstruct y. In applications where
this is not feasible, formulating the optimal design requires ad-
ditional assumptions on y. If the distribution of y is known,
a two-stage stochastic programming approach can be pursued
[39]. In the second stage, h in (49) is considered given and the
optimal s∗P is obtained as the minimizer of ‖ ε (h,y, sP ) ‖2

2 ,
which is a function of h and y [cf. (46)]. In the first stage, the
solution of the second stage s∗P (h,y) and the distribution of
y are leveraged to write the expectation of the reconstruction
error in (49) as ε(h) := Ey [‖ ε(h,y, s∗P (h,y))‖2

2 ], which only
depends on h. The optimum h∗ is then the minimizer of the
expected error ε (h). Notice that this two-stage approach is used

in Sections III, IV, and V to find conditions for perfect recovery,
where bandlimitedness is the prior knowledge of y.

3) Designing the Seeding Values sP and the Seeding Loca-
tions C: Suppose now that one can select the specific nodes and
time instants where the injections take place. This amounts to
choosing the P entries of C that are nonzero, which is a combi-
natorial problem. Although for small networks one could try all
possible choices of C and select the one leading to the smallest
reconstruction error, for general networks a more scalable ap-
proach is required. To formulate the corresponding optimization
problem sP = Cs is substituted into (45). After that, the prod-
uct CT C is rewritten as diag(c) where c is a binary selection
vector of dimension Nτ × 1. Note that having ci = 1 indicates
that at time t = modτ (Nτ − i) the node (i + t) /τ injects a
seeding value. With this notation, the joint design of sP and c
amounts to solving

{s∗, c∗}:= argmin
{s,c}

‖y − VK ΦK diag(c) s‖2
2 + γ‖c‖0

s.t. c ∈ {0, 1}N τ , (50)

where ΦK is defined in (44). In (50) each seeding location used
is penalized with a constant cost γ. By tuning γ, the desired
level of sparsity of c can be achieved. Problem (50) can be fur-
ther simplified by setting d := diag (c) s and requiring sparsity
on d

d∗ := argmin
d

‖y − VK ΦK d‖2
2 + γ‖d‖0 . (51)

Among other advantages, the formulation in (51) is amenable to
relaxations that reduce the computational complexity required
to find a solution. A straightforward approach is to relax the
problem by replacing the 0-norm with the 1-norm to obtain a
convex formulation.

As in problem (49), the design in (50) and its subsequent sim-
plification in (51) assume that the seeding nodes can be chosen
as a function of y. For applications where this is not conve-
nient, a two-stage stochastic programming approach similar to
the one described for (49) can also be used in solving (50).
Last but not least, although computationally challenging, a joint
optimization of sP ,h and C can be pursued by combining the
approaches in Sections VI.A2 and VI.A3.

B. Noise When Injecting the Seeding Values

The conditions for perfect reconstruction stated in Proposi-
tions 2, 3 and 5 require the seeding values to be the exact solution
of (16), (29), and (41), respectively. However, in real applica-
tions, the injected values can be corrupted with additive noise.
This noise can be either attenuated or amplified when the sig-
nal percolates through the graph via the successive applications
of S. The goal of this section is to quantify the reconstruction
error and to discuss seeding selection schemes tailored to these
operating conditions. Their performance will be illustrated via
numerical simulations in Section VII.

Let us assume that the injected signal is sP + wP , where wP

is a P × 1 noise vector with zero mean and covariance Rw .
The active frequencies of the reconstructed signal can then be
written as ẑK = ΦK CT (sP + wP )[cf. (41) and (44)]. From
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this, we may obtain the reconstruction error as

ε = VK (ẑK − ŷK ) = VK ΦK CT wP , (52)

with covariance matrix

Rε = E
(

εεH
)

= VK ΦK CT RwCΦH
K VH

K . (53)

Ideally, C should be designed to select the seeding nodes and
time instants that minimize the reconstruction error, which can
be quantified as a function of Rε. In what follows, we will focus
on minimizing the mean squared error (MSE), which is achieved
by minimizing trace (Rε). However, similar approaches can be
followed to minimize other commonly used error metrics such
as λmax (Rε) and log (det (Rε))[40].

To illustrate the design of C, two particular scenarios are
considered. In the first one, we assume i) that the frequency
coefficients ŷK are zero mean with covariance Rŷ = I and ii)
that the noise wP is zero mean with covariance Rw = σ2E(‖
sP ‖2

2)I. Note that assumption ii) is meaningful if the system
operates under a constant signal-to-noise ratio (SNR) regime.
In the second scenario, we assume the noise is also uncorrelated
but its power is independent of that of the seeding signal, so that
Rw = σ2I.

For convenience, the optimal seeding strategy for the first
scenario is presented in the form of a lemma.

Lemma 3: Suppose that ŷK and wP are drawn from zero-
mean distributions with covariances Rŷ = I and Rw = σ2E(‖
sP ‖2

2)I, respectively. Then, the selection c∗ that minimizes the
MSE of the reconstruction is given by

c∗ := argmin
c

trace
(

(

ΦK diag(c)ΦH
K

)−1
)

trace
(

ΦK diag (c)ΦH
K

)

s.t. c ∈ {0, 1}N τ , ‖ c ‖0 = P. (54)

Proof: To prove the lemma, we need to show that the mini-
mization of the objective in (54) is equivalent to the minimiza-
tion of trace (Rε). By substituting Rw = σ2E(‖ sP ‖2

2)I and
diag (c) := CT C into (53), it follows that

trace (Rε) = σ2E
(

‖ sP ‖2
2

)

trace
(

VK ΦK diag (c)ΦH
K VH

K

)

.

(55)
Since the trace is invariant to cyclic permutations and VH

K VK =
I, we have that

trace (Rε) = σ2E
(

‖ sP ‖2
2

)

trace
(

ΦK diag (c)ΦH
K

)

. (56)

To find an expression for E(‖ sP ‖2
2), we leverage the

fact that ŷK = ΦK CT sP [cf. (41) and (44)] to write sP =
CΦH

K

(

ΦK CT CΦH
K

)−1 ŷK and, consequently, to write ‖ sP ‖2
2

as

‖ sP ‖2
2 = sH

P sP = ŷH
K

(

ΦK diag (c)ΦH
K

)−1
ŷK . (57)

Using the expression for the expected value of a quadratic form,
it follows that

E
(

‖ sP ‖2
2

)

= trace
(

(

ΦK diag (c)ΦH
K

)−1
)

. (58)

Upon replacing (58) into (56) and recalling that σ2 does not
depend on c, the expression in (54) follows. �

The statistical assumption on ŷK allows us to design c∗ such
that the expected performance of the reconstruction scheme is

optimized. In this way, the choice of the seeding nodes and in-
stants is independent of the particular signal being reconstructed.

Even though obtaining general relaxations to efficiently ap-
proximate the non-convex problem in (54) is out of the scope of
the paper, we can gain intuition by specializing (54) for time-
varying signals, i.e., by setting S = Adc . For SN-MT seeding,
where designing c boils down to selecting the seeding node, it
can be shown that the objective in (54) does not depend on the
particular node chosen. This is as it should be, since in the di-
rected cycle every node is topologically indistinguishable from
the others. For MN-ST seeding, the best strategy is to uniformly
distribute the seeding nodes, as we formally state next.

Proposition 6: Suppose that the problem in (54) is particu-
larized for the case of MN-ST seeding of time-varying signals
using an ideal low-pass filter. Then, if K = P = N/θ, it holds
that the optimal seeding strategy selects the nodes in positions
1, 1 + θ, . . . , 1 + (K − 1) θ.

Proof: When S = Adc we have that: a) V = F; b) ̂h∗
K =

α1K for some constant α where 1K is the K × 1 vec-
tor of all ones–since we are considering an ideal low-pass
filter–; and c) c only can take nonzero values in positions
i = 1, 1 + τ, . . . , 1 + (N − 1) τ (since we are considering MN-
ST seeding). Leveraging a), b) and c), problem (54) can be
reformulated as

c∗:= argmin
c

trace
(

M−1) trace (M)

s.t. M = ET
K FH diag (c)FEK , c ∈ {0, 1}N , ‖ c ‖0 = K,

(59)

where c selects K seeding nodes out of the N possible ones.
First, notice that trace (M) does not depend on the particular
choice of c. To see why this is true, we denote by I (c) the set
containing the indices of the K seeding nodes selected by c.
Then, we can exploit the structure in F to write

trace(M) =
∑

i∈I(c)

K−1
∑

j=0

∣

∣

∣

∣

1√
N

e+j 2 π
N (i−1)(j−1)

∣

∣

∣

∣

2

=
K2

N
, (60)

which does not depend on c. Hence, the optimal c∗ in (59) can
be found as the one minimizing trace

(

M−1
)

.

If we denote by {γi}K
i=1 the K eigenvalues of M, our goal

is then to find the c∗ that minimizes
∑

i 1/γi . Given that all γi

are nonnegative (M is positive semi-definite) and (60) implies
that

∑

i γi = K2/N , the minimization is achieved by setting
γ1 = γ2 = · · · = γK = K/N . Hence, if we show that uniform
seeding leads to γi = K/N for all i, the proof concludes. To
show this, notice that under uniform sampling

diag (c)FEK =

√

K

N
F(K ) , (61)

where F(K ) is the Fourier basis of size K × K. Hence, M =
K/NI [cf. (59)] and every eigenvalue of M equals K/N . �

In words, even though for the noiseless case any seeding
selection strategy satisfying the conditions in Proposition 2 is
equally optimal, uniform seeding in directed cycles is the best
MN-ST scheme when noise is present in sP .

A second scenario of interest are setups where the additive
noise at different value injections is uncorrelated and of fixed
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Fig. 2. Perfect recovery of a bandlimited graph signal. (a) The graph G, the target signal to recover y and its frequency representation ŷ. (b) Evolution of the
reconstructed signal. The seeding and filtering phases are separated by a dotted line and the recovered signal is framed in red. (c) Evolution of the frequency
components of the reconstructed signal. Successive annihilation during the filtering phase is observed.

power, i.e., Rw = σ2I. In this case, (53) can be rewritten as

Rε = σ2VK ΦK diag (c)ΦH
K VH

K . (62)

The design of c that minimizes the MSE of the reconstruction
is the solution of the following linear integer program

c∗:= argmin
c

trace (Rε) = argmin
c

trace
(

ΦK diag (c)ΦH
K

)

s.t. c ∈ {0, 1}N τ , ‖ c ‖0 = P (63)

which can be approximated by relaxing the binary and 0-norm
constraints.

It turns out that the solution of (63) promotes the injection
of seeding values at nodes that weakly express the active fre-
quencies, i.e., nodes j such that the values [êj ]k for k ≤ K are
small. This occurs because the noise power is fixed and those
nodes require the injection of seeding signals with high power,
leading to a high SNR.

VII. NUMERICAL EXPERIMENTS

We illustrate the reconstruction schemes in noiseless and
noisy scenarios using synthetic (Section VII.A) and real-world
graphs (Sections VII.B and VII.C).

A. Synthetic Graph Signals

Fig. 2(a) represents a graph G with N = 10 nodes and ad-
jacency matrix A generated using an Erdős-Rényi (ER) model
with edge probability 0.3 [41]. Define the graph-shift operator
S = A and let y be a signal to be recovered. Though seem-
ingly random in the node domain, the structure of y is highly
determined by G. Indeed, y has bandwidth K = 4, as can be
observed from its frequency representation ŷ in Fig. 2(a).

The first set of experiments illustrates the perfect recovery
of y when P = 4 seeding values are injected into G followed
by a low-pass filter of degree N − P = 6. The reconstruction
is carried out using MN-MT seeding (Section V) where nodes
1 and 2 act as seeding nodes and each of them injects a seed-
ing value for time instants t ∈ {0, 1}. After the seeding phase,
a filter that successively annihilates the N − K = 6 frequen-
cies not active in y is implemented [cf. (6)]. The evolutions
of the reconstructed signal and its frequency representation are
depicted in Figs. 2(b) and (c), respectively. Notice that perfect
reconstruction is achieved since the last column in both figures
coincide with y and ŷ. Fig. 2(b) illustrates that the reconstructed
signal is sparse during the seeding phase, consisting of the first

TABLE I
RECOVERY PERFORMANCE FOR THE THREE SEEDING SCHEMES IN 10,000

RANDOM GRAPHS OF SIZE 10 FOR THE CASES WHEN THE NUMBER OF

SEEDING VALUES P EQUALS THE BANDWIDTH K AND WHEN IT DOUBLES IT

K = 4, P = 4 MN-ST SN-MT MN-MT (2 nodes × 2 seeds)

% of recovery 91.3 95.6 93.8
Min error .003 .013 .006

K = 4, P = 8 MN-ST SN-MT MN-MT (4 × 2) MN-MT (2 × 4)

% of recovery 99.7 95.6 99.5 98.4
Min error .002 .009 .002 .003

TABLE II
COUNTERPART OF TABLE I BASED ON 1,000 RANDOM GRAPHS OF SIZE 100

K = 4, P = 4 MN-ST SN-MT MN-MT (2 nodes × 2 seeds)

% of recovery 100.0 100.0 100.0
Min error .004 .125 .011

K = 4, P = 8 MN-ST SN-MT MN-MT (4 × 2) MN-MT (2 × 4)

% of recovery 100.0 100.0 100.0 100.0
Min error .003 .037 .003 .006

two time instants. More specifically, for t = 0 the signal attains
nonzero values only for the seeding nodes [cf. (7)] and for t = 1
the signal remains zero for every node outside of the one-hop
neighborhood of the seeding nodes. During the filtering phase–
times t = 2 to t = 7–signal values are successively exchanged
between neighboring nodes in order to finally recover y at time
t = 7. Fig. 2(c) helps to understand the operation of the filtering
phase. The signal x obtained after the seeding phase (t = 1)
contains every frequency not active in the desired signal y.
Thus, in every successive time instant, one of these frequencies
is annihilated. E.g., at time t = 2 the frequency with index i = 5
is eliminated and at t = 3 the frequency i = 6 is eliminated. In
this way, at time t = 7 every frequency not active in y has been
annihilated and perfect recovery is achieved.

To compare the reconstruction performance of MN-ST, SN-
MT, and MN-MT seeding, we generate two sets of random
Erdős-Rényi (ER) graphs of different sizes: 10,000 graphs with
10 nodes and edge probability 0.3, and 1,000 graphs with 100
nodes and edge probability 0.1. On each graph we define a
4-bandlimited signal and try to recover it through the three
seeding schemes presented; see Table I for 10-node graphs and
Table II for 100-node graphs. Regarding the amount of seeding
values P , we consider cases where P is equal to the minimum
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necessary for perfect recovery, i.e., P = K, and cases where
the number of seeding values are more than necessary P =
2K. When P = 4, we restrict the MN-MT schemes to those
consisting of two seeding nodes injecting two values each and
when P = 8 we consider two variants of MN-MT consisting of
two nodes injecting four values each and four nodes injecting
two values each.

We first obtain the recovery percentage of the three schemes
in noiseless scenarios. More specifically, for a given graph and
signal to recover both of size N , we test for perfect recovery
for N different choices of seeding nodes. For SN-MT seeding
this implies considering all N choices of the single seeding
node whereas for the remaining schemes we randomly pick
N configurations of seeding nodes. In this way, every entry in
Tables I and II is based on 100,000 measurements, obtained
from the N seeding choices times the number of graphs consid-
ered. E.g., the SN-MT success rate of 95.6% shown in Table I
means that in 95,600 experiments the bandlimited signal was
recovered perfectly from the seeding values. If we focus on
the first row of Table I, the highest recovery percentage of SN-
MT suggests that, for the cases where P = K, condition ii) in
Proposition 3 is more commonly satisfied in random ER graphs
than the respective conditions in Propositions 2 and 5. By con-
trast, the opposite is true when P = 2K. To understand why
this is the case, notice that condition ii) in Proposition 3 does
not depend on the value of P . Intuitively, if the seeding node is
incapable of expressing an active frequency U1 > 0 or two ac-
tive frequencies are indistinguishable D1 > 0, then extra seed-
ing values (larger P ) cannot improve recovery. On the other
hand, for MN-ST and MN-MT seeding the corresponding con-
dition ii) in Propositions 2 and 5 do depend on P and, for
larger P , it is easier to satisfy the rank condition required. If
we now focus on the recovery percentages in Table II we see
that perfect recovery is always achieved for all the schemes
considered pointing to the fact that in general ER graphs, when-
ever K 
 N , the conditions in Propositions 2, 3, and 5 are
satisfied.

We then introduce noise in the injections following the
constant SNR model in Section VI.B for σ = 10−3 . Denot-
ing by z the signal obtained from the reconstruction and by
y the desired signal, we define the reconstruction error as
ε = ‖ z − y ‖2/‖ y ‖2 . For every given graph and signal y,
we record the minimum ε for every choice of seeding nodes
within each reconstruction scheme. In Tables I and II we report
the median of these values across all the generated graphs in
the ‘Min error’ rows. For the cases where P = K, observe that
MN-ST is an order of magnitude more robust than SN-MT when
N = 10 and almost two orders when N = 100. Moreover, MN-
MT seeding schemes achieve intermediate performances in the
presence of noise. Finally, we see that increasing the number
of seeding values to P = 8 entails an increase in robustness
for both graph sizes considered and every seeding scheme. It is
interesting to notice that for SN-MT where additional seeding
values do not improve recovery in noiseless settings, when noise
is present these extra values can be used to increase robustness.
E.g., for graphs containing 100 nodes, the median of the min-
imum reconstruction errors in the 1,000 graphs generated was
reduced from 0.125 to 0.037 by doubling the number of seeding
values.

Fig. 3. Reconstruction errors when recovering a signal in a social network
with insufficient seeding values.

B. Influencing Opinions in Social Networks

Consider the well-known social network of Zachary’s karate
club [42] represented by a graph G consisting of 34 nodes
or members of the club and 78 undirected edges symboliz-
ing friendships among members. Denoting by L the Lapla-
cian of G, define the graph shift operator S = I − αL with
α = 1/λmax (L), modeling the diffusion of opinions between
the members of the club. A signal y on G can be interpreted
as a unidimensional opinion of each club member regarding
a specific topic, and each successive application of S can be
seen as an opinion update influenced by neighboring individu-
als. Bandlimitedness of y implies that the opinion discrepancies
between neighbors are small. Arbitrary (non-bandlimited) pro-
files can also be induced when the number of seeding values is
sufficiently large. In this context, signal reconstruction can be
interpreted as the problem of inducing a desired global opinion
profile by influencing the opinion of a subset of members.

We analyze the recovery performance when the number of
seeding values is insufficient (Section VI.A). For this, we gen-
erate a signal y of bandwidth K = 5 and try to reconstruct it
using P seeding values for P = 1, . . . , 5; see Fig. 3. For every
P , we find the combination of seeding values and locations that
minimizes the reconstruction error within each seeding scheme
(cf. Section VI.A3). E.g., if P = 2 and we are analyzing SN-
MT seeding, we consider every individual as possible seeding
node and then choose the one achieving the minimum error. In
Fig. 3 we report the average of these minimum errors across 100
bandlimited signals. As expected, for P = 1 the three schemes
coincide and for P = 5 perfect recovery is achieved for all of
them. However, for intermediate values of P , MN-ST presents
a considerably lower error than SN-MT. For P = 3 this implies
that, when trying to induce a global opinion profile, it is more
effective to influence the opinion of three individuals once than
to influence the opinion of the same individual three times. The
fact that MN-MT seeding presents the lowest reconstruction
errors is expected since this scheme includes the other two as
particular cases. Notice that in this case, as opposed to Tables I
and II, we do not restrict MN-MT to any particular combination
of seeding values and nodes.

For the above analysis to hold true, we must be able to apply a
low-pass filter on the social network as required by the filtering
phases of MN-ST, SN-MT, and MN-MT. This can be achieved
by assuming that we can modify the rate of exchange of opinions
in the network represented by α. Indeed, consider that after
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Fig. 4. Heat map of the adjacency matrix A of brain graph G.

the seeding phase, the signal still percolates over the graph–
people still communicate their opinions to neighbors–but we
can modify the diffusion rate αl at each discrete time instant.
Thus, after L − 1 interactions we obtain that

z =
L−1
∏

l=1

(I − αlL)x, (64)

which is equivalent to applying an annihilating filter [cf. (6)]
to x. Notice that the filter in (64) is a polynomial on L rather
than S. However, the frequency annihilation procedure is still
valid since the eigenvectors–frequency basis–of L and S are
equal.

C. Inducing a Brain State

Upon dividing the human brain into the 66 regions of interest
(ROIs) defined in [43], we build a weighted undirected graph
G whose nodes are the ROIs and whose edge weights are given
by the density of anatomical connections between regions; see
Fig. 4. The first 33 ROIs are located on the right hemisphere of
the brain while regions 34 to 66 correspond to their left coun-
terparts. From Fig. 4 we see that most connections occur within
the same cortical hemisphere with few inter hemispheric con-
nections. We define the graph-shift operator S = A where A is
the adjacency matrix of G modeling the electrical connectivity
between brain regions. The level of activity of each ROI can
be represented by a graph signal y where larger values repre-
sent higher levels of activity. Successive applications of S on y
model a linear evolution of the brain activity pattern [44]. As
a method to inject seeding values to G, we consider transcra-
nial magnetic stimulation (TMS) [24], a noninvasive method
to stimulate ROIs. In this context, reconstructing a brain signal
amounts to inducing a specific brain state via TMS. In particu-
lar, we consider the problem of driving the brain from a resting
state to one associated with high-level cognitive operations. This
experiment is included as an illustration of the potential applica-
bility of our framework to neuroscience, rather than as a tested
procedure with immediate clinical implementation.

Brain resting states are associated with high activity in
the posterior cingulate (PC) and inferior parietal (IP) cortices
whereas active states are associated with high activity in the
rostral middle frontal (RMF) and superior parietal (SP) cor-
tices [45], [46]. In Fig. 5 we present the initial yi and target yt

signals, where the activity corresponding to the eight regions
mentioned–left and right versions of each cortex–is highlighted

Fig. 5. Initial yi (red) and target yt (blue) brain states. High activity is repre-
sented by positive activity levels while negative values represent low levels of
activity.

with larger markers. In order to drive the brain from yi to yt

we consider a MN-MT seeding scheme with six seeding nodes.
Since it is unclear how to implement a low-pass filter in a human
brain, we consider that each seeding node injects eleven values,
totalizing P = 66 seeding values permitting the recovery of the
target signal after the seeding phase without the need of a poste-
rior filtering phase. Notice that throughout the paper we assumed
the initial signal yi to be zero, meaning that there is no signal
present on the graph before the reconstruction process. How-
ever, our model can accommodate for yi different from zero. To
see this, if the seeding phase lasts τ instants, then we can design
our seeding values to recover the signal yr = yt − Sτ−1yi in
the original formulation so that the negative term cancels the
effect of the seeding phase on yi and the target signal yt is
recovered.

We consider noisy injections following the constant SNR
model in Section VI.B for σ = 10−3 . Since in this case we
have an initial signal present in the graph, we define the recon-
struction error as ε =‖ z − yt‖2/‖ yr ‖2 , where z denotes the
reconstructed signal, and compute ε for every possible combina-
tion of seeding nodes. Given that the seeding values are induced
by TMS, we discard as possible seeding nodes the regions in-
accessible by TMS like the ones located in the medial cortex
and subcortical structures. After discarding inaccessible ROIs,
the six seeding nodes can be chosen out of 38 possible ROIs,
amounting to 2,760,681 possible configurations. In Fig. 6(a)
we present a histogram of the reconstruction error for differ-
ent seeding configurations where we only show those attaining
errors below 0.1. The red bar in this histogram corresponds to
the 1,611 configurations that achieve the lowest reconstruction
errors. In Fig. 6(b) we present the frequency of appearance of
each ROI in these 1,611 robust seeding configurations. The re-
gions with zero appearances correspond to the ROIs inaccessible
to TMS, however, among the accessible regions the frequency of
appearance is not uniform. For example, the left inferior parietal
cortex in position 41 appears 583 times whereas the right bank
of the frontal pole in position 1 is only used 50 times. In Fig. 6(c)
we depict the 6 regions more commonly used in robust seeding
configurations. Notice that both the left and right versions of the
Pars Orbitalis are commonly used as seeding nodes, suggesting
the importance of this region for robust brain state induction.
These robust seeding configurations do not appear to be very
sensitive to the noise level σ. For instance, if we increase the
noise level to σ = 10−2 , the maximum error achieved among the



SEGARRA et al.: RECONSTRUCTION OF GRAPH SIGNALS THROUGH PERCOLATION FROM SEEDING NODES 4377

Fig. 6. Inducing a brain state in the presence of noise. (a) Histogram of the reconstruction error for different choices of the six seeding nodes. (b) Frequency
of appearance of each brain region among the configurations achieving the lowest reconstruction errors. (c) Anatomical location of the six regions most used in
robust seeding configurations.

best 1,611 strategies is 0.108 (as opposed to 0.01 in the current
setting), but it is still the case that the inferior parietal (IP) is the
most common region in these robust seeding configurations.

VIII. CONCLUSION

A novel approach for the recovery of bandlimited graph
signals–that admit a sparse representation in the frequency
domain–was proposed. The focus was not on estimating an un-
known graph signal but rather on inducing a known bandlimited
signal through minimal actions on the graph. These actions re-
ferred to signal injections at different seeding nodes, which then
percolate through the graph via local interactions described by
a graph filter. Restrictions on the number of seeding nodes and
the amount of injections at each node gave rise to three different
reconstruction schemes and their performance in noiseless
and noisy settings was analyzed. For the noiseless case, we
showed that a K-bandlimited signal can be recovered using K
injections followed by a low-pass filter in the (graph) frequency
domain. In contrast to classical time-varying signals, it was
also shown that if the seeding nodes inject the values of the
original signal in those nodes, perfect recovery is not feasible.
For scenarios leading to imperfect reconstruction, we analyzed
robust seeding strategies to minimize distortion. Finally, the
different reconstruction schemes were illustrated through
numerical experiments in both synthetic and real-world graph
signals.

Future research directions include consideration of scenarios
where S is not given but, rather, has to be estimated from the
observations of graph signals. Moreover, settings where some
of the elements of S can be designed to benefit quick and robust
signal reconstruction are also of interest.
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