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Abstract—A new scheme to sample signals defined on the nodes
of a graph is proposed. The underlying assumption is that such
signals admit a sparse representation in a frequency domain
related to the structure of the graph, which is captured by the
so-called graph-shift operator. Instead of using the value of the
signal observed at a subset of nodes to recover the signal in the
entire graph, the sampling scheme proposed here uses as input
observations taken at a single node. The observations correspond
to sequential applications of the graph-shift operator, which are
linear combinations of the information gathered by the neighbors
of the node.When the graph corresponds to a directed cycle (which
is the support of time-varying signals), our method is equivalent to
the classical sampling in the time domain. When the graph is more
general, we show that the Vandermonde structure of the sampling
matrix, critical when sampling time-varying signals, is preserved.
Sampling and interpolation are analyzed first in the absence of
noise, and then noise is considered. We then study the recovery
of the sampled signal when the specific set of frequencies that is
active is not known. Moreover, we present a more general sam-
pling scheme, under which, either our aggregation approach or
the alternative approach of sampling a graph signal by observing
the value of the signal at a subset of nodes can be both viewed as
particular cases. Numerical experiments illustrating the results in
both synthetic and real-world graphs close the paper.
Index Terms—Error covariance, graph signal processing, graph

signals, interpolation, sampling, support selection.

I. INTRODUCTION

S AMPLING (and subsequent interpolation) is a cornerstone
problem in classical signal processing [1]. The emergence

of new fields of knowledge such as network science and big
data is generating a pressing need to extend the results existing
for classical time-varying signals to signals defined on graphs
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[2]–[5]. This not only entails modifying the algorithms currently
available for time-varying signals, but also gaining intuition on
what concepts are preserved (and lost) when a signal is defined,
not in the classical time grid, but in a more general graph do-
main.
This paper investigates the sampling and posterior recovery

of signals that are defined on the nodes of a graph. The under-
lying assumption is that such signals admit a sparse represen-
tation in a (frequency) domain which is related to the structure
of the graph where these signals reside. Most of the current ef-
forts in this field have been focused on using the value of the
signal observed at a subset of nodes to recover the signal in the
entire graph [6]–[10]. Our proposal in this paper is different.
We begin by presenting a new sampling method that accounts
for the graph structure, can be run at a single node and only re-
quires access to information of neighboring nodes. Moreover,
we also show that the proposed method shares similarities with
the classical sampling and interpolation of time-varying signals.
When the graph corresponds to a directed cycle, which is the
support of classical time-varying signals, our method is equiva-
lent to classical sampling. When the graph is more general, the
Vandermonde structure of the sampling matrix, which is critical
to guarantee recovery in classical sampling [1], is preserved.
Such a structure not only facilitates the interpolation process,
but also helps to draw some connections between the proposed
method and the sampling of time-varying signals. Sampling and
interpolation are analyzed first in the absence of noise, where
the conditions that guarantee recovery are identified. The con-
ditions depend both on the structure of the graph and the partic-
ular node taking the observations. We then analyze the sampling
and reconstruction process when noise is present and when the
specific frequencies where the signal is sparse are not known.
For the noisy case, an interpolator based on the Best Linear Un-
biased Estimator (BLUE) is designed and the effect on the cor-
responding error covariance matrix of different noise models is
discussed. For the case of unknown frequency support, we pro-
vide conditions under which the signal can be identified. This
second problem falls into the category of sparse signal recon-
struction [11]–[14] where the main idea is to leverage the struc-
ture of the observation matrix to facilitate recovery. The last
contribution is the definition of a more general space-shift sam-
pling method that considers a subset of nodes, each of them
taking multiple observations. Within that generalization, the ap-
proach of sampling a graph signal by observing the value of the
signal at a subset of nodes can be viewed as a particular case.
Space-shift sampling is relevant not only because it subsumes
existing schemes, but also because it can be used to compare and
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establish relationships between existing approaches to sample
signals in graphs and our proposed method.
The paper is organized as follows. Section II introduces the

new aggregation sampling method, compares it to the existing
selection sampling method and shows that for classical time-
varying signals both methods are equivalent. Section III an-
alyzes our sampling method in more detail and applies it to
sample bandlimited graph signals. The analysis includes con-
ditions for recovery, which are formally stated in Section III-B.
Section IV investigates the effect of noise in aggregation sam-
pling. It also discusses how to select sampling nodes and ob-
servation schemes that lead to a good recovery performance.
Corresponding modifications in the interpolation in order to re-
cover the signal when the support is not known are discussed
in Section V. Section VI proposes a generalization under which
the existing selection sampling and the proposed aggregation
sampling can be viewed as particular cases. Finally, several il-
lustrative numerical results are presented in Section VII.
Notation: The entries of a matrix and a vector are de-

noted as and ; however, when contributing to avoid con-
fusion, the alternative notation and will be used. The
notations and stand for transpose and transpose conju-
gate, respectively; is the Kronecker product; is the
column-wise vectorized version of matrix ; is the -th

canonical basis vector (all entries of are zero except the
-th one, which is one); is a tall matrix
collecting the first canonical basis vectors; and and are,
respectively, the all-zeros and all-ones matrices (if the dimen-
sions are not clear from the context, a subscript will be used).
The modulus (remainder) obtained after dividing by is de-
noted as .

II. SAMPLING OF GRAPH SIGNALS

Let denote a directed graph. The set of nodes or
vertices has cardinality , and the set of links is such that

if and only if node is connected to node . The set
contains all nodes with an incoming connec-

tion to and is termed the incoming neighborhood of . For any
given graph we define the adjacencymatrix as a sparse
matrix with non-zero elements if and only if . The
value of captures the strength of the connection between
and . The focus of this paper is not on analyzing , but a graph
signal defined on the set of nodes . Such a signal can be rep-
resented as a vector where the -th
component represents the value of the signal at node , or, equiv-
alently, as a function , defined on the vertices of the
graph.
The graph is endowed with a graph-shift operator de-

fined as an matrix whose entry , denoted as ,
can be non-zero only if or . The sparsity pattern
of the matrix captures the local structure of but we make
no specific assumptions on the values of the non-zero entries of
. Common choices for are the adjacency matrix of the graph

[3], [15], the Laplacian [2], and its generalizations [16]. The in-
tuitive interpretation of is that it represents a linear transfor-
mation that can be computed locally at the nodes of the graph.
Specifically, if is defined as , then
node can compute provided that it has access to the values

of at its incoming neighbors . We assume henceforth
that is diagonalizable, so that there exists a matrix
and a diagonal matrix that can be used to decompose
as . When is normal, i.e., when ,
not only is diagonalizable but is unitary, which implies

, and leads to the decomposition .
Let denote a fat selection matrix whose elements

satisfy: , for all , and
for all . A natural definition of sampling for a graph signal is
to obtain the sampled signal as [9]

(1)

Given the structure of , is a selection of out of the
elements of and is the sampling rate. Uniform sampling
amounts to choosing and
the selection of the first elements of is accomplished by
setting . In general, it is not clear
how to choose good selection matrices . This is in contrast
to conventional sampling of signals in the time domain where
uniform sampling is advantageous [1].
An equally valid, yet less intuitive, definition is to fix a node,

say , and consider the sampling of the signal seen by this node
as the shift operator is applied recursively. To describe this
sampling methodology more clearly, define the -th shifted
signal and further define the matrix

(2)

that groups the signal and the result of the first ap-
plications of the shift operator. Associating the -th row of
with node , we define the successively aggregated signal at
as . Sampling is now reduced to the
selection of out of the elements (rows) of , which is ac-
complished with a selection matrix [cf. (1)]

(3)

We say that the signal samples with successive local aggre-
gations. This nomenclature follows from the fact that can
be computed recursively as and that the -th
element of this vector can be computed using signals associated
with itself and its incoming neighbors,

(4)

We can then think of the signal as being computed locally
at node using successive variable exchanges with neighboring
nodes. In fact, can be expressed as a linear combination of
the values of at nodes whose distance (number of hops)
from node is less than or equal to . This implies that the sam-
pled signal in (3) is a selection of values that node can deter-
mine locally. Indeed, an underlying idea behind the sampling in
(3) is to incorporate the structure of the shift into the sampling
procedure.
To understand the difference between selection sampling [cf.

(1)] and aggregation sampling [cf. (3)], it is instructive to con-
sider their application to a signal defined in the time domain.
Classical time-domain signals can be represented as graph sig-
nals defined on top of a directed cycle graph [2], [9], as illus-
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Fig. 1. Conventional sampling in the time domain as aggregation sampling in
. We apply the shift operator successively and sample the resulting signal

observed at a given node (here, node 1).

trated in Fig. 1. Let and denote the directed cycle graph
and its adjacency matrix, respectively. In , node is con-
nected only to node , so that the elements of

are zero except for the ones in the first cyclic subdiagonal,
which are one. For a signal defined on , we consider selec-
tion and aggregation samplingwhen using and the uni-
form selection matrix . In
selection sampling, the sampled signal is obtained using (1) as

. In aggregation sampling, subsequent applications of
are considered. Each of these shifts amounts to ro-

tating the signal clockwise. It follows that the aggregated signal
in (2) is given by , which upon

multiplication by [cf. (3)] results in a vector
that contains the same elements that contains. Hence, when

both methods can be viewed as generalizations of
conventional sampling. However, for more general topologies,
selection and aggregation sampling produce different outcomes.
In selection sampling we move through nodes to collect sam-
ples at points uniquely identified by , whereas in aggregation
sampling we move the signal through the graph while collecting
samples at a fixed node.

III. SAMPLING OF BANDLIMITED GRAPH SIGNALS

Recovery of from its sampled version is possible under
the assumption that admits a sparse representation. The
common practice when addressing the problem of sampling
signals in graphs is to suppose that plays a key role in
explaining the signals of interest . More specifically, that
can be expressed as a linear combination of a subset of the
columns of , or, equivalently, that the vector

is sparse. In this context, vectors are interpreted
as the graph frequency basis and as the corresponding
signal frequency coefficients. To simplify exposition, it will
be assumed throughout that the active frequencies are the first

ones, which are associated with the largest eigenvalues [6],
[17], so that . However, the results
in the paper can be applied to any set of active frequencies

of size provided that is known. For convenience, we
define and so that
we may write . For to be sparse, it is
reasonable to assume that is involved in the generation of .
When , setting the shift operator either to

or to gives rise to the Fourier basis .

More formally, since is circulant, its right eigenvectors are
, with and .

Selecting has the additional advantage of satisfying
, i.e., the eigenvalues of the shift operator

correspond to the classical discrete frequencies. Interpretations
for the eigenvalues of the Laplacian matrix also exist [2].

A. Selection Sampling of Bandlimited Graph Signals

Under the selection sampling approach [6]–[10], sampling a
graph signal amounts to setting [cf. (1)]. Since the

binary matrix selects the observed nodes, the issue
then is how to design , i.e., which nodes to select, and how to
recover the original signal from its samples .
To answer this, it is assumed that is bandlimited, so that

it can be expressed as a linear combination of the principal
eigenvectors in . The sampled signal is then

. Hence, if matrix is invertible, can be re-
covered from and, thus, the original signal is obtained as

(5)

Perfect signal reconstruction can be guaranteed by selecting a
subset of nodes such that the corresponding rows in are
linearly independent. In the classical domain of time-varying
signals, has a row-wise Vandermonde structure,
which implies that any subset of rows is invertible. However,
for an arbitrary graph this is not guaranteed and algorithms to
select a specific subset that guarantees recovery are required [7].

B. Aggregation Sampling of Bandlimited Graph Signals

As explained in (3), under the aggregation approach the
sampled signal is formed by observations of the shifted signals

taken at a given node . Under this approach,
plays a role not only in explaining and recovering , but also in
sampling . Another reason to consider this scheme is that the
entries of can be found by sequentially exchanging infor-
mation among neighbors. This implies that: a) for setups where
graph vertices correspond to nodes of an actual network, the
procedure can be implemented distributedly; and b) if recovery
is feasible, the observations at a single node can recover the
signal in the entire graph.
As done before, we first analyze how the bandlimitedness

of is manifested on the sampled signal. Then, we identify
conditions under which recovery is feasible and describe the
corresponding interpolation algorithm. For ease of exposition,
the dependence of on is given in the form of a lemma.
Lemma 1: Define the vector , which

collects the values of the frequency basis at node ,
and the (column-wise) Vandermonde matrix

...
...

(6)

Then, the shifted signal can be expressed as

(7)
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Proof: Since , signal can be written as

(8)

Based on the definitions of and , it follows that

(9)

Because the -th column of matrix is , it can be
written as [cf. (8)]. Hence, the -th column of
matrix can be written as or, equivalently, as

. Leveraging the fact that the vector
containing the -th power of the eigenvalues corresponds to the
row of matrix , the shifted signal can be expressed as

(10)

which is the claim in the lemma.
Note that while in Section III-A the relation between the

sparse frequency coefficients and the signal to be sampled was
simply given by , here it is given by .
Next, we use Lemma 1 to identify conditions under which

recovery is feasible. To do this, let us define the matrix
. Then, the sampled signal is

(11)

where is the binary selectionmatrix, and the vector
collecting the non-zero elements of . To simplify exposition,
for the time being we will assume that , i.e., that the
observations correspond to the original signal and the first
shifts. The assumption can be relaxed as discussed in Remark 1.
If matrix is invertible, then can be recovered from
[cf. (11)] and, hence, can be found as [cf. (5)]

(12)

Thus, the expression in (12) shows how can be interpolated
from . The interpolator may be decomposed
into three factors to re-
veal its dependence on the support where the signal is bandlim-
ited, the node taking the samples, and the spectrum of the graph.
Equation (12) requires being invertible. Hence, perfect

reconstruction can be guaranteed by selecting samples such that
the corresponding rows in are linearly independent. While
for the selection sampling described in Section III-A there is no
straightforward way to check the invertibility of (existing
algorithms typically do that by inspection [7]), for the aggre-
gation sampling described in (7)–(12) the invertibility of
can be guaranteed if the conditions presented in the following
proposition hold.
Proposition 1: Let and be, respectively, a bandlimited

graph signal with at most non-zero frequency components
and the output of the sampling process defined in (11). Then,
the entries of signal can be recovered from the samples
in if the two following conditions hold

i) The first eigenvalues of the graph-shift operator are
distinct; i.e., for all , and .

ii) The first entries of are non-zero.
Proof: To prove the proposition it suffices to show that

under i) and ii), is invertible [cf. (12)]. Matrix can
be understood as the multiplication of two matrices: matrix

and matrix . Condition ii) guaran-
tees that the second matrix is invertible. Moreover, condition
i) guarantees invertibility of the first matrix. To see this, note
that is a (column-wise) Vandermonde matrix.
Hence is a selection of the first rows of ,
which is also Vandermonde. Any square Vandermonde matrix
has full rank provided that the basis (i.e., the eigenvalues of )
are distinct, as required in condition i).
One of the implications of Proposition 1 is that there is no

need to compute or observe the entire vector , since its first
entries suffice to guarantee recovery. Hence, linear combina-

tions of signals at nodes that are in a neighborhood of radius
suffice to reconstruct the entire graph signal. The condi-

tions in the proposition are easy to check, providing additional
insights on aggregation sampling. Condition i) states that if a
graph has two identical frequencies and the signal of interest
is a linear combination of both of them, the reconstruction will
fail. Condition ii) refers to the specific node where the samples
are taken. It states that any node in the network can be used to
sample the signal provided that for ; i.e., that
the chosen node participates in the specific frequencies onwhich
signal is expressed. It also points to the fact that if is
small, the interpolation matrix associated with may be poorly
conditioned. For the particular case of , conditions i)
and ii) are always satisfied.
From the above discussion, one can also understand bandlim-

ited graph signals as signals that can be identified locally by
relying on observations within a given number of hops. This
does not necessarily imply that the variation of the signal among
close-by nodes is small, but that the pattern of variation can be
inferred just by looking at close-by nodes. For the recovery to
be implemented locally too, the nodes need to know and

, i.e. the structure of the graph where the signal resides.
Alternative schemes to reconstruct a bandlimited graph signal
using only local interactions have been reported in [18].
Remark 1: The structure of the selection matrix and,

in particular, the fact that is a Vandermonde matrix
are instrumental to guarantee the recovery of . Note that

is Vandermonde not only when , but also
when , provided that

and for all , where
and . By setting , the counterpart of

the classical time sampling theorem (which considers uniformly
spaced samples) is recovered. Moreover, if none of the frequen-
cies of interest is zero, selection patterns of the form

are also guaranteed to
lead to invertible matrices. In this case, the resultant matrix is a
product of a Vandermonde and a non-zero diagonal matrix. For
reference in the following sections, we define here the
matrix
and the set of admissible selection matrices

and
.
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IV. SAMPLING AND INTERPOLATION IN THE
PRESENCE OF NOISE

If the samples are noisy, perfect reconstruction is, in general,
unfeasible and new issues arise. In Section IV-A, we estimate
for a general noise model using a Best Linear Unbiased Esti-

mator (BLUE). We then specify noise models that are likely to
arise in graph domains. In Section IV-B, we discuss the effect
on the interpolation error of selecting the sampling node and the
selection matrix.

A. BLUE Interpolation

Consider now that the shifted signal is corrupted by ad-
ditive noise, so that the observed signal is given by

. The noise is assumed to be zero-mean, indepen-
dent of the graph signal, and colored with a covariance matrix

. For notational convenience, we define also
and .

To design the interpolator in the presence of noise, we
leverage that the relation between and is given by

(13)
(14)

The BLUE estimator of , which minimizes the least squares
error, is then given by [19]

(15)
provided that the inverse in (15) exists. Additionally, for the par-
ticular case of Gaussian noise in (13), the estimator in (15) co-
incides with the Minimum Variance Unbiased (MVU) estimator
which attains the Cramér-Rao lower bound. Clearly, the larger
the number of rows in (13), the better the estimation is. When
the selection matrix selects exactly rows (and not more),
(15) reduces to

(16)

After obtaining —either via (15) or (16)—, the time signal
recovered at the -th node can be found as

(17)

Finally, the error covariance matrices for the frequency and time
estimators and

are [19]

(18)

(19)

Note that depends on the noise model, the frequencies
of the graph, the node taking the observations, and the sample-
selection scheme adopted (cf. Remark 1).
The expressions in (18), (19) can be used to assess the per-

formance of the estimation. Multiple alternatives to quantify the

estimation error exist, as analyzed by the theory of optimal de-
sign of experiments [20]. The most common approach is to find
an estimator that minimizes the trace of the error covariance

(20)

which corresponds to the minimization of the Mean Square
Error (MSE). Other common error metrics based on the error
covariance matrix are the largest eigenvalue

(21)

the log determinant

(22)

and the inverse of the trace of its inverse

(23)

Notice that the error metrics and are computed based on
the error covariance matrix for the frequency estimator in-
stead of the time estimator, since is a singular matrix [cf.
(19)].
The results presented so far consider a generic , so that

they can be used regardless of the color of the noise. Three par-
ticular examples of interest are presented next.
• White noise in the observed signal . This implies that
is white and , with denoting the noise power.
In this case, the matrix is given by

(24)

• White noise in the original signal . With denoting the
white additive noise present in , we can use the linear
observation model to write . Then,
the error covariance matrix is simply given by

. When
the shift is a normal matrix, is unitary and the previous
expression reduces to . The

error covariance matrix is then

(25)

The expression in (25) shows not only that the noise is cor-
related, but also that the correlation depends on the spec-
trum of , the node collecting the observations, and the
specific selection of observations.

• White noise in the active frequency coefficients .
With denoting the white additive noise present in

, we can use the linear observation model to write
. It follows that

the and error covariance matrices are
and

(26)

This model can be appropriate for scenarios where
the signal of interest is the output of a given “graph
process”—e.g., a diffusion process—and the noise is
present in the input of that process [5], [18]. This noise



MARQUES et al.: SAMPLING OF GRAPH SIGNALS WITH SUCCESSIVE LOCAL AGGREGATIONS 1837

model can also arise when the signal to be sampled has
been previously processed with a low-pass graph filter
[15], [18].

There are many other noise models that can be of interest
in graph setups. Matrix can be a non-negative weighted
sum of (24)–(26), e.g., if noise is present in both the original
signal and the observation process. Alternatively, the noise at
a specific node can be rendered dependent on the number of
neighbors, which is reasonable, e.g., in distributed setups where
the information of neighboring nodes is exchanged via noisy
channels.

B. Selection of the Sampling Set
The two elements that specify the set of samples to be inter-

polated are: 1) the node that aggregates the information and
2) the entries of selected by . The design of these two ele-
ments is discussed next.
1) Selection of the Sampling Node: The recovery results in

Section III-B show that any node can be used to sample and
recover the entire graph signal, provided that the entries of
corresponding to the active frequencies in are non-zero. How-
ever, when noise is present, is different for each . In this
context, it is reasonable to select as a sampling node one leading
to a small error. Note that selecting the best node requires the
computation of closed-form expressions, which involve ma-
trix inversions. In scenarios where computational complexity is
a limiting factor, the structure of the noise-covariance and the
interpolation matrices can be exploited to reduce the burden.
E.g., when white noise is present in , after substituting (26)
into (18) and (19), it follows that

(27)

Consequently, for this particular noise model, the estimator per-
formance is independent of the node choice. This is true for
every error metric [cf. (20)–(23)]. The result is intuitive: given
that the noise and the signal are present in the same frequencies,
it is irrelevant if a node amplifies or attenuates a particular fre-
quency. Differently, if the white noise is present in , we can
substitute (24) into (18) to obtain

(28)

Thus, if we are interested in minimizing, e.g., the error metric
[cf. (23)], our objective may be reformulated as finding the

optimal node such that

(29)
For a selection matrix of the form (cf. Re-
mark 1), the -th diagonal element of the matrix in (29) can
be written as . The trace is simply
the sum of those elements, so that the closed form of a geometric
series can be used to rewrite (29) as

(30)

Thus, the optimal sampling node will be one with large values
of for the active frequencies . The relative im-

portance of frequency is given by the fraction in (30), which
depends on the modulus of the associated eigenvalue and the
structure of (values of and ).
2) Design of the Sample Selection: For general sampling

schemes, designing is an inherently combinatorial problem,
where the set of candidate matrices has cardinality choose
. The approach when using aggregation sampling is to

leverage the Vandermonde structure—together with the error
metrics in (20)–(23) and the noise models in (24)–(26)—to
render the optimization of tractable.
We start by recalling that any matrix in the set of admissible

selection matrices defined in Remark 1 is guaranteed to lead
to a feasible recovery. The cardinality of is much smaller
than that of : can take at most values, and at
most . This leads to a significant reduction
of the computational burden. Moreover, in some cases the noise
structure can be exploited to readily determine the optimal ob-
servation strategy. E.g., for the case of white noise in , it
is immediate to see that the performance is independent of the
sample-selection scheme [cf. (27)]. For the case where is cor-
rupted by white noise, let us assume that ,
where is fixed and we want to design .
If we adopt in (22) as our error metric, the goal is to find

the value that minimizes . To achieve this, con-
sider two different selection matrices and

. Using (28) and assuming without loss
of generality that , the error covariance for is given
by . A
similar expression can be written for . Since is Van-
dermonde, it is not difficult to show that can be
written as . This implies that

(31)

For the first equality we have used that the product of diagonal
matrices is commutative and for the second one that right and
left multiplying by the canonical matrix amounts to selecting
the columns and rows of the multiplied matrix. Using (31), we
have that

(32)

which results in the following optimal strategy for the solution
of : if then , otherwise should
be as large as possible; see Remark 2. Equivalently, the optimal
strategy states that if one application of has an overall effect
of amplification in the active frequencies, then we should aim
to apply it as many times as possible, whereas if the opposite is
true, we should avoid its application. As expected, the optimal
design of given by (32) depends on the topology of the graph
(spectrum of ) and the properties of (set of active frequen-
cies).
One can also look at selection matrices that are not in . In

that case, the Vandermonde structure cannot be leveraged and
the problem has to be formulated as a binary optimization over

. Although of interest, developing approximate solutions
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for that exploit the structure of aggregation sampling is out
of the scope of this paper and is left as future work.
It is worth stressing that the selectionmatrix that minimizes

the error does not have to be the same for all nodes. Hence, both
the selection of the sampling node and the sampling shifts can
be combined to obtain the best local reconstruction across all
nodes in the graph.
Remark 2: Designing entails selecting out of the en-

tries in . Vector has only entries because has only
columns [cf. (2)]. Strictly speaking, this restriction is not re-

quired and more columns could be added to . As a matter of
fact, if for a given noisy graph signal applying attenuates the
noise while amplifying the signal, the sampling procedure will
benefit from further applications of , even beyond the size of
the graph . In practice, the maximum number of applications
will be limited by the computational and signaling costs associ-
ated with the application of the shift.

V. IDENTIFYING THE SUPPORT OF THE GRAPH SIGNAL
In the previous sections, it has been assumed that the fre-

quency support of corresponded to the principal eigenvec-
tors, which are the ones associated with the largest eigenvalues.
However, the results presented also hold true as long as the basis
support, i.e., the frequencies that are present in , are known.
To be specific, let denote the set of indices
where the signal is sparse and, based on it, define the
matrices and .
Then, all the results presented so far hold true if is replaced
with , and , when used to select the active frequencies,
is replaced with .
A related but more challenging problem is to design the sam-

pling and interpolation procedures when the frequency support
is not known. Generically, this problem falls into the class

of sparse signal reconstruction [11], [13], [14]. However, the
particularities of our setup can be leveraged to achieve stronger
results.

A. Noiseless Joint Recovery and Support Identification
Consider the noiseless aggregation sampling of Section III-B,

where we know that is -sparse but we do not know [cf.
(11)]

(33)

When the support is known, it was shown that a matrix that
selects the first rows of is enough for perfect reconstruction
(cf. Proposition 1).
If we reformulate the recovery problem as

(34)

for the unknown support case, selecting samples of does
not imply that the solution to (34) is unique. Indeed, guaran-
teeing identifiability in this case requires selecting a higher
number of rows (samples) [11]. The following proposition,
whose proof leverages the Vandermonde structure of , states
this result formally. To simplify notation, we assume that

, but the result holds true for any .

Proposition 2: Let and be, respectively, a bandlimited
graph signal with at most non-zero frequency compo-
nents and a selection matrix with rows of the form

(cf. Remark 1). Then, if all the entries in
are non-zero and all the eigenvalues of are non-zero while
satisfying that for all , it holds that

i) the solution to (34) is unique; and
ii) the original graph signal can be recovered as .
Proof: The proof proceeds in two steps. The first step is

to show that the matrix has full
spark [11], i.e., that any selection of of its columns has rank

and, hence, it leads to an invertible matrix. To
prove this, let be a set containing the in-
dices of the selected columns and define the canonical
matrix . Using this notation, the matrix
containing the columns of indexed by is , which
can be alternatively written as

(35)
This shows that is invertible because it can be written as
the product of two invertible matrices. The latter is true because:
a) conditions , for all
, and for all guarantee that is invertible

because it is a product of a diagonal and a Vandermonde full-
rank matrices (cf. Remark 1); and b) condition for
all guarantees that is an invertible diagonal
matrix. This is true for any . The second step is to show that

observations guarantee identifiability. To see why this is the
case, assume that two different feasible solutions and
exist. This would imply that . Nevertheless,
the vector has, at most, non-zero components
and any choice of columns of generates a full rank square
matrix, which forces and contradicts the assumption
of multiple solutions.
This result reinforces the intuition that bandlimited graph sig-

nals can be recovered by observing a local neighborhood. Sup-
pose that is a bandlimited signal with , which im-
plies that can be written as . If the value of is
known, then node can interpolate the entire signal as

. If the support is not known, one sample is not
enough, but samples suffice. Note that the first two
shifts, which are linear combinations of the signal values within
the one-hop neighborhood of , yield and

. Then, node can identify the
active frequency by finding the frequency index satisfying

. Once is known, the corresponding fre-
quency coefficient can be estimated as before and the entire
graph signal is given by .
From a computational perspective, the presence of the
-norm in (34) renders the optimization non-convex, thus

challenging to solve. A straightforward way to convexify it is
to replace the -norm with a -norm. Conditions under which
this process is guaranteed to identify the frequency support
can be found by analyzing the coherence and the restricted
isometry property (RIP) of matrix [11], [12].
Unfortunately, determining the conditioning of all submatrices
of a deterministic matrix (and, hence, the RIP) is challenging
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[21]. For aggregation sampling, the coherence of the matrix
is not hard to find and it depends on the most

similar pair of eigenvalues in .

B. Noisy Joint Recovery and Support Identification
If noise is present and the frequency support of the signal

is unknown, the ( -sparse) least squares estimate of can be
found as the solution to the following optimization problem

(36)

where the matrix multiplication in the objective ac-
counts for the fact of the noise being colored. As in the noise-
less case, a straightforward approach to convexify the problem
is to replace the -normwith the -norm and solve the problem

for different values of the parameter .

VI. SPACE-SHIFT SAMPLING OF GRAPH SIGNALS
This section presents an alternative—more general—sam-

pling setup that combines the selection sampling presented
in Section III-A with the aggregation sampling proposed in
Section III-B, termed space-shift sampling.
Let us start by defining as the noisy counterpart

of [cf. (2)]. Note that the -th row of corresponds to
, the observed shifted signal at node . We are now inter-

ested in collecting samples at different nodes and shifts, i.e.,
we want to sample matrix . To do so, we first define the
vectorized version of as . Recall that signal

can be related to via
[cf. (13)], where . To write a similar equation
relating to , we need to define the matrix

and its corresponding re-
duced matrix .
Based on this, can be written as

(37)

where is a vector of length obtained by concatenating
the noise vectors for all nodes . This implies that (37) is a
system of linear equations with variables. Thus, our
objective is to select of these equations in order to estimate

—and, hence, through (17)—while minimizing the error
introduced by the noise . Suppose that for a given node index
we consider the problem of selecting equations out of the
equations in positions , then space-shift

sampling reduces to local aggregation sampling at node . Sim-
ilarly, if we restrict ourselves to select equations out of the
equations in positions , the problem reduces
to selection sampling. In this sense, the formulation in (37) is
more general. To implement the selection of the equations
out of the options in (37), we use a binary selection matrix

as done in previous sections but, in this case, the size of
is . The reduced square system of linear equations can
then be written as [cf. (13)]

(38)

The error covariance matrices and computed based on
the solution of (38) are [cf. (18) and (19)]

(39)

(40)

where is the covariance matrix of . In this case,
the noise models introduced in Section IV-A are also rel-
evant. For white noise in the observations, we have that

; for white noise in the original signal, we
have that ; and for white
noise in the active frequency coefficients, we have that

.

A. Structured Observability Pattern
In the previous discussion, no structure was assumed in the

selectionmatrix . A case of particular interest is when the sam-
pling schemes are implemented in a distributed manner using
message passing. Suppose that the sampling is performed at
node . To compute , the node needs to have access to
for all and . To simplify notation, and without loss
of generality, we will assume that the sampling node is
and that the neighbors of are . Suppose
also that node computes shifts, from up to .
This implies that node has access to of its own
samples and to samples of each of its neighbors. The se-
lection matrix can then be written as

(41)

Matrix has rows, one per observation. The
first rows correspond to the samples at node and
the remaining to the samples at its neighbors. Note also
that matrix is not full (row) rank. The reason
is that all the samples obtained at node , except for the first
one, are linear combinations of the samples at its neighbors. This
implies that the number of frequencies that can be recovered
using (41) is, at most, .
Structured observation models different from the one in (41)

can be also of interest. For example, one can consider setups
where nodes from different parts of the graph take a few sam-
ples each and forward those samples to a central fusion center.
In such a case, since the nodes gathering data need not be neigh-
bors, the problem of some of the samples being a linear combi-
nation of the others will not necessarily be present.

VII. NUMERICAL EXPERIMENTS

The purpose of this section is to illustrate and gain intuition
about some of the theoretical results presented. We start by an-
alyzing perfect recovery of synthetic noiseless graph signals
when the frequency support is not known (Section VII-A). We
then present results for real-world graph signals corresponding
to the exchange among the different sectors of the economy of
the United States. These are used to test recovery under the
presence of noise (Section VII-B) as well as to illustrate the
space-shift sampling method (Section VII-C).
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Fig. 2. Recovery rate of bandlimited signals in random graphs with unknown frequency support. Error bars represent the standard error (three standard deviations)
around the mean recovery rates. Signals are recovered via the -norm relaxation of problem (34) for different numbers of observations and three different
graph-shift operators (blue circle), (red dot), and (magenta square). Random graphs with different edge probabilities were
considered: (a) 0.15, (b) 0.20, and (c) 0.25.

A. Noiseless Recovery and Support Selection

In this set of experiments we consider realizations of a sym-
metric Erdös-Rényi random graph with nodes and edge
probability [22]. With denoting the adjacency
matrix of a specific realization, three different graph-shift oper-
ators are considered: , , and .
Notice that, even though the support of differs from that of

and , the graph-shift operator still preserves the no-
tion of locality as defined by a two-hop neighborhood. Note also
that the three shift operators share the same eigenvectors , so
that the bandwidth of a given signal is the same for all of
them. The experiments focus on recovering a signal of band-
width whose frequency support is unknown using the
-norm relaxation. To assess recovery, Fig. 2 plots the success

rate—fraction of realizations for which the actual signal was re-
covered—for graph-shifts , and , and different numbers
of observations. Ten random graph realizations and five signal
realizations per graph were considered. For each of these re-
alizations, every node tries to reconstruct the signal. Points in
the plots represent the average success rate, while error bars
stand for 3 standard deviations. Each of the three panels cor-
responds to realizations generated using different edge proba-
bilities: , , and . The recovery rate
for is consistently higher than the one for the other
shift operators considered. This is not surprising: when squaring
the adjacency matrix to generate , the dissimilarity between
any pair of eigenvalues is increased, which reduces the matrix
coherence associated with and facilitates sparse
recovery (cf. last paragraph in Section V-A).

B. Recovery in the Presence of Noise

The Bureau of Economic Analysis of the U.S. Department
of Commerce publishes a yearly table of input and outputs or-
ganized by economic sectors [23]. More precisely, we have a
set of 62 industrial sectors as defined by the North Amer-
ican Industry Classification System and a similarity function

where represents how much of
the production of sector , expressed in trillions of dollars per
year, was used as an input of sector on average during years
2008, 2009, and 2010. Moreover, for each sector we are given
two economic markers: the added value (AV) generated and the
level of production destined to the market of final users (FU).

Fig. 3. Heat map of the graph-shift operator of the economic network. It is
sparse across the real economic sectors (from sector 1 to 62) while the synthetic
sectors AV and FU are highly connected.

Thus, we define a graph on the set of nodes comprising
the original 62 sectors plus the two synthetic ones (AV and FU)
and an associated symmetric graph-shift operator defined as

. We then threshold in order to in-
crease its sparsity by setting to 0 all the values lower than 0.01,
giving rise to the shift in Fig. 3. The shift is
normal given that it is symmetric. Associated with this graph,
we consider the signal that collects the total produc-
tion—in trillion of dollars—of each sector (including AV and
FU) during year 2011. Signal is approximately bandlimited in
since most of the elements of are close to zero; see

Fig. 4(a)(top). In particular, the reconstructed signal
obtained by just keeping the first frequency coefficients
attains a reconstruction error of computed as the ratio
between the energy of the error and the energy of the original
signal. This small reconstruction error is nonetheless noticeable
when plotting the original signal and the reconstructed one
; see Fig. 4(a)(bottom). To present a reasonable scale for il-

lustration, sectors AV and FU are not included in Fig. 4, since
takes out-of-scale values for these sectors.
In Sections VII-B-1to VII-B-3 we consider the bandlimited

signal as noiseless and add different types of Gaussian noise
to analyze the interpolation performance at different nodes. Dif-
ferently, in Section VII-B-4 we interpret as a noisy version of
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and analyze the reconstruction error when interpolating
from just 4 samples.
1) White Noise in the Observed Signal: We perform aggre-

gation sampling of multiple noisy versions of via succes-
sive applications of at different economic sectors (nodes). The
noisy versions of are generated by adding noise to the ob-
served signal as described in (24). The noise power is the
same for all nodes and its value is set so that, when averaged
across nodes, the linear signal to noise ratio (SNR) for the first,
second, third and fourth observations in each node is 2, 10, 50,
and 250, respectively. The increase in the SNR is attributable
to the fact that successive applications of increase the signal
magnitude while remains constant. In Fig. 4(b) we plot both
the empirical reconstruction error at different nodes (averaged
across 1,000 noisy realizations of ) and the theoretical av-
erage error given by the trace of [cf. (19), (20)]. We first
observe that for all 64 nodes the theoretical and empirical errors
coincide. A more surprising observation is that the quality of
the reconstruction depends heavily on the node collecting the
samples. The error is minimized when the samples are taken
at the synthetic sectors AV and FU. This is reasonable since
these two nodes—unlike other sectors—are closely related to
every other sector of the economy (cf. Fig. 3). Furthermore,
the sectors achieving the worst reconstruction errors are ‘Pub-
lishing Industries’ and ‘Ground Passenger Transportation’ cor-
responding to nodes 34 and 31. The heat map in Fig. 3 shows
that these two nodes (especially 31) are poorly connected to the
rest of the network. A more rigorous explanation can be pro-
vided by analyzing vectors and
(cf. Lemma 1). Even though both vectors have all four compo-
nents different from zero, which guarantees perfect reconstruc-
tion in the noiseless case (cf. Proposition 1), they possess an el-
ement whose absolute value is in the order of , increasing
the sensitivity of the reconstruction in the presence of noise. For
all other nodes the smallest element of is at least one order
of magnitude larger, hence sensitivity to noise is much smaller.
Fig. 4(d) presents the reconstruction obtained by aggregation
sampling in node 46. This node, which is well connected and
corresponds to ‘Professional Services’, is the best among real
economic sectors—i.e., excluding AV and FU—, leading to an
error of 0.26. This suggests that node connectivity (centrality)
can be leveraged for prediction purposes or used as input for
heuristics to select a good sampling node.
2) White Noise in the Original Signal: Here we consider that

noise is added to [cf. (25)] and quantify the reconstruction
error when aggregation sampling is performed at each of the
64 nodes. The noise power is set to induce a linear SNR of

. As was the case in the previous section, the average empir-
ical error across 1,000 realizations matches closely our theoret-
ical estimates; see Fig. 4(c). Moreover, the specific nodes that
lead to a good (bad) interpolation performance are very sim-
ilar to those in the previous noise model. Indeed, sectors 34 and
31 have the highest reconstruction error whereas AV and FU
attain the best reconstructions. Fig. 4(d) shows the best recon-
struction—excluding AV and FU—which amounts to an error
of 0.001 and corresponds to the sector ‘Professional Services’
at node 46.

3) White Noise in the Active Frequencies: Here white noise
is added to , as described in (26). As before, the noise power

is set to induce a linear SNR of . The average empir-
ical reconstruction error associatedwith each node (across 1,000
noisy realizations of ) is the same regardless of the node. This
validates the analysis in (27), which stated that for this noise
model the quality of the reconstruction is node independent.
In Fig. 4(d) we present an example of such a reconstruction,
achieving an error of 0.01.
4) Real-World Noisy Signal: We interpret the graph signal
as a noisy realization of a signal of bandwidth 4. Hence, our

goal is to obtain the best reconstruction of based on 4 ob-
servations. As described in (19) and shown before, interpola-
tion performance is highly node dependent. Indeed, the recon-
struction error when keeping the first 4 observations at each
node spans 5 orders of magnitude depending on the sampling
node, although for most nodes it is contained between and

; see Fig. 4(e). The best reconstruction among the real sec-
tors is achieved by ‘Insurance Carriers’ (node 40). The best and
the median reconstructions are acceptable, attaining errors of
0.0035 and 0.019, respectively. Fig. 4(f) depicts the best recon-
struction.

C. Space-Shift Sampling
In Section VII-B-4 we analyzed the accuracy of recon-

structing the U.S. economic activity using as input the observa-
tions generated after running aggregation sampling at different
nodes (economic sectors). The minimum and median recon-
struction errors are presented in the first row of Table I, where
the reconstruction error is quantified as the ratio between the
energy of the error and that of the original signal. An alternative
approach is to implement selection sampling, i.e. to sample the
signal in 4 different sectors—excluding the synthetic sectors
AV and FU—and interpolate the whole signal from these 4
observations, as explained in Section III-A. Recall that recon-
struction is not guaranteed for every subset of 4 nodes since we
must have invertibility of [cf. (5)]. By analyzing the
minimum and median reconstruction errors—see the two first
rows in Table I—it is clear that the node aggregation sampling
outperforms the node selection sampling. This is intuitive since
most of the energy of the signal is contained in the two first
frequencies [cf. Fig. 4(a)(top)], which are associated with the
largest eigenvalues. Hence, after successive applications of the
graph-shift, the error in estimating these frequencies is reduced,
resulting in a smaller error in the interpolation of the whole
signal.
As developed in Section VI, more general sampling strate-

gies can be implemented. For example, we can sample the value
of the signal at 4 nodes after the application of one, two or
three graph-shifts. The results—listed in rows 3, 4 and 5 of
Table I—reveal a significant reduction in the median error after
each graph-shift application, especially when going from no ap-
plications—median error of 4.2—to one application—median
error of 0.03. This can be due to the fact that the application of
amplifies the frequencies associated with large eigenvalues,

which are the ones present in . A different alternative is a
sampling strategy that selects the original signal and the signal
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Fig. 4. (a) Top: Frequency representation of the graph signal in the basis of eigenvectors of the graph-shift . The signal is approximately bandlimited.
Bottom: Signal (blue dot) and its reconstruction (magenta star) when keeping only the first 4 frequency components. (b) Empirical (red circle) and theoretical
(blue star) reconstruction errors for different sampling nodes when white noise is added to the observed signal. (c) Empirical (red circle) and theoretical (blue
star) reconstruction errors when white noise is added directly to the signal . (d) Signal (blue dot) and the best reconstruction achieved when sampling an
economic sector for the three types of noise considered: white noise in the observations (magenta star), white noise in the signal (orange triangle) and white noise
in the active frequency components (green square). (e) Reconstruction errors for different sampling nodes when interpolating signal based on four observations.
(f) Signal (blue dot) and the best reconstruction (magenta star) achieved when performing local aggregation sampling of economic sectors.

TABLE I
MINIMUM AND MEDIAN RECONSTRUCTION ERRORS FOR

DIFFERENT SAMPLING STRATEGIES

The first row lists the results for the aggregation sampling scheme. The
second row corresponds to selection sampling, i.e., observing the value of the
signal at 4 different nodes . The remaining strategies correspond to
instances of the more general space-shift sampling presented in Section VI.

after one shift in two different sectors. The results, listed in the
last row of Table I, show that this configuration leads to a very
good reconstruction performance: 0.0035 minimum error and
0.039 median error. Note that with this sampling configuration,
the two sectors are only required to compute the aggregated ac-
tivity of their one-hop neighbors.
The performance attained by a specific sampling scheme de-

pends on factors like the operating conditions of the network,
the structure of the graph, the noise model, and the properties of
the signal. As a general rule, when sampling an approximately
bandlimited signal whose active frequencies are associated with
large eigenvalues of , aggregation sampling is expected to give
rise to a better interpolation. Successive applications of am-
plify the active frequencies, entailing a better estimation of these
frequencies and reducing the interpolation error. By contrast,

when the active frequencies are associated with small eigen-
values of , selection sampling is preferred. Space-shift sam-
pling strategies are useful whenever some active frequencies
are related to large eigenvalues and others are related to small
eigenvalues. Moreover, space-shift sampling is also a suitable
alternative when the magnitudes of the eigenvalues associated
with the active frequencies are unknown.

VIII. CONCLUSION
A novel scheme for sampling bandlimited graph sig-

nals—that admit a sparse representation in the graph-frequency
domain—was proposed. The scheme was based on the aggre-
gation of local information at a single node after successive
applications of the graph-shift operator. This contrasted with
most existing works, which focus on sampling the value of
the signal observed at a subset of nodes. Our scheme was
shown to be equivalent to classical sampling for directed cycle
graphs whereas, for more general graphs, the Vandermonde
structure of the sampling matrix was leveraged to determine
the conditions for perfect reconstruction in the absence of
noise. Reconstruction under correlated noise was analyzed, and
design criteria to select the sampling node and shifts leading
to optimal noisy reconstruction were discussed. Scenarios
where the specific set of frequencies present in the bandlimited
signal is not known were also investigated and connections
with sparse signal reconstruction were drawn. Finally, a more
general sampling scheme was presented which contained, as
particular cases, the selection sampling as well as our local
aggregation approach. The various sampling and interpolation
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scenarios were illustrated through numerical experiments in
both synthetic and real-world graph signals.
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