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ABSTRACT
The path-loss exponent (PLE) is a key parameter in wireless prop-
agation channels. Therefore, obtaining the knowledge of the PLE
is rather significant for assisting wireless communications and net-
working to achieve a better performance. Most existing methods for
estimating the PLE not only require nodes with known locations but
also assume an omni-directional PLE. However, the location infor-
mation might be unavailable or unreliable and, in practice, the PLE
might change with the direction.

In this paper, we are the first to introduce two directional max-
imum likelihood (ML) self-estimators for the PLE in wireless net-
works. They can individually estimate the PLE in any direction
merely by locally collecting the related received signal strength
(RSS) measurements. The corresponding Cramér-Rao lower bound
(CRLB) is also obtained. Simulation results show that the perfor-
mance of the proposed estimators is very close to the CRLB. Addi-
tionally, also for the first time, the RSSs based on only a geometric
path loss are found to follow a truncated Pareto distribution in wire-
less random networks. This might be of great help in the analysis of
wireless communications and networking.

Index Terms— Random networks, received signal strength
(RSS), path-loss exponent (PLE), maximum likelihood estimation,
Cramér-Rao lower bound (CRLB), Pareto distribution

1. INTRODUCTION

The path-loss exponent (PLE) is very crucial for efficiently design-
ing wireless communications and networking systems. For instance,
the information-theoretic capacity of large ad hoc networks highly
depends on the PLE, which might lead to different routing strate-
gies [1]. Source localization based on the received signal strength
(RSS) measurements requires the knowledge of the PLE to estimate
the target location [2]. The interference in wireless ad hoc networks
is greatly affected by the PLE [3], which has a strong impact on the
quality of the transmission link. Therefore, the PLE needs to be ac-
curately estimated.

Current methods for estimating the PLE can mostly be found in
the field of RSS-based localization [4–6], where some nodes with
known locations, i.e., anchors, are required. However, the anchors
are sometimes not available and the location information might also
be unreliable, especially in military scenarios where adversaries can
maliciously sabotage wireless networks by spoofing some specific
information. Some other estimators of the PLE are presented in [7],
which however require the network density or the receiver sensitiv-
ity, and even require changing them. Besides, in practice, the PLE
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Fig. 1: Example in R2 based on a spherical coordinate system: mo-
bile users cluster in different separate villages, but remotely connect
to the BS; the PLEs to different villages are often different (e.g.,
some forests might result in a large PLE).

might change with direction, as depicted in Fig.1. Yet, all existing
estimators assume the PLE to be omni-directionally the same.

Therefore, a directional self-estimator, which can solely and in-
dividually estimate the PLE merely by locally collecting the RSSs,
is urgently required. Driven by this motivation, two (weighted) total
least squares self-estimators of this kind have already been proposed
in our previous work [8]. However, obtaining the maximum likeli-
hood (ML) solution and the Cramér-Rao lower bound (CRLB) still
remains a problem. Additionally, our previous work assumes a ho-
mogeneously random deployment of the surrounding nodes, i.e., a
homogeneous random network (HRN), and such an assumption can
easily be violated, when nodes are clustered. For example, consid-
ering cellular networks, the mobile users tend to cluster in different
villages with different PLEs, as shown in Fig. 1. In this case, all the
aforementioned estimators become unfeasible and certainly cannot
estimate the PLE to every village. A possible solution is to consider
the mobile users in each village to be locally randomly deployed,
i.e., those villages are viewed as several locally random networks
(LRNs), which remotely connect to the base station (BS). Then, this
issue can be well-resolved if we propose a self-estimator for the PLE
based on the RSS measurements from those LRNs. In fact, if consid-
ering a spherical coordinate system, the LRN is more general (and
includes the HRN), thus leading to more general solutions.

The contributions of this paper can be listed as follows:

1. The RSSs based only a geometric path-loss are first found to
follow a truncated Pareto distribution. This is derived using
properties of LRNs. This finding might be of great help in the
analysis of wireless communications and networking.

2. Based on the RSS distribution, two ML self-estimators of the
PLE are derived, which meet the mentioned requirements.
Further, the CRLB for this kind of estimator is computed.

3. The two proposed ML self-estimators are both close to the
CRLB. For comparison, we especially consider the case of a
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HRN and both our estimators outperform two existing ones:
one weighted total least squares estimator from our previous
work (WTLS-PLE) and another estimator based on the cardi-
nality of the transmitting set (C-PLE).

2. RSS DISTRIBUTION IN WIRELESS RANDOM
NETWORKS

Since the self-estimation of the PLE only relies on the RSS mea-
surements, it is obviously significant to obtain the RSS distribution
in wireless random networks. However, this has never been stud-
ied before, to the best of our knowledge. If this distribution can be
found, it might not only help to obtain the CRLB as well as the ML
solution for the self-estimation of the PLE, but also lead to other
insightful properties of wireless networks.

To begin, we first have to study the distribution of the nodal
distance r for a random node deployment. Two distributions for
ordered nodal distances were already given in [9,10]. However, they
were limited to (infinite) HRNs. Therefore, for the remote LRNs
depicted in Fig. 1, we actually need a more general distribution.

A random deployment of nodes implies that every node holds
an equal chance ρ to reside in a considered area. Therefore, if
all the nodes are bounded by an LRN in Rm, we can obtain ρ =
1/(cm,φ rmmax − cm,φ rmmin), where φ is the angular window,
rmin and rmax are considered the smallest and the largest nodal
distances, and for m = 1, 2, 3 we have c1,φ = 1, c2,φ = φ/2 and
c3,φ = 2π

3
(1 − cosφ). Therefore, the cumulative density function

(CDF) of r is given by

F(r) = ρcm,φ(rm − rmmin) =
rm − rmmin
rmmax − rmmin

,

for r ∈ [rmin, rmax).
(1)

and hence the probability density function (PDF) of r can be ob-
tained as

P(r) =
∂ F(r)

∂r
=

m rm−1

rmmax − rmmin
, for r ∈ [rmin, rmax). (2)

Then, for the wireless propagation channel, we currently only
consider the geometric path loss [11], i.e., the RSS can be presented
(in Watt) by

Pr = Cr−γ , (3)

where γ is the PLE and C , GtGrPt with Gt the transmitter an-
tenna gain, Gr the receiver antenna gain and Pt the transmit power.
Admittedly, the shadowing effect is very important, yet considering
it will complicate the following derivations. Besides, the proposed
ML solutions are also very resilient to the shadowing effect if con-
sidered, which will be discussed later on.

One may also consider the small-scale fading, which mainly de-
cides the instantaneous received power. In fact, the instantaneous
received signal envelope follows a Nakagami distribution [12] and
accordingly the distribution of the instantaneous received power p
follows a Gamma distribution, which is given by

P(p) =
( d
E(p)

)dpd−1e
− dp
E(p)

Γ(d)
, (4)

where d is the fading parameter and a small value of d indicates
a stronger fading. Precisely speaking, the small-scale fading just
causes the instantaneous power p to rapidly fluctuate within a very
small scale around the expectation that is determined by the RSS,
i.e., E(p) = Pr . Therefore, compared with the geometric path-loss,
the impact of small-scale fading is relatively small. In practice, the
RSS Pr is obtained by taking the average over K consecutive time

slots of instantaneous received powers pk, i.e. Pr = 1
K

∑K
i=1 pk.

From (4), we have V ar(Pr) = E(pk)
2

Kd
, which implies that, when

K is large enough, the impact of the small-scale fading almost van-
ishes. Therefore, the term “received signal strength (RSS)” does not
consider the small-scale fading, i.e., the RSS in this paper refers to
Pr .

Obviously, the geometric path-loss in (3) follows the Zipf’s law,
which enlightens us that, in this case, the RSS in wireless random
networks might be subject to one of the power-law distributions [13],
e.g., the Pareto distribution, but this has never been observed before.
Note that this kind of distribution has rather wide applications in
research on the city population [14], the sizes of earthquakes [15],
etc., yet so far not in the field of wireless networks.

Based on (1) and (3), the CDF of the RSS can be obtained after
a simple transformation of variables as

F(Pr|m, γ, Pr,min, Pr,max)

=

{
1−(Pr,min/Pr)

m/γ

1−(Pr,min/Pr,max)
m/γ , for Pr,min ≤ Pr ≤ Pr,max,

0, otherwise,

(5)

where Pr,min , Cr−γmax, and Pr,max , Cr−γmin in the LRN
(rmin � 0), or Pr,max , Pt in the HRN to avoid the singular-
ity issue in (3). And, the PDF can finally be obtained as

P(Pr|m, γ, Pr,min, Pr,max) =
∂F(Pr|m, γ, Pr,min, Pr,max)

∂Pr

=

{
m
γ

P
m/γ
r,minP

−m/γ−1
r

1−(Pr,min/Pr,max)
m/γ , for Pr,min ≤ Pr ≤ Pr,max,

0, otherwise,
(6)

which apparently follows a truncated Pareto distribution Type I [16].

3. DIRECTIONAL MAXIMUM LIKELIHOOD
SELF-ESTIMATION OF THE PLE

After obtaining the distribution for the RSS measurements, we can
introduce the CRLB for the self-estimation of the PLE and our pro-
posed ML solutions.

3.1. CRLB

If n RSS samples are locally collected from an LRN, where
the i-th sample is denoted by Pi, the truncated Pareto distribu-
tion (6) directly leads to the CRLB for the self-estimation of
the PLE, which can be given by CRLB(γ) = 1

I(γ) , where

I(γ) = −E
[∑n

i=1

∂2ln(P(Pi|m,γ,Pr,min,Pr,max))
∂γ2

]
is the Fisher

information shown in (7) on the top of page. 3. As shown in Fig. 3a,
the CRLB decreases with a large sample size or a small PLE. We
also notice that, the farther the LRN is located from the considered
node, the larger the CRLB becomes.

3.2. Two ML Self-Estimators for the PLE

Now, let us focus on the ML solution to the self-estimation of the
PLE. Based on the truncated Pareto distribution in (6), the log-
likelihood function can be expressed as

L(γ) =
n∑
i=1

ln(P(Pi|m, γ, Pr,min, Pr,max))

= nln(
m

γ
) +

nm

γ
ln(Pr,min)− (

m

γ
+ 1)

n∑
i=1

ln(Pi)

− nln(1− (Pr,min/Pr,max)m/γ),

(8)
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I(γ) = − n

γ2
− 2mnln(Pr,min)

γ3
+

2n

γ3

[(γ +mln(Pr,max))(
Pr,min
Pr,max

)
m
γ − (γ +mln(Pr,min))]

(
Pr,min
Pr,max

)
m
γ − 1

+
nm(

Pr,min
Pr,max

)
m
γ ln(

Pr,min
Pr,max

)[2γ(
Pr,min
Pr,max

)
m
γ − 2γ −mln(

Pr,min
Pr,max

)]

(1− (
Pr,min
Pr,max

)
m
γ )2γ4

(7)

PLE γ

2 3 4 5

5118

5126

Log-likelihood function L(γ)

The maximum

Fig. 2: Demonstration of the convexity of the log-likelihood function
L(γ) ,when the PLE is set to 4.

which is required to be convex to facilitate the proposed ML esti-
mators. To prove that, the derivative of L(γ) should be a strictly
decreasing function. For convenience, it would also be sufficient to
prove the monotonicity of f(γ) , γ2 ∂L(γ)

∂γ
,∀γ : γ > 0, which is

what we will do next. Considering any two values of γ that satisfy
∀γ1, γ2 : γ1 > γ2 > 0, we have

f(γ1)− f(γ2) = −n

(
γ1 − γ2 +

γ1ln(t
m
γ1 )t

m
γ1

1− t
m
γ1

− γ2ln(t
m
γ2 )t

m
γ2

1− t
m
γ2

)
,

(9)

where t , Pr,min
Pr,max

. Finally, noticing that t
m
γ ∈ (0, 1), we complete

the proof of convexity by using some bounds on the natural loga-
rithm, i.e., 1−1/t

m
γ ≤ ln(t

m
γ ) ≤ t

m
γ −1, and observing that (9) is

always negative as f(γ1)−f(γ2) ≤ −n
(

2γ1 − γ2 + γ2t
m
γ

)
< 0.

The convexity of L(γ) is also demonstrated in Fig. 2.
When Pr,min and Pr,max can be calculated based on some prior

knowledge, the ML self-estimate of the PLE can be obtained by forc-
ing the derivative of L(γ) to 0, i.e., the ML solution solves

nγ

m
−

n∑
i=1

(ln
Pi

Pr,min
) +

n(
Pr,min
Pr,max

)m/γ ln(
Pr,min
Pr,max

)

1− (
Pr,min
Pr,max

)m/γ
= 0. (10)

When Pr,min and Pr,max are unknown, we can rank the RSSs,
leading to the following set of ordered RSSs: P(1) < · · · < P(n).
We further notice that the log-likelihood function in (8) is an in-
creasing function of Pr,min for Pr,min ≤ P(1) and a decreasing
function of Pr,max for Pr,max ≥ P(n). Therefore, for a fixed γ,
this log-likelihood function is maximized when Pr,min = P(1) and
Pr,max = P(n).

By respectively using the weakest RSS P(1) and the strongest
RSS P(n) to replace the unknown Pr,min and Pr,max, this ML self-
estimate of the PLE can be obtained by solving

nγ

m
−

n∑
i=1

(ln
Pi
P(1)

) +
n(

P(1)

P(n)
)m/γ ln(

P(1)

P(n)
)

1− (
P(1)

P(n)
)m/γ

= 0. (11)

Both (10) and (11) can be efficiently solved by a simple bisection
method. In our Matlab simulations, the function fzero helps us to
calculate the solution.

Finally, it is worth noting that, even if the shadowing effect
is considered, the term

∑n
i=1 ln(Pi), which is the only sample-

related part in our proposed ML solutions, becomes
∑n
i=1 ln(Pi) +

∑n
i=1 ξi, where ξi is a zero-mean Gaussian variable, i.e., the shad-

owing effect by definition. Obviously, compared to
∑n
i=1 ln(Pi),

the impact of
∑n
i=1 ξi is relatively small, when the sample size n

increases. Therefore, due to the limited space, we will not consider
the case of the shadowing effect in the following simulations.

4. NUMERICAL RESULTS

We have conducted two simulations to evaluate the performance of
our two proposed ML estimators. The first simulation assumes an
LRN and our two ML estimators are compared with the CRLB.
Since no existing method is capable to estimate the PLE in an LRN,
we decide to conduct the second simulation for an HRN, where our
two ML estimators can be compared with two existing methods: our
previously proposed weighted total least squares estimator (WTLS-
PLE) of [8] and the estimator based on the cardinality of the trans-
mitting set (C-PLE) of [7] (see also the Appendix). The two node
deployments are shown in Fig. 3d. The mean square error (MSE) is
adopted to determine the accuracy of the estimators.

4.1. First Simulation

The numerical results are shown in Fig.3b and Fig.3c, from which
we can observe that both proposed ML self-estimators yield a very
good performance that is very close to the CRLB. Even without the
exact knowledge of Pr,min and Pr,max and using P(1) and P(n) in-
stead, our ML estimator barely suffers any notable decrease in accu-
racy. Additionally, the performance of our two proposed estimators
becomes better with a high node density and a small PLE.

4.2. Second Simulation

For comparison, the HRN, a special case of the LRN, is considered
in this simulation to allow the use of existing estimators. In this case,
Pr,max is set to the transmit power Pt for our proposed ML self-
estimators. As shown in Fig. 3e and Fig. 3f, our ML self-estimators
remarkably outperform the WTLS-PLE and the C-PLE. This can be
explained by the fact that the WTLS-PLE requires ranking the RSSs,
which adopts the rank numbers as a new set of observations. This
incurs an extra impact on the estimation quality. The C-PLE, on
the other hand, requires changing the receiver sensitivity. However,
it simply depends on only two observations, i.e., the neighborhood
size before and after the receiver sensitivity change, which makes
this estimator very inaccurate and vulnerable.

5. APPLICATIONS AND FUTURE WORKS

Due to their simplicity, the proposed ML self-estimators can be in-
corporated into any kind of wireless network. Hence, adapting exist-
ing wireless networking and communication designs to this change
in PLE might lead to a better performance. We have already elabo-
rated on many applications in [8]. Also note that the proposed self-
estimators in this paper can also deal with the case when there exist
node clusters, which might lead to broader applications. For exam-
ple, as shown in Fig. 1, the BS can directionally adjust the transmit
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(a) CRLB for the self-estimation of the PLE in
R2.
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(b) First simulation: impact of the node density
when the PLE is set to 2.
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(c) First simulation: impact of the PLE when the
node density is set to 1 nodes/m2.

(d) The first simulation considers in an LRN,
which is shown on the left side. The second sim-
ulation considers in an HRN, which is shown on
the right side. Note that the HRN is a special
case of the LRN.
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(e) Second simulation: impact of the node den-
sity when the PLE is set to 4.
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(f) Second simulation: impact of the PLE when
the node density is set to 0.01 nodes/m2.

Fig. 3: The simulations assume a 2-dimensional space, where nodes are randomly deployed. The carrier frequency is 2.4 GHz. The transmit
power is 1 Watt. The antenna gains Gt and Gr are both 1. For the first simulation, rmin = 50 m, rmax = 100 m and φ = π/6. For the
second simulation, rmax = 100 m.

power to different remote villages according to the estimated PLEs
such that the coverage of the signal or the energy efficiency can be
guaranteed.

In this paper, the shadowing effect is ignored for convenience.
To be more realistic, if it is considered, then the RSSs in wireless
random networks are log-normally distributed with the expectation
subject to the truncated Pareto distribution of (6). Therefore, if we
intend to propose ML self-estimators for the PLE over log-normal
shadowing fading channels, first a new distribution of the RSSs has
to be obtained by blending the truncated Pareto distribution of (6)
with the log-normal distribution, which might be mathematically
very difficult and complicated.

6. CONCLUSION

Two directional ML self-estimators for the PLE are proposed: one
with known Pr,min and Pr,max and another one using P(1) and P(n)

instead. The CRLB is also obtained. Only by locally collecting the
RSSs, this kind of estimator can solely and individually estimate the
PLE without any external information. Superior to all existing esti-
mators, our two proposed ML self-estimators not only have a very
good performance but are also feasible when nodes appear in clus-
ters (all the existing methods assume a homogeneously random node
deployment). Two simulations have been conducted: the first one
shows that the performance of our two proposed ML self-estimators
is very close to the CRLB; the second one shows that they outper-
form two existing methods, i.e., our previously proposed WTLS-
PLE and the C-PLE.

Most importantly, it is the first time that the RSSs based only a
geometric path-loss in wireless random networks are found to follow

a truncated Pareto distribution, which might be of great help for the
analysis of future wireless networking and communication systems.

7. APPENDIX

The PLE estimator based on the cardinality of the transmitting set
(C-PLE) is proposed in [7], and requires changing the receiver sen-
sitivity for a successful communication. More specifically, when
the SINR of a nodal link at the considered receiver exceeds a cer-
tain threshold Θ, i.e., Θ ≤ Pr

I+N0
where I is the interference and

N0 is the background noise, this communication link can be deter-
mined successful. The cardinality of the transmitting set is simply
the number of successful communication links, which is also called
the neighborhood size.

By changing the receiver sensitivity from Θ1 to Θ2, the trans-
mission range of the considered receiver changes and hence the car-
dinality of the transmitting set also varies from NT,1 to NT,2. Then,
in R2, the PLE can be estimated by

γ̂C-PLE =
2ln(Θ2/Θ1)

ln(NT,1/NT,2)
. (12)

The C-PLE is only feasible for the HRN, where Θ1 and Θ2 are re-
spectively calculated when the transmission ranges are 50 m and
100 m.
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