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Abstract—In this paper, two problems that show great simi-
larities are examined. The first problem is the reconstruction of
the angular-domain periodogram from spatial-domain signals
received at different time indices. The second one is the reconstruc-
tion of the frequency-domain periodogram from time-domain
signals received at different wireless sensors. We split the entire
angular or frequency band into uniform bins. The bin size is
set such that the received spectra at two frequencies or angles,
whose distance is equal to or larger than the size of a bin, are
uncorrelated. These problems in the two different domains lead
to a similar circulant structure in the so-called coset correlation
matrix. This circulant structure allows for a strong compression
and a simple least-squares reconstruction method. The latter is
possible under the full column rank condition of the system ma-
trix, which can be achieved by designing the spatial or temporal
sampling patterns based on a circular sparse ruler. We analyze
the statistical performance of the compressively reconstructed
periodogram, including bias and variance. We further consider
the case when the bins are so small that the received spectra at
two frequencies or angles, with a spacing between them larger
than the size of the bin, can still be correlated. In this case, the
resulting coset correlation matrix is generally not circulant and
thus a special approach is required.
Index Terms—Averaged periodogram, circulant matrix, circular

sparse ruler, compression, coset correlation matrix, multi-coset
sampling, non-uniform linear array, periodogram.

I. INTRODUCTION

T HE similarity between spectral analysis problems in the
spatial-angular domain and in the time-frequency domain

has attracted signal processing researchers since the 1970s. Di-
rection of arrival (DOA) estimation and frequency identifica-
tion of sinusoids are examples of such similar problems ex-
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amined during that period [2]. The renewed interest in spectral
analysis problems, especially due to the emergence of compres-
sive sampling, has spurred reinvestigations on this similarity
because, when time-domain or spatial-domain compression is
introduced, this similarity can be exploited to tackle different
problems using the same algorithmic approach.
This paper focuses on both the reconstruction of the angular-

domain periodogram from far-field signals received by an an-
tenna array at different time indices (problem P1) and that of the
frequency-domain periodogram from the time-domain signals
received by different wireless sensors (problem P2). It further
underlines the similarity between P1 and P2. Unless otherwise
stated, the entire angular or frequency band is divided into uni-
form bins, where the size of the bins is configured such that the
received spectra at two frequencies or angles, whose distance is
equal to or larger than the size of a bin, are uncorrelated. In this
case, the so-called coset correlation matrixwill have a circulant
structure, which allows the use of a periodic non-uniform linear
array (non-ULA) in P1 and a multi-coset sampler in P2 in order
to produce a strong compression.
Our work in P1 is motivated in part by [3], which attempts

to reconstruct the angular spectrum from spatial-domain sam-
ples received by a non-ULA. Comparable works to [3] for P2
are [4] and [5], which focus on the analog signal reconstruction
from its sub-Nyquist rate samples. However, the aim of [3]–[5]
to reconstruct the original spectrum or signal leads to an un-
derdetermined problem, which has a unique solution only if we
add constraints on the spectrum such as a sparsity constraint.
A less ambitious goal in the context of P2 is to reconstruct the
power spectrum instead of the actual signal from sub-Nyquist
rate samples. For wide-sense stationary (WSS) signals, this has
been shown to be possible in [6] and [7] without applying a spar-
sity constraint on the power spectrum. Meanwhile, the work of
[8] assumes the existence of a multiband signal where different
bands are uncorrelated. In this case, the diagonal structure of
the correlation matrix of the entries at different bands can be
exploited. Note though that [8] does not focus on the strongest
compression rate and uses frequency smoothing to approximate
the correlation matrix computation as it relies on a single real-
ization of the received signal. Comparable works to [7] in P1
are [9]–[11], which aim to estimate the DOA of uncorrelated
point sources with fewer antennas than sources. This is pos-
sible because for uncorrelated point sources, the spatial correla-
tion matrix of the received signals also has a Toeplitz structure.
Hence, for a given ULA, we can deactivate some antennas but
still manage to estimate the spatial correlation at all lags. For ex-
ample, [9] and [10] suggest to place the active antennas based
on a nested or coprime array, respectively, which results in a
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longer virtual array called the difference co-array (which is uni-
form in this case). As the difference co-array generally has more
antennas and a larger aperture than the actual array, the degrees
of freedom are increased allowing [9] and [10] to estimate the
DOA of more uncorrelated sources than sensors. In a more op-
timal way, a uniform difference co-array can also be obtained by
the minimum redundancy array (MRA) of [12], but the nested
and coprime arrays present many advantages due to their alge-
braic construction. MRAs have been used in [11] to estimate the
DOA of more uncorrelated sources than sensors, or more gen-
erally, to estimate the angular-domain power spectrum.
Unlike [3], our work for P1 focuses on the angular peri-

odogram reconstruction (similar to [11]). This allows us to
obtain an overdetermined problem that is solvable even without
a sparsity constraint on the angular domain. This is beneficial
for applications that require only information about the angular
periodogram and not the actual angular spectrum. Our work is
also different from [9]–[11] as we do not exploit the Toeplitz
structure of the spatial correlation matrix. As for P2, we focus
on frequency periodogram reconstruction (unlike [4], [5]) but
we do not exploit the Toeplitz structure of the time-domain
correlation matrix (unlike [7]). On the other hand, the problem
handled by [8] can be considered as a special case of P2 but,
unlike [8], we aim for the strongest compression rate, which
is achieved by exploiting the circulant structure of the coset
correlation matrix and solving the minimal circular sparse ruler
problem. Moreover, unlike [8], we also exploit the signals
received by different sensors to estimate the correlation matrix.
Also related to P2, a cooperative compressive wideband spec-

trum sensing scheme for cognitive radio (CR) networks is pro-
posed in [13]. While [13] can reduce the required sampling rate
per CR, its focus on reconstructing the spectrum or the spec-
trum support requires a sparsity constraint. Unlike [13], [14]
focuses on compressively estimating the power spectrum in-
stead of the spectrum by extending [7] for a cooperative sce-
nario. However, while the required sampling rate per sensor can
be lowered without applying a sparsity constraint on the power
spectrum, the exploitation of the cross-spectra between signals
at different sensors in [14] requires the knowledge of the channel
state information (CSI). Our approach for P2 does not require
a sparsity constraint on the original periodogram (unlike [13])
and it does not require CSI since we are not interested in the
cross-spectra between samples at different sensors (unlike [14]).
In [15], each wireless sensor applies a threshold on themeasured
average signal power after applying a random wideband filter.
The threshold output is then communicated as a few bits to a
fusion centre, which uses them to recover the power spectrum
by formulating the problem in terms of inequalities. The achiev-
able compression rate with such a system is not known though,
in contrast to what we will present in this paper.
In more advanced problems, such as cyclic spectrum re-

construction from sub-Nyquist rate samples of cyclostationary
signals in [16]–[18] or angular power spectrum reconstruction
from signals produced by correlated sources in [19], finding
a special structure in the resulting correlation matrix that can
be exploited to perform compression is challenging. A similar
challenge is faced in Section VII, where we consider the case
when we reduce the bin size such that the received spectra at
two frequencies or angles with a spacing larger than the bin

size can still be correlated. As the resulting coset correlation
matrix in this case is generally not circulant, we further develop
the concepts originally introduced in [18] and [19] to solve our
problem.
We now would like to summarize the advantages of our ap-

proach and highlight our contribution.
• We propose a compressive periodogram reconstruction
approach, which does not rely on any sparsity constraint
on the original signal or the periodogram. Moreover, it is
based on a simple least-squares (LS) algorithm leading to
a low complexity.

• In our approach, we also focus on the strongest possible
compression that maintains the identifiability of the peri-
odogram, which is shown to be related to a minimal cir-
cular sparse ruler.

• Our approach does not require any knowledge of the CSI.
• The statistical performance analysis of the compressively
reconstructed periodogram is also provided.

• Our approach is also modified to handle cases where the
spectra in different bins are correlated.

This paper is organized as follows. The system model descrip-
tion (including the definition of the so-called coset correlation
matrix) and the problem statement are provided in Section II.
Section III discusses the spatial (for P1) or temporal (for P2)
compression as well as periodogram reconstruction using LS.
Here, the condition for the system matrix to have full column
rank and its connection to the minimal circular sparse ruler
problem are provided. Section IV shows how to approximate the
expectation operation in the correlation matrix computation and
summarizes the procedure to compressively estimate the peri-
odogram. In SectionV,we analyze the statistical performance of
the compressively reconstructed periodogram including bias and
variance. Sections II–V assume that the received signals at dif-
ferent time instants (for P1) or at different sensors (for P2) have
the same statistics. To handle more general cases, we propose a
multi-cluster model in Section VI, which considers clusters of
time indices in P1 or clusters of sensors in P2 and assumes that
the signal statistics are only constant within each cluster. An-
other case is discussed in SectionVII, where the received spectra
at two frequencies or angles located at different predefined bins
can still be correlated. Some numerical studies are elaborated
in Section VIII and Section IX provides conclusions.
Notation: Upper (lower) boldface letters are used to denote

matrices (column vectors). Given an matrix , diag
is the vector containing the main diagonal entries of .
Given an vector , diag is the diagonal matrix
whose diagonal entries are given by the entries of .

II. SYSTEM MODEL

A. Model Description and Problem Statement
We aim at estimating the following spectral representation of

the power of a process :

(1)
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Here, represents either the spatial-domain process at the
output of a ULA for P1 or the time-domain process sensed by
a wireless sensor for P2. In addition, represents ei-
ther the value of the angular spectrum at angle for
P1 or that of the frequency spectrum at frequency for P2,
with . Note from [2] that, for a WSS process

, represents the power spectrum. To estimate
in (1), consider the complex-valued observation vec-
tors , , where

represents the output of the -th antenna in the ULA
of half-wavelength spaced antennas at time index for P1 or
the -th sample out of successive samples produced
by the Nyquist-rate sampler at the -th sensor for P2. To acquire
an accurate Fourier interpretation, we assume a relatively large
, which is affordable for P2 and also realistic for P1 if we

consider millimeter wave imaging applications, where the an-
tenna spacing is very small and thus the required aperture has
to be covered by a large number of antennas [3]. Denote the
discrete-time Fourier transform (DTFT) of by . As

at is a replica of at , we
can focus on in .
Next, we divide the uniform grid points (that is, the an-

tennas of the ULA for P1 or the indices of the Nyquist-rate
samples for P2) into non-overlapping blocks of uniform
grid points. We collect all the -th grid points from each
of the blocks and label this collection of grid points, i.e.,

, as the -th
coset, with the remainder of the integer division .
In this paper, the coset index of the -th coset is . This
procedure allows us to view the above uniform sampling as a
multi-coset sampling [4] with cosets. Consequently, the ULA
of antennas in P1 can be regarded as interleaved uni-
form linear subarrays (ULSs) [3] (which are the cosets) of

-spaced antennas with the wavelength, whereas the
time-domain samples in P2 can be considered as the output

of a time-domain multi-coset sampler with samples per coset.
If we activate only the -th coset, the spatial- or time-do-
main samples at index are given by

(2)
which can be collected into the vector ,

. Observe that . To
show the relationship between the DTFT of and that of

, we split into equal-width bins and express
the spectrum at the -th bin as

with now limited to . As
either the spatial or temporal sampling rate becomes times
the Nyquist-rate when only the -th coset is activated, the
DTFT of , denoted by , is the sum of aliased
versions of at different bins. This is shown for

as [5]

(3)

Collecting , for , into the
vector

Fig. 1. The system model for problems P1 and P2.

and introducing the vector
allow us to write

(4)

with the element of the matrix at the -th row
and the -th column given by .
We now assume the presence of active users, consider the

model in Fig. 1, and introduce the following definition.
Definition 1: We define the complex-valued zero-mean

random processes and as
• For P1, is the source signal related to the -th user
received at time index , which can depend on the DOA

due to scattering. For P2, it is the source signal
related to the -th user received at sensor , which can vary
with frequency due to power loading,

• is the related channel response for the -th user
at time index and DOA (for P1) or at sensor
and frequency (for P2).

Note from Fig. 1 that, theoretically, is the only compo-
nent observed by the ULA in P1 or by the sensors in P2 if no
fading channel exists. Define as the zero-mean additive
white (both in and ) noise at DOA and time index
(for P1) or at frequency and sensor (for P2). By introducing

and similarly also as well as
, we can then use Definition 1 to write in (3) as

(5)

Next, let us consider the following assumption.
Assumption 1: in (5) is an ergodic stochastic process

along .
This ergodicity assumption requires that the statistics of

in (4) do not change with (a more general case is
discussed in Section VI). Hence, we can define the
correlation matrix of as , for
all and . The assumption that the statistics of

do not vary with is motivated for P1 when the signal
received by the array is stationary in the time-domain. For P2, it



4152 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 16, AUGUST 15, 2015

implies that the statistics of the signal received by different
sensors are the same. Observe from (5) that the element of

at the -th row and the -th column is given
by

(6)
where we assume that the source signal , the noise

, and the channel response are mutually uncor-
related. We now consider the following remark.
Remark 1: The diagonal of , which is given by

and which is independent of , can be
related to in (1). In practice, this expected value has
to be estimated and Assumption 1 allows us to estimate

using . We can then consider
as a reasonable estimate for

in (1), for . Here, , for
, can be considered as the averaged periodogram

(AP) of over different time indices in P1 or different
sensors in P2.
Note that, even in the noiseless case, we can expect

in (5) to vary with if either one (or both) of the following
situations occurs.
• For P1, varies with the time index if the informa-
tion that is being transmitted changes with time. For P2, it
varies with the sensor index where the signal is received
if the sensors are not synchronized.

• For P1, varies with the time index if Doppler
fading effects exist. For P2, it varies with the sensor index
where the signal is received, due to path loss, shadowing,

and small-scale spatial fading effects.
We then consider the following remark.
Remark 2: Recall that the size of the predefined bins in
is a design parameter given by , i.e., the inverse of the

number of cosets. Using (6), it is easy to find that is
a diagonal matrix if either and/or

for , with
, and for all .

One example for both P1 and P2 is when we have non-
overlapping active bands corresponding to different users
leading to a multiband structure in the -domain with either
the different users transmitting mutually uncorrelated source
signals and/or the signals from the different users passing
through mutually uncorrelated wireless channels on their way
to the receiver. If we denote the support of the -th active band
by and its bandwidth by , the
condition in Remark 2 is then satisfied by setting such that

. Note that such a choice is possible, espe-
cially for P2, as the channelization parameters in a communica-
tion network are usually known.
We focus on the case where is a diagonal matrix and

define the so-called coset correlation matrix as

(7)
Observe that is a circulant matrix when is a
diagonal matrix since is an inverse discrete Fourier trans-

form (IDFT) matrix, as can be concluded from (4). Based on
the aforementioned system model, we finally formulate our
problem statement as follows:
Problem Statement: As an estimate of the spectral representa-

tion of the power in (1) (which is also the power spectrum
when in (1) is a WSS process), we aim to compressively re-
construct the AP of in (2) over the index , where we as-
sume that is ergodic along the index t and that its coset
correlation matrix has a circulant structure. We discuss
the compression and the reconstruction in Section III and the
estimation of the correlation matrix in Section IV.

B. Interpretation of AP in Remark 1
How the AP in Remark 1 is interpreted with respect to

and depends on which of the functions varies
in . For example, consider problem P2 and assume that only
one user can occupy a given frequency at a given time and
that only varies in , i.e., . For this
example, we have from (5)

(8)

where gives the real component of , the first term is the
classical periodogram of the user signals scaled by
the averaged fading magnitude experienced at different chan-
nels , the second term is the AP of noise
at different sensors , and the last term converges to zero as
becomes larger due to the uncorrelatedness between the noise

and the channel response . The assumption that
the statistics of do not vary with (as required by As-
sumption 1) implies that the statistics of the fading experienced
by different sensors are the same (e.g., they experience small-
scale fading on top of the same path loss and shadowing).
As another example, consider problem P1 and assume that

only one user can occupy a given DOA at a given
time and that only varies in , i.e., .
For this example, we have from (5)

(9)

where the first term is the angular-domain AP of the user signals
scaled by the magnitude of the time-in-

variant channel angular response , the second term
is the angular-domain AP of the noise, and the last term again
converges to zero as becomes larger due to the uncorrelated-
ness between and .

III. COMPRESSION AND RECONSTRUCTION

A. Spatial or Temporal Compression
As in (7) is a circulant matrix, it is possible to

condense its entries into an vector ,
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with
. We can then relate to

as

(10)

where is an repetition matrix whose -th
row is given by the -th row of the

identity matrix and vec is the operator that stacks
all columns of a matrix into one column vector. The possi-
bility to condense the entries of into the entries
of facilitates compression by performing a spatial- or
time-domain non-uniform periodic sampling (similar to [5]),
in which only cosets are activated. Here, we use
the set , with

, to indicate the indices of the
active cosets. All values of in (2) are then collected
and their corresponding DTFT in (3) is computed for
all . Stacking into the vector

allows us to
relate to in (4) as

(11)

where is an selection matrix whose rows are selected
from the rows of based on . Since is real, the
correlation matrix of , for , can be written as

(12)

We then take (10) into account, cascade all columns of
into a column vector , and write

(13)

where is a real matrix and denotes
the Kronecker product operation.

B. Reconstruction
If in (13) is a tall matrix , which is possible

despite , and if it has full column rank, in (13)
can be reconstructed from for all .
As long as the identifiability of in (13) is preserved, an
LS estimator is one possible choice to estimate though
we can also consider other estimators (such as the one in [20]).
To formulate a necessary and sufficient condition for the iden-
tifiability of in (13) from , let us review the
concept of a circular sparse ruler defined in [21].
Definition 2: A circular sparse ruler of length is a

set for which
. We call it minimal if there

is no other circular sparse ruler of length with fewer
elements.
Detailed information about circular sparse rulers can be found

in [21]. We can then use this concept to formulate the following
theorem whose proof is available in [1].
Theorem 1: in (13) is identifiable from ,

i.e., has full column rank, if and only if is a circular
sparse ruler, i.e., . When this is
satisfied, contains all rows of .
Our goal is to obtain the strongest possible compression rate

preserving the identifiability. This is achieved by min-
imizing the cardinality of the set , , under the

condition that . This leads to a
length- minimal circular sparse ruler problem, which
can be written as

(14)

Solving (14) minimizes the compression rate while main-
taining the identifiability of in (13). In other words, if
the indices of the rows of that are used to form are
given by integers that exist as marks of the length- min-
imal circular sparse ruler then we have the strongest possible
compression rate while maintaining the ability to per-
form the reconstruction of in (13) (for example, by using
LS). Unfortunately, a closed-form solution for (14) is only avail-
able for a few specific values of (see [22]). For other values
of , solving (14) is generally not trivial as it is a combina-
torial problem. Note however that many length- minimal
linear sparse rulers (for a definition, see [7]) are generally also
length- minimal circular sparse rulers. While the min-
imal linear sparse ruler problem is also a combinatorial problem,
many of its solutions for different values of (found using ex-
haustive search) have been tabulated (see for example Table I
in [7]).
Recall that, for P1, indicates the indices of the

active ULSs in our ULA, which will be referred to as the under-
lying array. Therefore, we have a periodic non-ULA of active
antennas and governs the location of the active antennas
in each spatial period. When is a solution of the minimal
length- circular sparse ruler problem in (14), we can
label the resulting non-ULA of active antennas as a periodic
circular MRA and each of its spatial periods as a circular MRA.
Similarly for P2, we can label the non-uniform sampling in each
temporal period as minimal circular sparse ruler sampling and
the entire periodic non-uniform sampling as periodic minimal
circular sparse ruler sampling if the indices of the ac-
tive cosets are given by the solution of (14).
Once is reconstructed from in (13)

using LS for , we can use (10) to compute
from and (7) to compute from

as . As we have
with

, reconstructing for all
gives for all .

IV. CORRELATION MATRIX ESTIMATION

In practice, the expectation in (12) must be approximated.
Here, we propose to approximate the expectation in (12) with
the sample average over different time indices for P1 or sensors
indices for P2, i.e.,

(15)

where we recall that is either the total number of time indices
or sensors from which the observations are collected. Observe
that the matrix is an unbiased estimate of
in (13). It is also a consistent estimate if Assumption 1 holds.
We can then apply LS reconstruction on in (15) instead
of in (13). As a result, the procedure to compressively
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reconstruct the AP of in (2) over the index can be listed
as
1) For , collect all values of in (2) and

compute their corresponding DTFT in (3) for all
. We use them to form in (11).

2) Compute , for , using (15).
3) Based on (13) and for , we apply LS recon-

struction on leading to

(16)

4) Based on (10) and (7), for , we compute
and

(17)

5) Note that the -th diagonal element of , i.e.,
is the LS estimate of the -th

diagonal element of , which according to Remark 1
is given by . Based on the definition of AP
in Remark 1 and considering (15), we can then formulate
the compressive AP (CAP) of in (2) over the index
as

(18)

for and .
Note that, when reconstructing the CAP in

(18), we introduce additional errors with respect to the AP
in Remark 1 (including the ones in (8)

and (9)). This error emerges during the compression and the
LS operation in (16). This issue will be discussed up to some
extent in the next section. Note that it is also possible to intro-
duce additional constraints on in (1). For example, if
applicable, we can assume that is zero for most values

(which also implies that the vector
is sparse). In this case, instead of using the LS reconstruction
approach described in (16), we can estimate from

in (13) using sparse reconstruction approaches
such as the Least Absolute Shrinkage and Selection Operator
(LASSO) algorithm [23]. However, such a case is not consid-
ered in this manuscript.

V. PERFORMANCE ANALYSIS

A. Bias Analysis
The bias analysis of the CAP in (18) with respect

to in (1) is given by the following theorem whose proof
is available in Appendix A.
Theorem 2: For , the CAP in (18) is an

asymptotically (with respect to ) unbiased estimate of
in (1).

B. Variance Analysis
We start by recalling that the -th element of

in (11) is given by . By using (3), we can write the

element of in (15) at the -th row and the
-th column, for , as

(19)
We continue to evaluate the covariance between the elements of

in (19), which is not trivial for a general signal in
(2), as it involves the computation of fourth order moments. To
get a useful insight, let us consider the case when the distribution
of in (2) (and thus also in (19)) is jointly Gaussian.
In this case, the fourth order moment computation is simplified
by using the results in [24]: If , , , and are jointly (real
or complex) Gaussian random variables, we have

Using this result, the covariance between the elements of
in (19), when in (2) is jointly Gaussian, can be shown to
be

(20)

for and , where we
also assume that in (2) has zero mean (see Definition 1).
Under the above assumptions, we introduce the

covariance matrix

whose entry at the -th row
and the -th column is given by

in (20). By recalling
that and are real matrices, we can then compute the

covariance matrix of in (16) as

(21)

and use (17) to introduce as the covariance
matrix of , which can be written as

(22)

for . Recall from (18) that the CAP
, for and , is

given by . It is then trivial to show that
the variance of is given by

(23)
for and .
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To get even more insight into this result, we consider a spe-
cific case in the next proposition whose proof is provided in
Appendix B.
Proposition 1: When in (2) contains only circular

complex zero-mean Gaussian i.i.d. noise with variance ,
the covariance between the elements of in (19), for

, is given by

(24)

It is clear from (24) that in (21) is then a diagonal matrix
and we can find from (21)–(23) that or

. This observation can be related to a
similar result found for the conventional periodogram estimate
of white Gaussian noise sampled at Nyquist rate in [25].

C. Effect of the Compression Rate on the Variance
In this section, we focus on the impact of the compression rate

on thevarianceanalysis byfirst definingan vector
containing binary entries, with

if (i.e., the coset with index is one of the
activated cosets) and if . In other words, the
entries of indicate which out of the cosets are activated.
Let us then focus on (16) and consider the following remark.
Remark 3: The same argument that leads to Theorem 1 (see

Lemma1in[1])showsthat therowsof aregivenbythe
-throwsof , forall .Asaresult, is

an diagonalmatrix.Denote the valueof the -thdiagonal
element of as . We can then show that is given by

(25)
The proof of (25) is available in Appendix C. Using (25), we can
also show that gives the number of times the -th row of
appears in , i.e., the number of pairs that lead to

. As we have , we can find that
and .

Using Remark 3, we then formulate the following theorem
whose proof is available in Appendix D.
Theorem 3: When in (2) contains only circular complex

zero-mean Gaussian i.i.d. noise with variance , the variance
of the CAP in (23), for and

, is given by

(26)

Note how (26) relates and to for circular
complex zero-mean Gaussian i.i.d. noise and .
Recalling from Remark 3 that ,
we can find that, for a given , a stronger compression rate
(smaller ) tends to lead to a larger . Based
on (25) and (26), it is of interest to find the binary values of

(or equivalently the cosets ) that mini-
mize for a given . This will generally lead to
a non-convex optimization problem, which is difficult to solve,
although it is clear that the solution will force the values of

to be as equal as possible. Alternatively, we can
also put a constraint on in (26) and find

the binary values that minimize the compression
rate . This however, will again lead to a non-convex opti-
mization problem that is difficult to solve. Note that, although
finding that minimizes for a given
in (26) or the one that minimizes for a given

is not trivial, the solution will always have to satisfy the
identifiability condition in Theorem 1. This is because we can
show that if the identifiability condition is not satisfied, some

in (26) will be zero and thus in (26) will
have an infinite value.
The analysis of the effect of on for a

general Gaussian signal , however, is difficult since it is
clear from (20) that for this case depends on the
unknown statistics of . This is also true for a more general
signal.

D. Asymptotic Performance Analysis
We now discuss the asymptotic behavior of the per-

formance of the CAP . We start by noting that
Assumption 1 ensures that in (15) is a consistent
estimate of in (13) i.e., converges to
as approaches . As it is clear from (16) and (17) that

is linearly related to , it is easy to show
that converges to in (7) as approaches
. This implies that the CAP in (18) also

converges to ,
for and , as approaches .
Since in (2) is an observation of the true process in
(1), will converge to in (1) if both and (or
for a fixed ) approach .

E. Complexity Analysis
Let us now compare the complexity of our CAP approach

with an existing state-of-the-art approach to tackle similar prob-
lems. We compare our CAP approach with a method that recon-
structs (instead of the periodogram), for and
all , from compressivemeasurements. The recon-
struction of , for , is performed by recon-
structing in (4) from in (11), for

, using the Regularized M-FOCUSS (RM-FOCUSS)
approach of [26]. We then use the reconstructed ,
for , either to compute the periodogram or to
compute the energy at and to detect the existence
of active user signals. Note that RM-FOCUSS is designed to
treat , for each , as multiple measurement vec-
tors (MMVs) and exploit the assumed joint sparsity structure
in .
Table I summarizes the computational complexity ofCAP and

RM-FOCUSS (see [26] for more details). Note that Table I only
describes the computational complexity of RM-FOCUSS for
a single iteration. The number of RM-FOCUSS iterations de-
pends on the convergence criterion parameter (labeled as in
[26]). Hence, we can argue that our CAP approach is simpler
than RM-FOCUSS. Moreover, in RM-FOCUSS, we also need
to determine a proper regularization parameter (labeled as
in [26]), which is generally not a trivial task. Note that we also
compare the detection performance of the two methods in the
sixth experiment of Section VIII-A. Note that the reconstruction
of from is also considered in [5] but it only considers
the single-sensor case.
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TABLE I
COMPUTATIONAL COMPLEXITY OF THE CAP APPROACH AND THE

RM-FOCUSS OF [26] FOR A GIVEN FREQUENCY POINT .
WE HERE ASSUME THAT IS CONSTANT

VI. MULTI-CLUSTER SCENARIO
Recall that the ergodicity assumption on in Assumption

1 requires the statistics of to be the same along index . Let
us now consider the case where we have clusters of time in-
dices in P1 or of sensors in P2 such that is ergodic and its
statistics do not change only along index within a cluster. We
can then consider Assumption 1 and the resulting case consid-
ered in Sections II–V as a special case of this multi-cluster sce-
nario with . We introduce the correlation matrix of
and for all indices belonging to cluster as and

, respectively, with . We can then
repeat all the steps of Sections II–V for each cluster. More pre-
cisely, we can follow (15) and define the estimate of
as , which is computed by averaging the outer-product
of over indices belonging to cluster . Then, we apply
(16)–(18) on to obtain and the CAP for
cluster , i.e., . Also note that the bias and variance
analysis in Section V is also valid for each cluster in this section.
We might then be interested in the averaged statistics over

the clusters, i.e., . Since
is a consistent estimate of , we can then
consider the resulting as a valid LS
estimate of . Defining the theoretical spec-
tral representation of the power at cluster as , we
can then apply Theorem 2 for each cluster to conclude that

is an asymptotically (with respect to
) unbiased estimate of . This multi-cluster

scenario is of interest for P2 when we have clusters of wireless
sensors sensing user signals where the signal from each user
experiences the same fading statistics (the same path loss and
shadowing) on its way towards the sensors belonging to the
same cluster. However, the fading statistics experienced by the

signal between the user location and different clusters are not
the same. For P1, the multi-cluster scenario implies that the
array sensing time can be grouped into multiple clusters of time
indices where the signal statistics do not vary along the time
within the cluster but they vary across different clusters.

VII. CORRELATED BINS

When the bin size is reduced by increasing in (3), the re-
ceived spectra at two frequencies or angles, which are separated
by more than the size of the bin, might still be correlated. In
this case, and in (7) are respectively not a diag-
onal and circulant matrix anymore, and the temporal and spatial
compression of Section III-A cannot be performed without vio-
lating the identifiability of in (13). This section proposes
a solution when this situation occurs under Assumption 1 and
the single-cluster scenario (it does not apply to the multi-cluster
scenario of Section VI). Let us organize indices into several
groups and write as with
and , where and represent the total
number of groups and the number of indices belonging to a
group, respectively. Writing and at

as and , we can introduce for each a com-
pression similar to (11) as

(27)

where is the selection matrix for the -th group
of indices whose rows are also selected from the rows of .
Next, we compute the correlation matrix of in (27), i.e.,

, for , as

(28)

with , for all , as Assumption 1
requires that the statistics of do not vary with .
Let us interpret the above model for problems P1 and P2. For

P1, (27) implies that we split the array scanning time into
scanning periods, each of which consists of time slots. It is
clear from (27) that, in different time slots per scanning period,
different sets of ULSs out of available ULSs in the un-
derlying ULA are activated leading to a dynamic linear array
(DLA). This DLA model has actually been introduced in [19]
though it is originally designed to estimate the DOA of more
sources than active antennas, where the sources can be highly
correlated. Here, the indices of the selected rows of used to
form correspond to the indices of the active ULSs at time slot
, the set of active ULSs in a given time slot is the same
across different scanning periods, and the number of received
time samples per antenna in a time slot is one. Fig. 2 shows an
example of this DLA model. For P2, (27) implies that sensors
are organized into groups of sensors, where the same sam-
pling pattern is adopted by all sensors within the same group
and where different groups employ different sampling patterns.
The indices of the active cosets used by group then correspond
to the indices of the selected rows of used to construct .
Fig. 3 shows an example of the model for problem P2.
Since it turns out that the mathematical model in [19] is ap-

plicable for both P1 and P2, we can then follow [19], rewrite
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Fig. 2. The DLA model used in problem P1 when the bins are correlated with
, , , and . Solid lines and dashed-dotted lines

indicate active and inactive antennas, respectively.

Fig. 3. The model for problem P2 when the bins are correlated with ,
, , and . For simplicity, we illustrate the multi-coset sampling

as a Nyquist-rate sampling followed by a multiplexer and a switch that performs
sample selection based on . Sensors in the same group have the same color.
For example, sensors in group collect the samples at the cosets with coset
indices 0, 1, and 2.

combine for all into
, and write as

(29)

with an matrix given by

(30)

We can solve for from in (29) using LS if
in (30) has full column rank. It has been shown in [19] that
has full column rank if and only if each possible pair of two

different rows of is simultaneously used in at least one of
the matrices . In P1, this implies that every possible
combination of two ULSs in the underlying ULA should be ac-
tive in at least one time slot per scanning period. In P2, this im-
plies that every possible pair of two cosets (out of possible
cosets) should be simultaneously used by at least one group of
sensors. Observe how the DLA model in Fig. 2 and the model
in Fig. 3 satisfy this requirement. Once is recon-
structed, we follow the procedure in Section III-B to reconstruct

from .
In practice, to approximate the expectation operation in

computing in (28), we propose taking an average over
at different scanning periods for P1 or at sensors

in group for P2, i.e., .

TABLE II
THE FREQUENCY BAND AND THE POWER OF THE USERS SIGNAL AND THE
EXPERIENCED PATH LOSS IN THE FIRST, SECOND, AND THIRD EXPERIMENTS

Introducing , the LS reconstruction is
then applied to .

VIII. NUMERICAL STUDY

A. Uncorrelated Bins
In this section, we simulate the estimation and detection

performance of the CAP approach for the uncorrelated bins
case discussed in Sections II–VI. To keep the study general, in
this section, we generally simulate the multi-cluster scenario
of Section VI. In our first experiment, we consider problem
P2 and have , , and . Each sensor
collects samples out of every possible samples
based on a periodic length-17 minimal circular sparse ruler
with . This is identical to forming a 5
18 matrix in (11) by selecting the rows of based on .
The resulting in (13) has full column rank and we have a
compression rate of . We consider user
signals whose frequency bands are given in Table II together
with the power at each band normalized by frequency. We gen-
erate these signals by passing six circular complex zero-mean
Gaussian i.i.d. noise signals through different digital filters
having 200 taps where the location of the unit-gain passband
of the filter for each signal corresponds to the six different
active bands. We set the variances of these noise signals based
on the desired user signal powers in Table II. We assume

clusters of unsynchronized sensors, which
means that, at a given point in time, different sensors observe
different parts of the user signals. To simplify the experiment,
the correlation between the different parts of the user signals
observed by different sensors is assumed to be negligible such
that they can be viewed as independent realizations of the user
signals. The spatially and temporally white noise has a variance
of . The signal of each user received by different
sensors is assumed to pass through different and uncorrelated
fading channels . Note however that the signal from a
user received by sensors within the same cluster is assumed to
suffer from the same path loss and shadowing. The amount of
path loss experienced between each user and each cluster listed
in Table II includes the shadowing to simplify the simulation.
We simulate small-scale Rayleigh fading on top of the path
loss by generating the channel frequency response based on a
zero-mean complex Gaussian distribution with variance given
by the path loss in Table II. We assume flat fading in each band.
Fig. 4 shows the CAP of the faded user signals received at the

sensors. As a benchmark, we provide the Nyquist-rate based AP
(NAP), which is obtained when all sensors collect all the sam-
ples. With respect to the NAP, the degradation in the quality of
the CAP is acceptable despite a strong compression, although
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Fig. 4. The CAP and the NAP of the faded user signals for the first experiment
(unsynchronized sensors) as a function of frequency in a linear scale (top) and
logarithmic scale (bottom).

Fig. 5. The NMSE between the CAP and the NAP for the first experiment
(unsynchronized sensors).

more leakage is introduced in the unoccupied band. Next, we
perform 1000 Monte Carlo runs and vary the number of sensors
per cluster , the noise variance at each sensor , and
(see Fig. 5). In Fig. 5, the compression rate of
is implemented by activating three extra cosets, i.e.,
(which we picked randomly). Fig. 5 shows the normalized mean
square error (NMSE) of the CAPwith respect to the NAP and in-
dicates that increasing by a factor of less than two signif-
icantly improves the estimation quality. Having more sensors
also improves the estimation quality. Also observe that the com-
pression introduces a larger NMSE for a larger noise power.
We can also re-interpret the first experiment for problem P1.

In P1, the first experiment implies that ULSs (whose
indices are indicated by ) out of ULSs are activated
leading to a periodic circular MRA. Table II then gives the
angular bands of the user signals and the power for
each band normalized by the angle. For P1, the first experiment
also implies that each user transmits temporally independent
signals and that the signals from different users pass through
statistically different and uncorrelated time-varying fading
channels on their way towards the receiving array. For
each user , the fading statistics remain constant within each
cluster of time indices but the fading realization is temporally
independent.

Fig. 6. The CAP and the NAP of the faded user signals for the second exper-
iment (synchronized sensors) as a function of frequency in a linear scale (top)
and logarithmic scale (bottom).

Fig. 7. The NMSE between the CAP and the NAP for the second experiment
(synchronized sensors).

The second experiment uses the same setting as used in the
first experiment (including Table II). The only difference is that
the sensors are now assumed to be synchronized. Fig. 6 depicts
the CAP and the NAP of the faded user signals received at the
sensors. Unlike in the unsynchronized sensors case (see Fig. 4),
we now observe a significant variation in both the CAP and
the NAP. This is because, when the sensors are synchronized,
they observe the same part of the user signals. This means that,
while the fading realization components in the received signals
at different sensors are independent, the user signal components
in the received signals at different sensors are fully correlated.
Fig. 7 shows the NMSE of the CAP with respect to the NAP for
the synchronized sensors case. In general, some trends found in
the unsynchronized sensors case also appear here. Notice that
the NMSE for the synchronized sensors case is smaller than
the one for the unsynchronized sensors case since the quality of
the NAP in the synchronized sensors case is also significantly
worse than the one in the unsynchronized sensors case. Note that
we can also re-interpret this second experiment for problem P1.
This re-interpretation however, will make more sense, if we re-
verse the roles of and . When this is the case,
for P1, the second experiment implies that each user transmits
temporally independent signals and that the signals from dif-
ferent users pass through statistically different and uncorre-
lated time-invariant fading channels on their way towards the
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TABLE III
THE TWO SETS OF COSET PATTERNS USED IN THE THIRD EXPERIMENT

(COMPARISON OF DIFFERENT BIN SIZE)

Fig. 8. The NMSE between the CAP and the NAP for the third experiment
(comparison of different bin size); (a) using the first set of coset patterns (see
Table III); (b) using the second set of coset patterns.

receiving array. Here, the statistics of the user signal are con-
stant only within a cluster of time indices.
In the third experiment, we investigate the impact of varying

the bin size (which is equivalent to varying ) and for a given
on the performance of the CAP approach. Let us consider the

settings in the first experiment (i.e., we consider Table II) except
for the following. We now examine three different values of ,
i.e., , , and for a given .
For each value of , we vary the compression rate and
examine the two sets of coset patterns available in Table III. We
start from the minimal offered by the minimal circular
sparse ruler. Larger compression rates are implemented by se-
lecting additional coset indices where the order of the selection
is provided by the third column of Table III. We fix the value
of to and perform 1000 Monte Carlo simulation runs
for different noise variances (see Fig. 8). Fig. 8 illustrates the
NMSE of the CAP with respect to the NAP for the two sets of
coset patterns. Observe that varying and for a given does

TABLE IV
THE FREQUENCY BAND AND THE POWER OF THE USER SIGNALS AND THE
EXPERIENCED PATH LOSS IN THE FOURTH AND THE FIFTH EXPERIMENTS

Fig. 9. The resulting ROC when the CAP is used to detect the existence of
the active user signals suffering from fading channels in the fourth experiment
(unsynchronized sensors).

not really result in a clear trend in the estimation performance.
While the performance of the CAP for is worse than
the one for the larger value of , the performance of the CAP
for is better than the one for for some values
of . Note that the NMSE also depends on the coset pat-
tern that we select to implement a particular compression. At
this point, we would like to mention that, as long as the bin size
constraint in Remark 2 is satisfied, having a larger is gener-
ally more advantageous as we will generally have a lower value
of minimum . This is because it can be found that, as
increases, the number of marks in the corresponding length-

minimal circular sparse ruler (which is the minimum )
tends to be constant or to increase very slowly. As a result, the
minimum compression rate also generally (even though
not monotonically) decreases with .
In the next three experiments, we use the CAP to detect the

existence of active user signals that suffer from fading channels
and evaluate the detection performance. We start with the fourth
experiment, where we again consider problem P2, ,

, , and (again by adopting
). We now consider clusters of

unsynchronized sensors and user signals (see their
settings in Table IV), which are generated using the same pro-
cedure used in the first experiment. The amount of path loss
(which includes shadowing) experienced between each user and
each cluster is listed in Table IV. We then simulate a small-scale
Rayleigh fading channel on top of it. We perform 5000 Monte
Carlo runs and vary and (see Fig. 9). We vary the detection
threshold manually and out of the frequency points
at which the CAP is reconstructed, we evaluate the resulting
detection events at 363 frequency points in the active bands
and the false alarm events at 363 frequency points in the bands
that are far from the active bands, i.e., . Here,
we average the estimated power over every eleven subsequent



4160 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 16, AUGUST 15, 2015

Fig. 10. The resulting ROC when the CAP is used to detect the existence of
the active user signals suffering from fading channels in the fifth experiment
(synchronized sensors).

Fig. 11. The resulting ROC of the detector when the CAP is used compared
with the one when the compressive signal reconstruction using RM-FOCUSS
of [26] is used (the sixth experiment).

frequency points and apply the threshold to these average
values. The resulting receiver operating characteristic (ROC)
is depicted in Fig. 9. Observe the acceptable detection perfor-
mance of the CAP for the examined and though the perfor-
mance is slightly poor for and . This de-
tection performance demonstrates that the proposed CAP can be
used in a spectrum sensing application such as in a CR network.
The fifth experiment repeats the fourth experiment but for

synchronized sensors. The ROC in Fig. 10 shows that the de-
tection performance for the synchronized sensors case is worse
than the one for the unsynchronized sensors case in Fig. 9 due
to the significant variation in the CAP as shown in Fig. 6.
In the sixth experiment, we consider problem P2 and compare

the detection performance of the spectrum sensing approach
based on CAP with that of the one based on the RM-FOCUSS
discussed in Section V-E. To simulate the existence of a joint
sparsity structure in , we again use the settings in
Table IV. However, we now only assume one cluster of
sensors where the amount of path loss experienced between
each user and each sensor is set to 13 dB. The ROC for 5000
Monte Carlo runs and different as well as is illustrated
in Fig. 11. Here, the compression rate of is imple-
mentedby activating four extra cosets, i.e., {16, 8, 12, 13} (which
we decide randomly), on top of the length-17 minimal circular
sparse ruler. The M-FOCUSS convergence criterion parameter
and theM-FOCUSSdiversitymeasure parameter (labeled as in

TABLE V
THE FREQUENCY BANDS OCCUPIED BY THE USERS, THEIR POWER, AND THE

EXPERIENCED PATH LOSS IN THE SEVENTH EXPERIMENT

[26]) are set to 0.001 and0.8, respectively.Note that the latter set-
ting follows the suggestionof [26].Todetermine theM-FOCUSS
regularization parameter,we first perform some experiments and
examine ten different values of regularization parameters be-
tween and 10. We then select the regularization parameter
that leads to the smallest NMSE between the resulting compres-
sive estimate of , for all the considered ,
and theNyquist-rate version.We finally decide to set the regular-
ization parameter to 10 for the case of , to
for the case of and dBm, and to 0.21544
for the case of and (see Fig. 11).
Observe from Fig. 11 that the spectrum sensing approach based
on CAP has a better detection performance than the one based
on signal/spectrum reconstruction using RM-FOCUSS. Recall
that the approach of [26] requires the sparsity constraint on the
vectors to be reconstructed (which are ). This implies
that, if we have additional active users on top of the scenario used
in the sixth experiment, the actual will have a smaller
sparsity level. In this case, if we use the same compression rate

as the one used in the sixth experiment, the performance
of RM-FOCUSS will be even worse.

B. Correlated Bins
In this section, we conduct the seventh experiment to eval-

uate the estimation performance of the CAP approach for the
correlated bins case discussed in Section VII. Here, we consider
problem P2, , , , and

. Recall from Section VII that the mathemat-
ical model for the correlated bins case is similar to the one in
[19]. Hence, to design the sampling matrices for all sensors,
which are assumed to be synchronized, that ensure the full
column rank of in (30), we use the algorithm of [19], which
is originally designed to solve the antenna selection problem
for estimating the DOA of highly correlated sources. This algo-
rithm, which only offers a suboptimal solution for , suggests

groups of sensors where each group has a
unique set of active cosets. We consider user
signals whose setting is given in Table V. To simulate the full
correlation between all the frequency components within the
band of the -th user, we assume that the -th user transmits
exactly the same symbol at all these frequency components at
each time instant. On its way toward the different sensors, the
signal of the -th user is assumed to pass through different and
uncorrelated Rayleigh fading channels but it suffers
from the same path loss and shadowing, whose value is listed
in Table V. Again, we assume flat fading in each user band
and have . Fig. 12 shows the CAP of the faded
user signals using the correlated bins (CB) assumption. As a
benchmark, we also provide the NAP and the CAP based on the
uncorrelated bins (UB) assumption discussed in Sections II–V,
which is obtained by activating the same set of cosets,
i.e., , in
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Fig. 12. The CAP and the NAP of the faded user signals for the seventh ex-
periment in Section VIII-B as a function of frequency in a linear scale (top) and
logarithmic scale (bottom).

Fig. 13. The NMSE between the CAP based on the correlated bins assumption
and the NAP for the seventh experiment in Section VIII-B.

all sensors (leading to a full column rank matrix in (13)).
Observe that the quality of the CAP based on the UB assump-
tion is extremely poor. On the other hand, with respect to the
NAP, the degradation in the quality of the CAP based on the
CB assumption is acceptable despite a significant variation in
the unoccupied band. Next, we perform 1000 Monte Carlo runs
and vary the number of sensors per group , , and (see
Fig. 13). In Fig. 13, the compression rate of is
implemented by randomly activating four additional cosets on
top of the already selected 14 cosets and the resulting sampling
pattern is kept fixed throughout the entire Monte Carlo runs.
Fig. 13 shows the NMSE of the CAP based on the CB as-
sumption with respect to the NAP, which indicates that either
increasing or having more sensors per group can
significantly improve the estimation quality. Again, a larger
NMSE is introduced for a larger noise power.
The interpretation of this seventh experiment for P1 is sim-

ilar to the problem discussed in [19]. For P1, this experiment is
equivalent to having a ULA consisting of ULSs, where
the array scanning time is split into scanning periods,
each of which consists of time slots. In different time
slots per scanning period, we activate different sets of
(out of ) ULSs leading to a DLA. The interpretation will
again make more sense if we reverse the roles of and

. When this is the case, for P1, the experiment implies
that all users transmit temporally independent signals and that

Fig. 14. The simulated and analytical NMSE between the CAP and the
true power spectrum when only contains circular complex Gaussian
i.i.d. noise. Unless mentioned otherwise, the cases of are
implemented by activating extra cosets based on Pattern 1.

TABLE VI
THREE COSET PATTERNS TO BE ADDED ON TOP OF THE ALREADY

SELECTED MINIMAL CIRCULAR SPARSE RULER BASED COSET INDICES FOR
IMPLEMENTING IN SECTION VIII-C

the signals from different users pass through statistically dif-
ferent and uncorrelated time-invariant fading channels on their
way towards the receiving array. As the signal received from the
-th user at different angles within its angular band is fully cor-

related, this can be related to a situation where the same symbol
of the -th user hits different scatterers (which play the role of
the channel) before reaching the observing array. From the point
of view of the array, the scattered versions of the symbol will be
received from different angles within a particular angular band.

C. Circular Complex Gaussian Noise
The last experiment examines the performance of the CAP

based on the UB assumption when the received signal
only contains circular complex zero-mean Gaussian spatially
and temporally i.i.d. noise. Here, we have , ,

, and . We perform 1000 Monte Carlo
runs and vary (see Fig. 14). We compute the NMSE of the
CAP with respect to the true power spectrum (since in this
case is clearly a WSS signal) and compare this NMSE obtained
from the simulation with the analytical NMSE. Since it can be
shown that, for circular complex Gaussian i.i.d. noise ,

is an unbiased estimate of even for finite ,
the analytical NMSE only depends on the variance of
and it can be shown to be equal to by
using (26). We start with by using the cosets in-
dexed by the length-17 minimal circular sparse ruler, i.e.,

, and then vary . First, the cases of
are implemented by activating additional cosets based

on Pattern 1 in Table VI. Then, we also test Pattern 2 and Pat-
tern 3 as additional coset patterns to implement the case of

. Observe in Fig. 14 how the analytical NMSE is on top
of the simulated NMSE for all the evaluated values. Also
observe that, for , the three different coset patterns
have led to different values of the NMSE depending on the re-
sulting value of in (26).
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IX. CONCLUSION AND FUTURE WORK

This paper proposed a compressive periodogram reconstruc-
tion approach and considered both time-frequency and spatio-
angular domains. In our model, the entire band is split into uni-
form bins such that the received spectra at two frequencies or
angles, whose distance is equal to or larger than the size of a
bin, are uncorrelated. In both considered domains, this model
leads to a circulant coset correlation matrix, which allows us to
perform a strong compression yet to present our reconstruction
problem as an overdetermined system. When the coset patterns
are designed based on a circular sparse ruler, the system matrix
has full column rank and we can reconstruct the periodogram
using LS. In a practical situation, our estimate of the coset cor-
relation matrix is only asymptotically circulant. Hence, we also
presented an asymptotic bias and variance analysis for the CAP.
We further included a thorough variance analysis on the case
when the received signal only contains circular complex zero-
mean white Gaussian noise, which provides some useful in-
sights in the performance of our approach. The variance analysis
for a more general signal (i.e., a general Gaussian signal) has
also been presented but it is not easy to interpret due to its de-
pendence on the unknown statistics of the user signals. We also
proposed a solution for the case when the bin size is decreased
such that the received spectra at two frequencies or angles, with
a spacing between them larger than the size of the bin, can still
be correlated. Finally, the simulation study showed that the es-
timation performance of the evaluated approach is acceptable
and that our CAP performs well when detecting the existence
of the user signals suffering from fading channels.
As a future work, we are interested in the case when both

problems P1 and P2 emerge simultaneously. In that case, we
would consider a compressive linear array of antennas and a
compressive digital receiver unit per antenna leading to a two-
dimensional (2D) digital signal. Our interest would then be to
investigate if it is possible to perform compression in both the
time and spatial domain and to jointly reconstruct the angular
and frequency periodogram from the 2D compressive samples.
To study that, we could follow an approach similar to [27],
which assumes stationarity in both the time and spatial domain
and exploits the existing Toeplitz structure in the correlation
matrix.

APPENDIX A
PROOF OF THEOREM 2

Recall that in (15) is an unbiased estimate of
in (12), i.e., . Applying the expectation
operator on (16) and (17), it is then clear that in
(16) and in (17) are unbiased estimates of in
(13) and in (7), respectively, since in (13) can
perfectly be reconstructed from using LS. Recall from
Remark 1 that the -th diagonal element of is equal
to . From (18), it is then obvious that the CAP

is an unbiased estimate of .
However, by taking (1) into account, we can observe that

(31)

for , since is a finite-length obser-
vation of the actual random process . Hence, by applying

and using (31), it is clear that
is an asymptotically (with respect to ) un-

biased estimate of in (1), for and
.

APPENDIX B
PROOF OF PROPOSITION 1

Note that for the specific case assumed in this proposition, we
can rewrite (20) as

(32)

where we also take the circularity of into account. By
using , we can find that

, as it is clear from (32)
that . Hence, we can simplify (32) as

where the last equality is due to , for
all , and the fact that implies .

APPENDIX C
PROOF OF (25)

First, by recalling that , we can write

(33)

Let us then recall that the -th row of is given by the
-th row of . We can then find that
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the -th row of contains ones at the
-th entries and zeros elsewhere. We can thus

rewrite (33)

(34)

where we use in the second equation
with the inverse of the operation.

APPENDIX D
PROOF OF THEOREM 3

To simplify the discussion, we introduce the vector

(35)

From the definition of in Section III-A, it is clear that the
-th row of contains a single one at a

certain entry and zeros elsewhere only if , otherwise
it contains zeros at all entries. Hence, we can write

(36)

When , the -th entry of is given by
one of the entries of . Recall from Appendix C that
the -th row of contains ones at the

-th entries and zeros elsewhere. As a result,
we can use (16), (35), and Remark 3 to write the -th entry
of in (16) as

(37)

with and an matrix.
At this stage, let us introduce the following definition.
Definition 3: Define the collection of

for and all
as the -th modular diagonal of . Note that the
first modular diagonal of is its main diagonal.
We use Definition 3 to formulate the following lemma.
Lemma 1: The -th modular diagonal of

in (37) contain only entries of in (35). The
remaining entries of the -th modular diagonal of

are equal to zeros. The summation in (37) then
involves zeros and only out of entries of

.
Proof: Recall that, when , the
-th entry of in (37) is given by one of the entries

of . Since Remark 3 indicates that the number of

pairs that lead to is equal to
, it is clear from Definition 3 that the -th modular diagonal

of only contains entries of .
Equation (36) then confirms that the remaining entries
of the -th modular diagonal of are equal to
zero. Next, observe that the summation in (37) is the sum of all
terms in the -th modular diagonal of . This
can be found by applying Definition 3 on the column and row
indices of in (37), i.e.,

which exploits the property that
. This concludes the proof.

Let us now define as the covariance ma-
trix of in (35), which can be written as

. First, recall (36) and that when ,
the -th entry of in (37) is given by one of
the entries of . By also recalling that, for circular
complex Gaussian i.i.d. noise , is a diagonal ma-
trix whose elements are given by (24), we can find that
is also a diagonal matrix with its diagonal elements given by

if .
if or .

(38)

By taking (37), (38), and the diagonal structure of into
account, we can then write the entry of in (21) at the

-th row and the -th column as

(39)

for , which implies that is also a
diagonal matrix for circular complex Gaussian i.i.d. noise .
Recall from the proof of Lemma 1 that the summation in (37)
is the sum of all terms in the -th modular diagonal of

. We can then observe that the summation in (39)
is the sum of the variance of each term in the -th modular
diagonal of . Using Lemma 1 and (38), we can
rewrite (39) as

(40)

for . By considering (22) and noticing
that , let us
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rewrite in (23), for and
, as

(41)

We now recall that the -th row of is given by the
-th row of , exploit the diagonal

structure of for circular complex Gaussian i.i.d. noise
, and use (40) to write

(42)

for . By inserting (42) into (41),
the variance of , for circular complex Gaussian
i.i.d. noise and , is given by

where we use the last part of Remark 3 in the last equality.
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