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ABSTRACT

An offline sampling design problem for Gaussian detection is con-
sidered in this paper. The sensing operation is modeled by a selection
vector, whose sparsity order is determined by the prescribed global
error probability. Since the numerical optimization of the error
probability is difficult, equivalent simpler costs, viz., the Kullback-
Liebler distance and Bhattacharyya distance are optimized. The
sensing problem is formulated and solved sub-optimally using con-
vex optimization techniques. It is shown that the sensing problem
can be solved optimally for conditionally independent Gaussian
observations. Further, we show that for non-identical sensor obser-
vations, the number of sensors required to achieve a certain detection
performance decreases as the sensors become more correlated.

Index Terms— Sensor networks, sparse sensing, sensor selec-
tion, sensor placement, detection, convex optimization, sparsity.

1. INTRODUCTION

In this work, we focus on distributed detection, where a field (e.g.,
heat, target signal) is sampled by a set of spatially distributed sen-
sors, and these samples are made available at the fusion center. Sub-
sequently, the fusion center makes a single global decision as to the
true state of nature using binary hypothesis testing. Some pertinent
examples are: heat detection — temperature is above or below a
certain threshold, radar — target is present or absent, and spectrum
sensing — primary user is active or inactive.

In such applications, the number of sensors available is limited
due to economical or energy constraints, or there might not be suffi-
cient processing capabilities and/or communication bandwidth avail-
able. Thus, it is crucial to smartly design the sensing task. Naturally,
limiting the number of sensors also restricts the achievable detec-
tion performance. In this paper, we are interested in designing the
sensing operator w ∈ {0, 1}M that jointly minimizes the number
of sensors and the probability of error. Here, M is the number of
candidate sensors. In other words, we assume a certain candidate
set of (temporal and/or spatial) locations and the best sampling loca-
tions are chosen through w. The problem is that the expressions of
the error probabilities are not favorable for numerical optimization.
Hence, we adopt simpler substitutes for the error probabilities, viz.,
the Kullback-Leiber distance and Bhattacharyya distance, which be-
long to the general class of Ali-Silvey distances [1]. Interestingly,
for Gaussian observations optimizing these proxies are optimal in
terms of the error probabilities.

The central question of interest, i.e., sensing design for Gaus-
sian detection problems, has been studied in the past [2, 3]. In [2],
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this problem has been solved through techniques which are more
likely to lead to a local optimum. Similarly, the formulation in [3]
results in a complex non-convex (even after appropriate relaxations)
solver on the Stiefel manifold. Different from [2, 3], the proposed
formulation leads to an elegant convex optimization solver. More
interestingly, it enables us to explore cases where we can solve the
problem optimally and to further understand the effect of correlation
among sensors on sensing design. Some more variants of sensing
design, but in the context of estimation and filtering can be found
in [4–8] (and references therein).

2. PROBLEMMODELING

LetM be the number of available sensors. For example, this might
be a set of candidate locations where we can place the sensors. The
observations at each sensor are related to the state of nature H.
In a binary hypothesis testing problem, the random variable H is
drawn from a binary set {H0,H1}. Furthermore, in the Bayesian
setting, we assume that the prior probabilities π0 = Pr(H0) and
π1 = Pr(H1) are known, whereas in the classical setting, the prior
probabilities are not known. Consider the case of binary signal de-
tection in Gaussian noise, where the related conditional distributions
are given by

H0 : x ∼ p(x|H0) = N (θ0,Σ)

H1 : x ∼ p(x|H1) = N (θ1,Σ).
(1)

Here, x = [x1, x2, . . . , xM ]T is anM × 1 observation vector, and
the mean vectors θ0 ∈ R

M and θ1 ∈ R
M , as well as the covariance

matrixΣ ∈ R
M×M are assumed to be perfectly known

Let Ĥ denote an estimate of the state of nature H, based on
a certain decision rule. Classic approaches to solve the binary hy-
pothesis testing problem (1) include the Neyman-Pearson and Bayes
test. In the classical setting, the optimal detector is the well-known
Neyman-Pearson detector that minimizes the probability of miss de-
tection (type II error),

PM = 1− Pr(Ĥ = H1|H1)

for a fixed probability of false alarm (type I error),

PF = Pr(Ĥ = H1|H0).

In the Bayesian setting, the optimal detector minimizes the Bayesian
error probability,

PE = Pr(Ĥ $= H) = π0PF + π1PM .

Let us model the sensing operator through a Boolean vector

w = [w1, w2, . . . , wM ] ∈ {0, 1}M ,

2394978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015



where the mth sensor is chosen if wm = 1, otherwise it is not
chosen. That is, we gather the data using a compression matrix
Φ(w) = diagr(w) ∈ {0, 1}K×M as

y = Φ(w)x,

where K (% M ) is the number of selected sensors and diagr(·)
represents a diagonal matrix with the argument on its diagonal, but
with the all-zero rows removed. We want to design w (and, hence
Φ) with as many zeros as possible, where the number of non-zero
entries ofw is determined by the prescribed detection performance.
We underline the fact that the sparsity order of w determines the
possible reduction in the sensing costs, and other overheads. In this
paper, the problem that we address is stated as follows.

Problem statement. Given the conditional distribution of the obser-
vations, design the sensing operator w that chooses K sensors out
ofM available ones and also: (i) minimizes the Bayesian probabil-
ity of error when the prior probabilities are known in the Bayesian
setting; (ii) minimizes the probability of miss detection for a fixed
probability of false alarm in the classical setting. Such a discrete
sensing task is also referred to as sensor selection.

Parameterizing the error probabilities with the sensing vectorw,
the above stated problem can be mathematically expressed as the
following optimization problem

Classical : argmin
w∈{0,1}M

PM (w) s.to PF (w) ≤ α, ‖w‖0 = K; (2a)

Bayesian : argmin
w∈{0,1}M

PE(w) s.to ‖w‖0 = K, (2b)

where α is the prescribed false-alarm rate and the notation ‖w‖0
counts the number of non-zero entries in w. Note that when K is
not known, the problem can equivalently be posed as a cardinality
minimization problem (i.e., minimize ‖w‖

0
) subject to a constraint

on the (Bayesian/classical) error probabilities. In what follows, we
will discuss alternative performance measures for the error probabil-
ities as the error probabilities are in general difficult to optimize.

3. OPTIMALITY CRITERION

In the classical setting or the Neyman-Pearson problem, the decision
is based upon the log-likelihood ratio test

log l(y) = log
p(y|H1)
p(y|H0)

H0

≶
H1

γ,

where log l(y) is the log-likelihood ratio and γ is the threshold. The
error probabilities admit the following expressions [9, pg. 475]

PF = Q
(
γ + s/2√

s

)
and PM = 1−Q

(
γ − s/2√

s

)
, (3)

where Q is the complementary Gaussian cumulative distribution
function

Q(x) =

∞∫

x

1√
2π

e−y2/2dy,

and
s = mTΦTΣ−1(w)Φm, (4)

is the signal-to-noise ratio [9]. Here, m = θ1 − θ0 and Σ−1(w)
is the inverse matrix of Σ(w) = ΦΣΦT ∈ R

K×K , which includes

only the entries corresponding to the selected sensors. Similarly, the
Bayesian error probability is given by [9, pg. 494]

PE = π0Q
(
γ′ + s/2√

s

)
+ π1

[
1−Q

(
γ′ − s/2√

s

)]
, (5)

where the log-likelihood ratio is compared to the threshold γ′ =
log (π0/π1) in the Bayesian setting.

The optimization problem (2) is difficult to solve because of the
involved integral in the expression of the error probabilities (3) and
(5). Instead of optimizing the error probabilities, we seek for simpler
substitutes, and these are based on a distance measure between the
conditional probabilities (1). The idea of distance measure between
the probabilities has been extensively used in statistical experimental
design (e.g., signal selection and waveform design) [1,10–12]. Some
of the prominent distance measures are:

1. Kullback-Leibler distance [13] :

D(H1‖H0) = E|H1
{log l(y)}

or
D(H0‖H1) = −E|H0

{log l(y)}.

2. Bhattacharyya distance [11]:

B(H1‖H0) = − logE|H0
{
√

l(y)}.

The notation E|Hi
{·} indicates that the average is computed under

the pdf p(·|Hi). The Kullback-Leibler distance measure is the av-
erage log-likelihood and it is the best error exponent in the classical
setting. The Bhattacharyya distance is the negative logarithm of the
average root-likelihood. It is a special case of Chernoff information,
which is the best error exponent in the Bayesian setting. For the de-
tection problem (1), the above distance measures are given by [11]

D(H1‖H0) = D(H0‖H1) =
s
2
, (6)

B(H0‖H1) =
s
8
. (7)

Interestingly, both these distance measures are the same (more pre-
cisely, they are simply the signal-to-noise ratio) up to a constant.
However, these relations are not universal (e.g., they do not hold for
non-Gaussian observations).

Having introduced these distance measures, we now make the
following observations, which assert that optimizing one of these
distance measures is optimal for (2). For a fixed PF , say α (0 ≤
α ≤ 1), we have

PM (w) = 1−Q(Q−1(α)−
√

s(w)).

The Q(x) function is monotonic in nature, i.e., Q(x0) < Q(x) for
x0 > x > 0. Hence, maximizing the signal-to-noise ratio over
w minimizes PM . In other words, for a certain s(w) > s(w0)
it is easy to verify that PM (s(w)) < PM (s(w0)). Furthermore,
this also holds for the Bayes test, i.e., for a given {π0,π1} pair, if
s(w) > s(w0), then PE(s(w)) < PE(s(w0)). In essence, for the
considered problem, we can safely replace the error probabilities in
(2) with the signal-to-noise ratio s, without any loss of optimality.

4. OPTIMIZATION PROBLEM

In this section, we reformulate (2) as a problem of signal-to-noise
ratio (or Kullback-Leibler distance or Bhattacharryya distance) max-
imization over a Boolean w.
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4.1. Equivalent problem

Let Σ = aI + S with a non-zero a ∈ R chosen such that S ∈
R

M×M is invertible and well-conditioned. Using the matrix inver-
sion lemma [14] on s(w) = mTΦT

[
aI+ΦSΦT

]−1
Φm in (4),

we can express (4) as

s(w) = m
T
S
−1

m

−m
T
S
−1
[
S
−1 + a−1diag(w)

]−1

S
−1

m,
(8)

where by definition ΦTΦ = diag(w). Note that in contrast to (4),
the design parameter w only shows up at one place in (8), which
makes the optimization problem much easier.

Consequently, the sparse sensing problem can be expressed as:

argmin
w∈{0,1}M

m
T
S
−1
[
S
−1 + a−1diag(w)

]−1

S
−1

m

s.to ‖w‖0 = K,

(9)

where only the second term of (8), which depends onw is optimized
(minimization is due to its negative sign). Writing (9) in the epigraph
form and using the Schur complement, (9) will equivalently be

argmin
w∈{0,1}M ,t

t

s.to ‖w‖0 = K,
[

S−1 + a−1diag(w) S−1m

mTS−1 t

]
) 0,

(10)

which is a combinatorial non-convex problem due to the Boolean
and cardinality constraints. Here, t ∈ R is an auxiliary variable. We
remark here that the actual measurements are not needed to solve
this problem, i.e., it can be solved offline.

4.2. Relaxed problem

First of all, the Boolean constraint is relaxed with its convex hull,
i.e., 0 ≤ wm ≤ 1, m = 1, 2, . . . ,M . We also relax the ‖w‖0
constraint in (10) to its best convex approximate 1Tw. Thus, the
relaxed convex problem is given by

argmin
w,t

t

s.to 1
T
w = K,

[
S−1 + a−1diag(w) S−1m

mTS−1 t

]
) 0,

0 ≤ wm ≤ 1,m = 1, 2, . . . ,M.

(11)

This is a semidefinite programming problem that can be solved with
off-the-shelf solvers, for example, SeDuMi [15]. The selected sen-
sors (i.e., an approximate Boolean solution) are given by the non-
zero entries of w, or they can also be computed using the random-
ization techniques described in [6].

4.3. Numerical example

We illustrate the proposed framework with the following example.
Consider the hypothesis testing problem (1) withM = 15, θ0 = 0,
and [θ1]m = cos 2πfm with f := 0.33 for m = 1, 2, . . . ,M .
We use a smaller dimension for M to compare the results with the
optimal solution of (2) obtained by exhaustive search. Nevertheless,
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Fig. 1: The (Bayesian/classical) probability of error for (1) with different
numbers of selected sensors K out of M = 15 sensors. (a) Dependent
observations (ρ = 0.5). (b) Independent observations (ρ = 0).

the proposed framework is valid for higher dimensional problems.
Let us assume that the covariance matrixΣ is of the form

Σ = σ2






1 ρ · · · ρ
ρ 1 · · · ρ
...

...
. . .

...
ρ ρ · · · 1





= σ2

[
(1− ρ)IM + ρ1M1

T
M

]
,

with a known correlation coefficient ρ = {0, 0.5} and variance σ2 =
1. Finally, we use π0 = 0.3, π1 = 0.7, α = 0.01, and a = 0.11.
Note that any a $= 1− ρ leads to an invertible S that can be used in
the solver (11).

We solve (2) using a brute force evaluation of all the
(
K
M

)
combi-

nations. We remark here that the exhaustive search is computation-
ally intractable even for the modest values ofK andM . The convex
relaxed problem (11) is solved using SeDuMi [15]. The probabil-
ity of error, i.e., PM in the classical setting and PE in the Bayesian
setting for different numbers of selected sensors is shown in Fig. 1a.
The PM and PE obtained with the selected sensors are computed
using (3) and (5), respectively. For this particular example, the per-
formance of the relaxed problem is reasonable for smaller values of
K, but the sensor selection is clearly not optimal. The performance
for smaller values of K can be further improved with randomized
rounding. Nevertheless, for larger values of K, the sensor selection
is near-optimal in terms of the error probability.
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5. CAN WE SOLVE THE
EQUIVALENT PROBLEMOPTIMALLY?

In the previous section, we have discussed a convex optimization
approach to solve (2) sub-optimally. However, it is interesting to ex-
plore the question —when can we solve (9) optimally in polynomial
time? The answer is, for conditionally independent Gaussian obser-
vations, i.e., whenΣ is a diagonal matrix, we can solve (9) optimally
in polynomial time.

For conditionally independent observations, the signal-to-noise
ratio s can be expressed as the sum of the local signal-to-noise ratios
evaluated at each sensor. For a diagonal matrix Σ, defining σ2

m =
[Σ]m,m, we can simplify (4) to s(w) =

∑M
m=1

wm

(
[m]2m/σ2

m

)
.

Subsequently, the sensor selection problem simplifies to a Boolean
linear program

argmax
w∈{0,1}M

M∑

m=1

wm

(
[m]2m
σ2
m

)

s.to ‖w‖0 = K. (12)

The above problem admits an explicit solution and computing the
optimal solution is straightforward. It is solved simply by ordering
the local signal-to-noise ratios and choosing theK largest ones.

More generally, for other distributions, the best subset of K in-
dependent sensors are those with the largest local Kullback-Leibler
distance or Bhattacharyya distance, and they are optimal in terms
of the error exponents. Therefore, for conditionally independent
observations (not necessarily Gaussian), convex relaxations are not
needed.

To illustrate the optimality of the proposed sensor selection for
independent observations, we refer back to the numerical example
introduced in Section 4.3, but we now use ρ = 0. We can see in
Fig. 1b that the sensor selection (12) based on ordering is optimal in
terms of the error probabilities.

6. IS CORRELATION GOOD OR BAD?

In this section, we extend some of the well-known results from dis-
tributed detection to sensor selection. In particular, we are interested
in the number of sensors required to achieve a certain detection prob-
ability as the correlation coefficient ρ approaches 1. To illustrate this,
let us consider the numerical example introduced in Section 4.3 with
f ∈ {0, 0.33}.

We first consider the case when f = 0, where all the M sen-
sors have identical observations (θ1 = 1). Hence, any subset of
sensors is also the best subset of sensors. In other words, for iden-
tical observations, random sensing is optimal. As the correlation
coefficient ρ approaches 1, the amount of information (Kullback-
Liebler distance/Bhattacharyya distance/signal-to-noise ratio) con-
tributed by the best (i.e., a random) subset of K > 1 sensors is the
same as that of the contribution fromK = 1 sensor. This can be seen
in Fig 2a. Similar results can be found in [16], but in the context of
distributed detection over a wireless channel.

A more interesting case, in particular for sensing design prob-
lems, is when the observations are not identical (f = 0.33). When
the observations are non-identical, as the correlation coefficient ρ ap-
proaches 1, the amount of information contained in the best subset
of K > 1 sensors increases significantly; see Fig. 2b. More specif-
ically, to achieve a certain detection performance, the number of re-
quired sensors decreases as the correlation coefficient ρ increases.
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Fig. 2: The Kullback-Leibler distance/Bhattacharyya distance/signal-to-
noise ratio for different values of the correlation coefficient ρ. (a) Identical
observations (f = 0). (b) Non-identical observations (f = 0.33).

7. CONCLUSIONS

We have considered the sensing design problem for Gaussian detec-
tion. We assume a certain set of candidate sampling locations (tem-
poral and/or spatial) with cardinalityM . We choose the best subset
out of them through a sensing operator w ∈ {0, 1}M , such that the
error probabilities and the cardinality ofw are jointly minimized. In
essence, w should be as sparse as possible such that the resulting
prescribed fidelity is reached.

We have considered the detection problem both in the classi-
cal setting and Bayesian setting. Since the expressions for the error
probabilities are not favorable for numerical optimization, we op-
timize weaker measures such as the Kullback-Leibler distance and
Bhattacharyya distance, both of which are coincidently the same up
to a constant for the considered problem. Moreover, they are related
to the signal-to-noise ratio, which is an optimal performance crite-
rion for Gaussian detection problems. The sensing design problem
has been transformed to a semidefinite program in its most general
form. Finally, we conclude this paper with the following remarks:

• For conditionally independent observations, the sensing de-
sign problem can be solved optimally by simply ordering the
local signal-to-noise ratios. For conditionally dependent ob-
servations, the sensing design problem can be solved sub-
optimally in polynomial time.

• When the sensor observations are non-identical, the number
of sensors required to achieve a certain detection performance
decreases as the correlation coefficient increases.
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