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Abstract—We consider unconstrained convex optimization prob-
lems with objective functions that vary continuously in time. We
propose algorithms with a discrete time-sampling scheme to find
and track the solution trajectory based on prediction and correction
steps, while sampling the problem data at a constant rate of
1{h. The prediction step is derived by analyzing the iso-residual
dynamics of the optimality conditions, while the correction step
consists either of one or multiple gradient steps or Newton’s steps,
which respectively correspond to the gradient trajectory tracking
(GTT) or Newton trajectory tracking (NTT) algorithms. Under
suitable conditions, we establish that the asymptotic error incurred
by both proposed methods behaves as Oph2q, and in some cases
as Oph4q, which outperforms the state-of-the-art error bound of
Ophq for correction-only methods in the gradient-correction step.
Numerical simulations demonstrate the practical utility of the
proposed methods.

I. INTRODUCTION

In this paper, we consider unconstrained optimization prob-

lems whose objective functions vary continuously in time. In

particular, consider a variable x P R
n and a non-negative

continuous time variable t P R`, which determine the choice

of a smooth strongly convex function f : Rn ˆ R` Ñ R. We

study the problem

min
xPRn

fpx; tq, for t ě 0. (1)

Our goal is to determine the solution x˚ptq of (1) for each time

t which corresponds to the solution trajectory. The time-varying

optimization problems of the form (1) arise in optimal control

problems [1], signal processing problems [2], and countless

others [3], [4].

With large enough computational resources, one could sample

the objective functions fpx; tq at time instants tk with k “
0, 1, 2, . . . , and sampling interval h “ tk ´tk´1, arbitrarily close

to each other and then solve the resulting time-invariant problems

min
xPRn

fpx; tkq. (2)

By decreasing h, an arbitrary accuracy may be achieved when

approximating (1) by (2). However, solving (2) for each sam-

pling time tk is not a viable option in most application domains:

even for moderate-size problems, the requisite computation time

for solving each instance of the problem often does not meet

the requirements for real-time applicability, as in the control
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domain [5]. In addition, the idea of solving each instance of the

problem up to an arbitrary accuracy does not lead to quantifiable

real-time bounds. That is, it is challenging to reasonably bound

the time each problem instance will take to be solved [6]. In

short, the majority of iterative methods for convex problems

with static objectives may not be easily extended to handle time-

varying objectives, with the exception of when the changes in

the objective occur more slowly than the time necessary for

computing the optimizer.

Instead, we consider using the tools of non-stationary op-

timization [7]–[10] [3, Chapter 6] to solve problems of the

form (1). In these works the authors consider perturbations of

the time-varying problem when an initial solution x˚pt0q is

known. More recently, the work presented in [11] designs a

gradient method for unconstrained optimization problems using

an arbitrary starting point, which achieves a Ophq asymptotic

error bound. Time-varying optimization has also been studied in

the context of parametric programming, where the optimization

problem is parametrized over a parameter vector p P R
p that may

represent time, as studied in [12]–[14] and references therein.

Tracking algorithms for optimization problems with parameters

that change in time are given in [4], [15] and are based on

predictor-corrector schemes. Even though these algorithms are

applicable to constrained problems, an important assumption is

the availability of an initial solution x˚pt0q, which is often hard

to compute in practice. Some of the theoretical advances in

these works have been used to ease the computational burden

of sequential convex programming while solving nonconvex

optimization problems, or nonlinear model predictive control [1],

[16], [17].

In this paper, we design iterative discrete-time sampling

algorithms initialized at an arbitrary point x0 which converge

asymptotically to the solution trajectory x˚ptq up to an error

bound which may be specified as arbitrarily small. In particular,

the methods proposed here yield a sequence of approximate

time-varying optimizers txku, for which

lim
kÑ8

}xk ´ x˚ptkq} ď δ (3)

with δ dependent on the sampling interval h. To do so, we predict

where the optimal continuous-time trajectory will be at the next

sampling time and track the associated prediction error based

upon estimating the curvature of the solution trajectory. Under

suitable assumptions, we establish that the proposed prediction-

correction scheme attains an asymptotic error bound of Oph2q,



which outperforms the Ophq error bound achieved by the state-

of-the-art method of [11].

II. ALGORITHM DEVELOPMENT

In this section we introduce a class of algorithms for solving

optimization problem (2) using prediction and correction steps.

In order to converge to the solution trajectory x˚ptq, we generate

a sequence of near optimal decision variables txku by consid-

ering both how the solution changes in time and how far our

current update is from optimality at time tk.

A. Gradient Trajectory Tracking

In this paper, we consider that the initial decision variable x0

is not necessarily the optimal solution of the initial objective

function fpx; t0q, i.e., x0 ‰ x˚pt0q. We model this assumption

by defining a residual error for the gradient of the initial variable

∇xfpx0; t0q “ rp0q. To improve the estimation for the decision

variable x, we set up a prediction-correction scheme, much like

a Kalman filter strategy in estimation theory. In the first step,

we predict how the solution changes, and in the correction step

we use descent methods to push the predicted variable towards

the optimizer at that time instance.

To derive the prediction step, we reformulate the time-varying

problem (1) in terms of its optimality conditions. Minimizing the

optimization in (1) is equivalent to computing the solution of the

following nonlinear system of equations

∇xfpx˚ptq; tq “ 0, (4)

for each t. These two problems are equivalent since the objective

functions fpx˚ptq; tq are strongly convex with respect to x and

only their optimal solutions satisfy the condition in (4).

Consider an arbitrary vector x P R
n (for example the approx-

imate solution xk). The objective function gradient ∇xfpx; tq
computed at point x is

∇xfpx; tq “ rptq (5)

where rptq P R
n is the residual error. The aim of the prediction

step is to keep the residual error as constant as possible while

the optimization problem is changing, which is tantamount to

predicting xk such that we stay close to the iso-residual mani-

fold. Define ∇xxfpx; tq as the partial Hessian of the objective

function fpx; tq with respect to x, and ∇txfpx; tq as the mixed

partial derivative of the objective function fpx; tq. We aim to

maintain the evolution of the trajectory close to the residual

vector rptq, i.e.

∇xfpx; tq ` ∇xxfpx; tqδx ` ∇txfpx; tqδt “ rptq, (6)

where δx and δt are the variations of the decision variable x

and the time variable t, respectively. By subtracting (5) from (6)

and dividing the resulting equation by the time variation δt, we

obtain the continuous dynamical system

9x “ ´r∇xxfpx; tqs´1
∇txfpx; tq, (7)

where 9x “ δx{δt. We consider the discrete time approximation

of (7), which amounts to sampling the problem at times tk, for

k “ 0, 1, 2, . . . .The prediction step consists of a discrete-time

approximation of integrating (7) by using an Euler scheme. Let

Algorithm 1 Gradient trajectory tracking (GTT)

Require: Initial variable x0. Initial objective function fpx; t0q
1: for k “ 0, 1, 2, . . . do
2: Predict the solution using the prior information [cf (8)]

xk`1|k “ xk ´ r∇xxfpxk; tkqs´1
∇txfpxk; tkqh

3: Acquire the updated function fpx; tk`1q
4: Initialize the sequence of corrected variables x̂

0

k`1 “ xk`1|k

5: for s “ 0 : τ ´ 1 do
6: Correct the variable by the projected gradient step [cf (9)]

x̂
s`1

k`1
“ PX rx̂s

k`1 ´ γ∇xfpx̂s

k`1; tk`1qs

7: end for
8: Set the corrected variable xk`1 “ x̂

τ

k`1

9: end for

xk`1|k be the predicted decision variable based on the available

information up to time t, then we may write the Euler integral

approximation of (7) as

xk`1|k “ xk ´ r∇xxfpxk; tkqs´1
∇txfpxk; tkqh. (8)

Observe that the prediction step in (8) is computed by only

incorporating information available at time t; however, the

decision variable xk`1|k is supposed to be close to the iso-

residual manifold of the objective function at time tk`1. We

discuss how to enforce this property next.

The gradient trajectory tracking (GTT) algorithm uses the

projected gradient descent method to correct the predicted de-

cision variable xk`1|k so that it approximately satisfies the iso-

residual condition (6). To do so, we modify the predicted variable

xk`1|k towards the optimal argument of the objective function

at time tk`1. Therefore, the correction step of GTT requires

the execution of the projected gradient descent method based

on the updated objective fpx; tk`1q. The number of projected

gradient descent steps that can be afforded until sampling the

next function depends on the sampling rate h.

Define τ as the number of projected gradient descent steps

used for correcting the predicted decision variable xk`1|k.

Further, define x̂s
k`1

as the corrected decision variable after

executing s projected gradient descent steps. Therefore, the

sequence of variables x̂s
k`1

is initialized by x̂0

k`1
“ xk`1|k

and updated by the recursion

x̂s`1

k`1
“ PX rx̂s

k`1 ´ γ∇xfpx̂s
k`1; tk`1qs, (9)

where PX denotes the Euclidean projection operator onto the set

X and γ ą 0 is the stepsize. After executing τ steps of (9) the

GTT algorithm yields the decision variable xptk`1q :“ xk`1 “
x̂τ
k`1

at time tk`1.

We summarize the GTT scheme in Algorithm 1. Observe

that Step 2 and Step 6 implement the prediction-correction

scheme. In Step 2, we compute a first-order approximation of

the optimal solution gradient ∇xfpx˚ptkq; tq at time tk [cf. (8)].

Then we correct the predicted solution by executing τ projected

gradient descent steps as stated in (9) for the updated objective

function fpx; tk`1q in Steps 5-7. The sequence of corrected

variables is initialized by the predicted solution x̂0

k`1
“ xk`1|k

in Step 4 and the output of the recursion is considered as the

updated variable xk`1 “ x̂τ
k`1

in Step 8. The implementation



Algorithm 2 Newton trajectory tracking (NTT)

Require: Initial variable x0. Initial objective function fpx; t0q
1: for k “ 0, 1, 2, . . . do
2: Predict the solution using the prior information [cf (8)]

xk`1|k “ xk ´ r∇xxfpxk; tkqs´1
∇txfpxk; tkqh

3: Acquire the updated function fpx; tk`1q
4: Initialize the sequence of corrected variables x̂

0

k`1 “ xk`1|k

5: for s “ 0 : τ ´ 1 do
6: Correct the variable by the projected Newton step [cf (9)]

x̂
s`1

k`1
“ PX

“

x̂
s

k`1 ´ ∇xxfpx̂s

k`1; tk`1q´1ˆ

∇xfpx̂s

k`1; tk`1qs

7: end for
8: Set the corrected variable xk`1 “ x̂

τ

k`1

9: end for

of projected gradient descent for the correction process requires

access to the updated function fpx; tk`1q which is sampled in

Step 3.

Note that the GTT correction step is done by executing τ

projected gradient descent steps which only uses first-order

information. We accelerate this procedure using second-order

information in the following subsection.

B. Newton trajectory tracking

The GTT prediction step introduced in (8) requires computa-

tion of the partial Hessian inverse r∇xxfpxk; tkqs´1 which has a

computational complexity of order Opn3q. This observation im-

plies that the partial Hessian inverse of the objective is available.

Moreover, the computational complexity of the Hessian inverse

is affordable. These two observations justify using Newton’s

method for the correction step as well, which requires compu-

tation of the partial Hessian inverse of the objective function.

Therefore, we introduce the Newton trajectory tracking (NTT)

method as an algorithm that uses second-order information for

the both prediction and correction steps.

The prediction step of the NTT algorithm is identical to the

prediction step of the GTT method as introduced in (8); however,

in the correction steps NTT updates the predicted solution tra-

jectory by applying τ 1 steps of the Newton method. In particular,

the predicted variable xk`1|k in (8) is used for initializing the

sequence of corrected variables x̂s
k`1

, i.e., x̂0

k`1
:“ xk`1|k. The

sequence of corrected variables x̂s
k`1

is updated using projected

Newton steps as

x̂s`1

k`1
“PX

“

x̂s
k`1 ´ ∇xxfpx̂s

k`1; tk`1q´1
∇xfpx̂s

k`1; tk`1q
‰

.

(10)

The decision variable (solution) at step tk`1 for the NTT

algorithm xptk`1q :“ xk`1 is the outcome of τ 1 iterations of

(10) such that xk`1 “ x̂τ 1

k`1
.

Remark 1: Observe that the computational time of the New-

ton step and the gradient descent step are different. The com-

plexity of the Newton step is in the order of Opn3q, while

gradient descent step requires a computational complexity of

order Opnq. Since the sampling increment is a fixed value, the

number of Newton iterations τ 1 in one iteration of the NTT

algorithm is smaller than the number of gradient descent steps

τ that we can use in the correction step of GTT. On the other

hand, Newton’s method requires less iterations relative to the

gradient descent method to achieve a comparable accuracy. In

particular, for an optimization problem with a large condition

number the difference between the convergence speeds of these

algorithms is substantial, in which case NTT is preferable to

GTT.

III. CONVERGENCE ANALYSIS

We turn to establishing that the prediction-correction schemes

derived in Section II solve the continuous-time problem stated in

(1) up to an error term which is dependent on the discrete-time

sampling interval. All proofs are given in [18]. In order to do so,

some technical conditions are required which we state below.

Assumption 1: The solution trajectory x˚ptq of (1) is con-

tained in the interior of a convex set X Ď R
n for each t.

Assumption 2: The function fpx; tq is twice differentiable

and m-strongly convex in x P X and uniformly in t, which

allows the Hessian of fpx; tq with respect to x to be bounded

below as,

∇xxfpx; tq ľ mI, @ x P X, t. (11)

Assumption 3: The function fpx; tq for all x P X and t has

bounded second and third derivatives with respect to x P X and

t with constants

}∇xxfpx; tq} ď L, }∇txfpx; tq} ď C0, }∇xxxfpx; tq} ď C1

}∇xtxfpx; tq} ď C2, }∇ttxfpx; tq} ď C3. (12)

Assumption 1 is easily satisfied: take X to be R
n, then

we require the existence of a solution for (1) at each time t.

However, it is very useful in practice, when we know a priori

that the solution trajectory has to be, for instance, positive.

Then, we may use more tailored algorithms and may relax

Assumptions 2 and 3 and take X “ R
n
`. Assumption 2, besides

guaranteeing that Problem (1) is convex and has a unique

solution for each time instance, ensures that the Hessian of the

objective function fpx; tq is invertible. The solution uniqueness

at each time instance implies that the solution trajectory is

unique, and is often required in time-varying settings [2], [4],

[11], [19]. Assumption 3 gives to the time-varying problem

the boundedness required to ensure solution tracking (a similar

assumption is required in [4]). With unbounded derivatives, little

may be said about how the approximate solution computed at

tk would differ from the one computed at tk`1.

Under Assumptions 1, 2, and a relaxed version of Assump-

tion 3, one may establish that the solution mapping t ÞÑ x˚ptq
is one-to-one and does not vary arbitrarily in time, stated as

}x˚ptk`1q ´ x˚ptkq} ď
1

m
}∇txfpx; tq}ptk`1 ´ tkq ď

C0h

m
,

(13)

as presented in [13, Theorem 2F.10]. This property allows GTT

and NTT to converge to a neighborhood of the optimal solution.

The prediction steps of both GTT and NTT in (8) are the

approximations of the first-order forward Euler integral in (8).

The error of this approximation, ∆, is upper bounded as in the

following proposition.



Proposition 1: Under Assumptions 1-3, the error norm }∆}
of the Euler approximation (8) is upper bounded by

}∆} ď h2

„

C0C2

2m2
`

C3

2m



“ Oph2q. (14)

Proposition 1 states that the Euler error norm }∆} is bounded

above by a constant which is in the order of Oph2q. We use this

upper bound in proving convergence of the proposed methods.

We study the convergence properties of the sequence of variables

xk generated by GTT for different choices of stepsizes in the

following theorem.

Theorem 1: Denote the gradient trajectory tracking algorithm

generated by (8)-(9) as txku. Let Assumptions 1-3 hold and

define the constants ρ and σ as ρ “ p1 ` γ2L2 ´ γmq1{2 and

σ “ 1 ` hpC0C1{m2 ` C2{mq.

i) For any sampling increment h, if the stepsize satisfies γ ă
m{L2 which implies ρ ă 1, the sequence txku converges

to x˚ptkq Q-linearly up to a bounded error as

}xk ´ x˚ptkq} ď ρτk}x0 ´ x˚pt0q} (15)

`ρτ
„

h

„

2C0L

m2
`
2C0

m



`h2

„

C0C2

2m2
`

C3

2m

„

1 ´ ρτk

1 ´ ρτ



.

ii) If the sampling increment h and the stepsize γ ą 0 are

chosen such that the condition ρτσ ă 1 is satisfied, then

the sequence txku converges to x˚ptkq Q-linearly up to a

bounded error as,

}xk ´ x˚ptkq} ď pρτσqk}x0 ´ x˚pt0q} (16)

` ρτh2

„

C0C2

2m2
`

C3

2m

 „

1 ´ pρτσqk

1 ´ ρτσ



.

Theorem 1 states the convergence properties of the GTT

algorithm for different choices of the parameters. In both cases

the linear convergence to a neighborhood is shown, however, the

accuracy of convergence depends on the choice of the sampling

increment h, the stepsize parameter γ, and the number of

projected gradient descent steps τ . To guarantee that the constant

ρ is strictly smaller than 1, the stepsize must satisfy γ ă m{L2.

Then, for any choice of the sampling increment h the result in

(15) holds, which implies linear convergence to a neighborhood

of the optimal solution. In this case the error bound contains

two terms that are proportional to h and h2. Therefore, we

can say that the accuracy of convergence is in the order of

Ophq. Notice that increasing the number of projected gradient

descent iterations τ improves the speed of linear convergence by

decreasing the factor ρτ . Moreover, a larger choice of τ leads to a

better accuracy since the asymptotic error bound is proportional

to ρτ{p1 ´ σρτ q.

The result in (16) shows that the accuracy of convergence

is in the order of Oph2q when the stepsize γ is smaller than

a threshold. Observe that the error bound in (16) is strictly

smaller than the error bound in (15), since it does not contain the

term which is proportional to h. This more accurate convergence

result is achieved at the cost of choosing a smaller stepsize. To be

more precise, the constant σ in Theorem 1 is strictly greater than

1. To satisfy the condition in Theorem 1, which is equivalent to

ρτ ă 1{σ ă 1, the stepsize must be chosen as

γ ă
m `

´

m2 ´
´

σ2{τ ´1

σ2{τ

¯

L2

¯1{2

2L2
ă m{L2. (17)

As it is shown in (17), to satisfy the requirement of the result

in (16), the stepsize should be smaller relative to the required

stepsize for the result in (15).

Notice that the GTT algorithm does not incorporate the

second-order information of the update objective function

fpx; tk`1q to correct the predicted variable xk`1|k, while the

NTT algorithm uses Newton’s method in the correction step.

Similar to the advantages of Newton’s method relative to the

gradient descent algorithm, we expect to observe faster conver-

gence and more accurate estimation for NTT relative to GTT.

In the following theorem we show that when the initial estimate

x0 is close enough to the initial solution x˚pt0q, NTT yields a

more accurate convergence than that of GTT.

Theorem 2: Consider the Newton trajectory tracking algo-

rithm generated by (8) and (10). Recall the definition of σ in

Theorem 1 and assume that all the conditions in Assumptions 1-

3 hold. Assume that the initial optimality gap }x0 ´x˚pt0q} can

be written as }x0´x˚pt0q} “ β}∆|} where β ą 0 is a constant.

Further, assume that the sampling increment h is small enough

that the upper bound for the discretization error norm }∆} in

(1) is bounded above by 1, i.e., }∆} ď 1.

i) If the condition C1}∆}{2m ď β{pσβ ` 1q2 is satisfied,

then the sequence xk generated by NTT converges as

}xk ´ x˚ptkq} ď β}∆} “ Oph2q; (18)

ii) Further, if C1{2m ď β{pσβ ` 1q2 holds, then the sequence

xk satisfies

}xk ´ x˚ptkq} ď β}∆}2 “ Oph4q. (19)

Theorem 1 establishes that the NTT tracks the optimal tra-

jectory x˚ptkq up to an error bound not larger than Oph2q,

where h is the sampling rate, which is comparable to the

result of the gradient-based tracking algorithm. Moreover, when

C1{2m ď β
pσβ`1q2 , then NTT achieves an error bound at worst

Oph4q, as a result of the quadratic phase of Newton’s method.

One case where this condition is satisfied is for quadratic cost

functions, for which C1 “ 0, yielding perfect convergence.

IV. NUMERICAL ANALYSIS

We empirically verify the properties established in Section III

by running Algorithms 1 and 2 on a problem where x P X Ă R

is scalar-valued and the objective is given by

fpx; tq “
1

2
px ´ cospωtqq

2
`

κ

2
sin2pωtq exppµx2q. (20)

Here ω, κ, and µ are nonnegative scalars which we set to ω “
0.02 π, κ “ 0.1, and µ “ 0.5 in the subsequent experiments. The

function fpx; tq in (20) satisfies the Assumptions 1-3. By setting

the convex set of feasible points to X “ r´1.1, 1.1s, the required

conditions are satisfied for constants m “ 1, L “ 1.2024, C0 “
0.0755, C1 “ 0.4240, C2 “ 0.0254, C3 “ 0.0047. We select a

constant stepsize γ “ 0.1 in the projected gradient method and

initialize x as x0 “ 0.
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Fig. 1. Error }xk ´ x
˚ptkq} with respect to the sampled time tk for different

algorithms applied to (20). GTT outperforms the running method by several
orders of magnitude, with its advantage increasing with increasing τ . Moreover,
NTT with τ “ 1 outperforms the gradient tracking and GTT algorithms in terms
of error to the optimal trajectory by near 5 orders of magnitude.

In Figure 1, we plot the error }xk´x˚ptkq} versus the discrete

time tk for a sampling interval of h “ 0.1, for different schemes.

Observe that the running method [11] which uses only a gradient

correction step performs the worst, achieving an error of 10´2,

while GTT for τ “ 1, τ “ 3, and τ “ 5 achieves an error of

approximately 10´5. Numerically we may conclude that tracking

with gradient-based prediction (GTT) for different values of τ

has a better error performance than running; however, tracking

with Newton-based prediction (NTT) with τ “ 1 achieves

a superior performance compared to the others, i.e., an error

stabilizing near 10´12 is achieved.

The differences in performance can be also appreciated by

varying h and observing the worst case error floor size which

is maxkąk̄t}xk ´ x˚ptkq}u, where k̄ “ 104 in the simulations.

Figure 2 illustrates the error as a function of h. The performance

differences between the proposed methods that may be observed

here corroborate the differences evident in Figure 1. In particular,

the running method achieves the largest worst case error bound,

followed in descending order by GTT with increasing τ , and

lastly NTT, which achieves the minimal worst-case error bound.

V. CONCLUSION

We designed algorithms to track the solution of time-varying

unconstrained and strongly convex optimization problems. They

leverage on the knowledge of how the cost function changes in

time and are based on a predictor-corrector scheme. Convergence

analysis of the GTT algorithm shows a convergence accuracy of

the order of Oph2q for a properly chosen stepsize. Further, the

NTT algorithm improves this accuracy to Oph4q by incorporat-

ing second-order information in the correction step. We have

proved the proposed methods gain in performance w.r.t. a state-

of-the-art running algorithm, that only performs correction steps.
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