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ABSTRACT
We introduce a new cyclic spectrum estimation method for wide-
sense cyclostationary (WSCS) signals sampled at sub-Nyquist rate
using non-uniform sampling. We exploit the block Toeplitz structure
of the WSCS signal correlation matrix and write the linear relation-
ship between this matrix and the correlations of the sub-Nyquist rate
samples as an overdetermined system. We find the condition under
which the system matrix has full column rank allowing for least-
squares reconstruction of the WSCS signal correlation matrix from
the correlations of the compressive measurements. We also evaluate
the case when the support of the WSCS signal correlation is limited
and look at a special case where each selection matrix is restricted
to either an identity matrix or an empty matrix. In the latter case,
we can connect the full column rank condition of the system matrix
with a circular sparse ruler.

Index Terms— non-uniform sampling, cyclostationary, circular
sparse ruler, linear sparse ruler, least-squares

1. INTRODUCTION AND RELATED WORKS

Many researches have been done in the field of compressive sam-
pling a.k.a. sub-Nyquist rate sampling due to the desire to relax the
requirements on the analog-to-digital converters while maintaining
the possibility for signal reconstruction with no or little information
loss. This is possible under the constraint that the signal is sparse in
a certain basis [1, 2]. Some applications, such as wideband spectrum
sensing for cognitive radio networks, however, require perfect recon-
struction of only the power spectrum or cyclic spectrum, instead of
the signal itself. Perfect power spectrum reconstruction from sub-
Nyquist rate samples has been shown to be possible for a wide-sense
stationary (WSS) signal [3, 4] and for a multiband signal with un-
correlated spectra at different bands [5]. This can be performed even
without applying a sparsity constraint on the actual power spectrum.

Since a stationary process can be perceived as a special case of a
cyclostationary process, which is a process whose statistical charac-
teristics vary periodically with time, the reconstruction of the power
spectrum of a WSS signal can be treated as a special case of the re-
construction of the cyclic spectrum of a wide-sense cyclostationary
(WSCS) signal. However, while compressively reconstructing the
power spectrum of a WSS signal without applying a sparsity con-
straint on the power spectrum is possible due to the Toeplitz structure
in the temporal correlation matrix, it is challenging to find a special
structure in the WSCS signal correlation matrix that can be exploited
to perform compression. This complicates the cyclic spectrum re-
construction from sub-Nyquist rate samples of a WSCS signal and
forces [6] to assume a sparse two-dimensional cyclic spectrum. A
similar problem is found in [7], which focuses on only a real multi-
band signal and arrives at the assumption that the correlation matrix
of the entries at different bands has nonzero values only at the diag-
onal and anti-diagonal elements. A different approach in [8] views
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the compressive measurements as random linear projections of the
original signal and sets the span of the random linear projections
equal to an integer multiple of the cyclic period. This allows [8]
to exploit the block Toeplitz structure in the correlation matrix and
to perform compression yet to present their reconstruction problem
as an overdetermined system. The work of [8] does not focus on
multi-coset or non-uniform sampling and thus, it does not attempt to
find the condition of the system matrix that allows for a least-squares
(LS) solution for the overdetermined system. In this paper, we also
set the span of the random linear projections equal to an integer mul-
tiple of the cyclic period but we focus only on non-uniform sam-
pling. We express the correlations of the sub-Nyquist rate samples
as a linear function of the correlation matrix of the corresponding
Nyquist-rate samples. We find the condition for the system matrix to
have full rank, which enables the LS reconstruction of the correlation
matrix of the WSCS signal from the correlations of the compressive
measurements. The cyclic spectrum can then be estimated from the
reconstructed correlation matrix of the WSCS signal.

2. SYSTEM MODEL AND COMPRESSION

Let us consider a discrete WSCS signal x[t], where the autocorre-
lation sequence rx[t, τ ] = E{x[t]x∗[t − τ ]} is periodic in t with
a period of T . The cyclic autocorrelation sequence and the cyclic
power spectrum of x[t] are then respectively given by

r̃x[f, τ ] =
1

T

T−1∑
t=0

rx[t, τ ]e
−j2πf(t−τ/2)/T , (1a)

sx[f, φ) =
∞∑

τ=−∞

r̃x[f, τ ]e
−j2πφτ , (1b)

with φ ∈ [0, 1) the frequency and f ∈ {0, 1, . . . , T − 1} the
cyclic frequency. Note that when x[t] is produced by Nyquist-rate
sampling at a rate of fs Hz, f and φ correspond to an actual cyclic
frequency of f fs

T
Hz and an actual frequency of φfs Hz, respec-

tively. We cascade T consecutive samples x[t] in x[n] = [x[nT ],
x[nT + 1], . . . , x[nT + T − 1]]T , which is a sequence of sta-
tionary vectors with T × T correlation matrix sequence Rx[k] =
E
{
x[n]xH [n− k]

}
= [rx[t, kT + t − τ ]]t,τ . Note that a one-to-

one mapping exists between rx[t, τ ] and Rx[k]. Next, we stack N
consecutive T × 1 stationary vectors x[n] into an NT × 1 vector
x̃[ñ] as x̃[ñ] = [xT [ñN ],xT [ñN + 1], . . . ,xT [ñN + N − 1]]T .
The NT × NT correlation matrix of x̃[ñ] at lag 0 is then given by
Rx̃[0] = E[x̃[ñ]x̃H [ñ]], whose relationship to Rx[k] is given by

Rx̃[0] =

⎡
⎢⎢⎢⎣

Rx[0] Rx[−1] . . . Rx[−N + 1]
Rx[1] Rx[0] . . . Rx[−N + 2]

...
...

. . .
...

Rx[N − 1] Rx[N − 2] . . . Rx[0]

⎤
⎥⎥⎥⎦ (2)

which has a block Toeplitz structure. This allows us to perform
a temporal compression by introducing an M̃ × 1 vector ỹ[ñ] =
[yT [ñN ],yT [ñN +1], . . . ,yT [ñN +N − 1]]T , where y[ñN +n]
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is an Mn × 1 vector given by

y[ñN + n] = Cnx[ñN + n], n = 0, 1, . . . , N − 1, (3)

with M̃ =
∑N−1

n=0 Mn and Cn the Mn × T multi-coset sampling
a.k.a. selection matrix whose rows are obtained by selecting the Mn

rows of the T × T identity matrix IT . We can then write ỹ[ñ] as

ỹ[ñ] = C̃x̃[ñ], (4)

where C̃ is an M̃ × NT block diagonal matrix given by C̃ =
diag{C0,C1, . . . ,CN−1}. As we will show in Section 3, for a
certain value of n, it is possible that none of the rows of IT is se-
lected to form Cn (i.e., Mn = 0). In this case, for that particular n,
y[ñN + n] = Cn = [ ], where [ ] is an empty matrix, as none of the
entries of x[ñN +n] is selected. Note from (4) that we take M̃ ran-
dom linear projections with a total span of NT (N times the period
of the autocorrelation sequence rx[t, τ ]) and attain compression by
having M̃ < NT .

Observe that y[ñN + n] in (3) is generally not a sequence of
stationary vectors since Cn is generally different for different values
of n. However, we can obtain a sequence of stationary vectors by
collecting y[ñN+n] at different values of ñ for a given n. We define
the Mn×Mn′ correlation matrix Ryn,n′

= E[y[ñN+n]yH [ñN+

n′]], which can be written, by introducing k = n− n′, as

Ryn,n−k
= CnRx[k]C

H
n−k. (5)

In practice, the computation of Ryn,n−k
in (5) must be approxi-

mated by taking an average over y[ñN + n] at different indices
ñ. We aim to reconstruct Rx̃[0] in (2), which is equivalent to re-
constructing Rx[k] from {Ryn,n−k

}
N−1+min(0,k)

n=max(0,k) in (5) for k =

0,±1, . . . ,±(N − 1). Let us now take the realness of Cn into ac-
count, stack the columns of Ryn,n−k

in (5) into an (MnMn−k)× 1
vector vec(Ryn,n−k

), and rewrite (5) as

vec(Ryn,n−k
) = (Cn−k ⊗Cn)vec(Rx[k]), (6)

where vec(.) is the operator that stacks all columns of a matrix into
a column vector and ⊗ denotes the Kronecker product operation. In
the event where we have either Cn−k = [] (Mn−k = 0) or Cn = []
(Mn = 0) in (6) for a particular n, the corresponding vec(Ryn,n−k

)
and Cn−k ⊗Cn are given by vec(Ryn,n−k

) = Cn−k ⊗Cn = [ ].
Stacking vec(Ryn,n−k

) in (6) in ascending order of n, for all n =
max(0, k), . . . , N − 1 + min(0, k), into a γk × 1 vector ry,k with
γk =

∑N−1+min(0,k)

n=max(0,k) MnMn−k, we can then express ry,k as

ry,k =

⎡
⎢⎢⎢⎣

Cmax(−k,0) ⊗Cmax(0,k)

Cmax(−k,0)+1 ⊗Cmax(0,k)+1

...
CN−1+min(−k,0) ⊗CN−1+min(0,k)

⎤
⎥⎥⎥⎦ vec(Rx[k])

= Ψkvec(Rx[k]), k = 1−N, . . . , N − 2, N − 1. (7)

3. PERFECT RECONSTRUCTION

Observe that we can reconstruct vec(Rx[k]) in (7) from ry,k using
LS as long as the γk × T 2 matrix Ψk has full column rank. Hence,
Rx̃[0] in (2) can be reconstructed from {ry,k}

N−1
k=1−N using LS as

long as {Ψk}
N−1
k=1−N all have full column rank. In order to simplify

the discussion, we consider the following remark.

Remark 1: The full column rank condition of Ψk can be achieved
only if we have γk ≥ T 2. In addition, observe in (7) that each row
of Ψk has only a single one in one entry and zeros elsewhere since
the rows of Cn in (6) are selected from the rows of IT . Hence, Ψk

will have full column rank if and only if each of its columns has at

least a single one.
Let us now introduce the following definition.

Definition 1: Define Cn as the set containing the indices of
the rows of IT used in Cn. The set Cn′,n is then defined as
Cn′,n = {(i, j)|∀i ∈ Cn′ , j ∈ Cn}. Note that we generally
have Cn′,n �= Cn,n′ .
We can then present the following lemma.

Lemma 1: One row of Cn′⊗Cn will have a one in the [(i− 1)T + j]-
th entry and zeros elsewhere, if and only if (i, j) ∈ Cn′,n, i.e., Cn′

contains the i-th row of IT and Cn contains the j-th row of IT .
Proof: The proof directly follows from the property of the Kro-

necker product operation. �
Based on Lemma 1, the full column rank condition of Ψk in (7) is

provided by the following theorem.

Theorem 1: Ψk in (7) has full column rank if and only if

Γk ≡

N−1+min(0,k)⋃
n=max(0,k)

Cn−k,n = {(1, 1), (1, 2), . . . , (1, T ),

(2, 1), (2, 2), . . . , (T, T )}. (8)

Proof: Recall from Lemma 1 that if we have (i, j) ∈ Cn−k,n,
Cn−k ⊗ Cn will have a one in the [(i− 1)T + j]-th column. We
can then observe that satisfying (8) is equivalent to ensuring that the
[(i− 1)T + j]-th column of at least one of the matrices {Cn−k ⊗

Cn}
N−1+min(0,k)

n=max(0,k) contains a one in one entry and zeros elsewhere
for all i, j = 1, 2, . . . , T . By taking the structure of Ψk in (7) into
account, satisfying (8) also guarantees that every column of Ψk has
at least a single one, which proves the sufficiency part of the theorem
due to Remark 1. To prove the necessity part, assume that Ψk in (7)
has full column rank but there is an (a, b) with a, b ∈ {1, 2, . . . , T}
such that (a, b) /∈ Γk. Based on (8) and Lemma 1, this means that
none of the matrices {Cn−k ⊗ Cn}

N−1+min(0,k)

n=max(0,k) has a one in the
[(a− 1)T + b]-th column. If we take the structure of Ψk in (7) into
account, this implies that the [(a− 1)T + b]-th column of Ψk only
contain zeros. Using Remark 1, this indicates that the full column
rank condition of Ψk is violated, which contradicts our initial as-
sumption. �
Consider the case of k = N − 1 (we have ΨN−1 = C0 ⊗CN−1

in (7)) and k = −N + 1 (we have Ψ1−N = CN−1 ⊗ C0 in (7)).
Observe that the size of both ΨN−1 and Ψ1−N is M0MN−1 × T 2.
For this specific case, we have the following theorem.

Theorem 2: ΨN−1 and/or Ψ1−N will have full column rank if and
only if C0 = CN−1 = IT .
Proof: The sufficiency part of this theorem is already clear as having
C0 = CN−1 = IT leads to ΨN−1 = Ψ1−N = IT2 . The necessity
part is shown for the full column rank condition of ΨN−1 by con-
sidering Theorem 1, which requires C0,N−1 = {(1, 1), (1, 2), . . . ,
(1, T ), (2, 1), (2, 2), . . . , (T, T )}. This is identical to requiring C0
= CN−1 = {1, 2, . . . , T} due to Definition 1. The proof is con-
cluded for ΨN−1. The proof for Ψ1−N follows the same steps. �

Since Theorem 2 requires us to have C0 = CN−1 = IT , our
task is to design {Cn}

N−2
n=1 based on Theorem 1. One specific case

occurs when we restrict Cn to either Cn = IT or Cn = [ ], for each
n = 1, 2, . . . , N − 2. In this case, Ψk in (7) must contain at least
one self Kronecker product of IT (IT ⊗ IT ) to preserve its full col-
umn rank condition. More precisely, for k ∈ {1−N, . . . , N − 1},
we need at least a pair of n, n′ ∈ {0, 1, . . . , N−1} with n−n′ = k
and Cn = Cn′ = IT to ensure the full column rank condition of
Ψk. At this stage, let us review the concept of a linear sparse ruler
discussed in [3, 9, 10].
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Definition 2: A length-(N − 1) linear sparse ruler is defined as
a set P ⊂ {0, 1, . . . , N − 1} such that {|p − p′||∀p, p′ ∈ P} =
{0, 1, . . . , N − 1}. It is called minimal if no other linear sparse
ruler of length N − 1 exists with less elements.
Using Definition 2, it is easy to show that the full column rank

condition of {Ψk}
N−1
k=1−N , when we restrict Cn to either Cn = IT

or Cn = [ ] for each n, follows the following theorem.

Theorem 3: Define W as the number of sampling matrices
{Cn}

N−1
n=0 that are set to IT , i.e., Cnw = IT , for w = 0, 1, . . . ,W−

1. The full column rank of all {Ψk}
N−1
k=1−N is ensured if and only if

the setW = {nw|nw ∈ {0, 1, . . . , N − 1}, w = 0, 1, . . . ,W − 1}
is a linear sparse ruler.
Under the constraint that we have either Cn = IT or Cn = [ ] for

each n = 0, 1, . . . , N − 1, it is of interest to obtain the strongest
possible compression rate M̃/NT . This is equivalent to minimiz-
ing the cardinality of W in Theorem 3 under the condition that
W is a length-(N − 1) linear sparse ruler. This boils down to a
length-(N − 1) minimal linear sparse ruler problem [3, 9], whose
solution minimizes M̃/NT under the aforementioned constraint
while maintaining the identifiability of {vec(Rx[k])}

N−1
k=1−N in (7).

Once Rx̃[0] in (2) is reconstructed, we can reconstruct the cyclic
autocorrelation sequence r̃x[f, τ ] from Rx̃[0] using (1a) and the
cyclic power spectrum sx[f, φ) from r̃x[f, τ ] using (1b).

4. LIMITED CORRELATION SUPPORT

Let us now assume that the support of Rx[k] in (5) is limited to
1−N ≤ k ≤ N − 1 and that the elements of Rx[k] are all close to
0 for |k| ≥ N . In addition, unlike in the previous sections, we also
exploit the correlation between ỹ[ñ] in (4) and its neighboring blocks
ỹ[ñ + 1] and ỹ[ñ − 1]. While we have written Ryn,n−k

in (5) as
Ryn,n−k

= E[y[ñN+n]yH [ñN+n−k]] we can now also write it,
for example, as Ryn,n−k

= E[y[ñN+n]yH [(ñ−1)N+n−k+N ]]

for k > 0 or as Ryn,n−k
= E[y[ñN+n]yH [(ñ+1)N+n−k−N ]]

for k < 0. By considering (3), we can now also rewrite (5) as

Ryn,n−k
= CnRx[k]C

H
(n−k) mod N , (9)

with n mod N the remainder of the integer division n/N . We
stack the columns of Ryn,n−k

into vec(Ryn,n−k
) as in Section 2

but we now cascade vec(Ryn,n−k
), for all n = 0, 1, . . . , N − 1,

in increasing order of n into a γ̃k × 1 vector r̃y,k with γ̃k =∑N−1
n=0 MnM(n−k) mod N . We can then express r̃y,k as

r̃y,k =

⎡
⎢⎢⎢⎣

C(−k) mod N ⊗C0

C(1−k) mod N ⊗C1

...
C(N−1−k) mod N ⊗CN−1

⎤
⎥⎥⎥⎦ vec(Rx[k])

= Ψ̃kvec(Rx[k]), k = 1−N, . . . , N − 2, N − 1. (10)

We can again reconstruct vec(Rx[k]) from r̃y,k in (10) using LS
where the condition that ensures a full column rank Ψ̃k in (10) can
be found by following the procedure in Section 3. By applying Re-
mark 1 to Ψ̃k, using Definition 1 as well as Lemma 1, and following
an analysis similar to the proof of Theorem 1, we can find that Ψ̃k

in (10) has full column rank if and only if

Γ̃k ≡

N−1⋃
n=0

C(n−k) mod N,n = {(1, 1), (1, 2), . . . , (1, T ),

(2, 1), (2, 2), . . . , (T, T )}. (11)

It is interesting to observe that, for this limited correlation support
case, we do not have any condition similar to Theorem 2.

We again focus on the case where Cn is restricted to either
Cn = IT or Cn = [ ], for each n = 0, 1, . . . , N − 1. In or-
der to maintain the full column rank condition of Ψ̃k in (10), Ψ̃k

must contain at least one self Kronecker product of IT , which is
equivalent, for each k ∈ {1 − N, . . . , N − 1}, to having at least a
pair of n, n′ ∈ {0, 1, . . . , N − 1} with (n − n′) mod N = k and
Cn = Cn′ = IT . We now look at the concept of a circular sparse
ruler discussed in [9].
Definition 3: A circular sparse ruler of length N − 1 is defined as

a set Q ⊂ {0, 1, . . . , N − 1} such that {(q − q′) mod N|∀q, q′ ∈
Q} = {0, 1, . . . , N − 1}. It is called minimal if no other circular
sparse ruler of length N − 1 exists with less elements.
Using Definition 3, it is obvious that the full column rank condition

of {Ψ̃k}
N−1
k=1−N , when we restrict {Cn}

N−1
n=0 to either Cn = IT or

Cn = [ ], follows the following theorem.

Theorem 4: Recall from Theorem 3 that W = {nw|nw ∈
{0, 1, . . . , N − 1}, w = 0, 1, . . . ,W − 1} with {Cnw}

W−1
w=0 = IT .

The full column rank of all {Ψ̃k}
N−1
k=1−N in (10) is guaranteed if the

setW is a circular sparse ruler.
Again, if we restrict Cn to either Cn = IT or Cn = [ ], for each
n = 0, 1, . . . , N − 1, the best compression M̃/NT is obtained by
minimizing the cardinality of W in Theorem 4 under the condition
that W is a length-(N − 1) circular sparse ruler, which boils down
to a length-(N − 1) minimal circular sparse ruler problem [9].

5. SELECTION MATRIX CONSTRUCTION

5.1. General Case

We focus on the formation of {Cn}
N−1
n=0 for the general case dis-

cussed in Sections 2 and 3. Recall that Theorem 2 requires us
to have C0 = CN−1 = IT to obtain full column rank ΨN−1

and Ψ1−N . Also note from (7) that, for a larger n, less number
of matrices {Cn}

N−1
n=0 are contained in Ψn. It is thus reasonable

to construct {Cn}
N−1
n=0 by evaluating the rank condition of Ψn

starting from n = N − 1 to n = 0. Note from (7) that the full
column rank of Ψ−n is ensured once Ψn has full column rank.
Let us start by evaluating ΨN−2 = [(C0 ⊗ CN−2)

T , (C1 ⊗
CN−1)

T ]T = [(IT ⊗CN−2)
T , (C1⊗IT )

T ]T . Assuming CN−2 =
{m1,m2, . . . ,mMN−2} and C1 = {m̃1, m̃2, . . . , m̃M1}, we have
from Definition 1 C0,N−2 = {(1,m1), (1,m2), . . . , (1,mMN−2),
(2,m1), (2,m2), . . . , (T,mMN−2)} and C1,N−1 = {(m̃1, 1),
(m̃1, 2), . . . , (m̃1, T ), (m̃2, 1), (m̃2, 2), . . . , (m̃M1 , T )}. Note
from Theorem 1 that ΨN−2 has full column rank if and only if
ΓN−2 = C0,N−2 ∪ C1,N−1 satisfies (8). Observe that this is possi-
ble only if we have at least one of CN−2 and C1 equal to IT . Once
we set either CN−2 or C1 to IT , it is reasonable in this step to set the
other one to [] as we want to minimize the compression rate. We pro-
ceed to evaluate ΨN−3 = [(C0⊗CN−3)

T , (C1⊗CN−2)
T , (C2⊗

CN−1)
T ]T = [(IT⊗CN−3)

T , (C1⊗CN−2)
T , (C2⊗IT )

T ]T . As
we have set either CN−2 or C1 to IT and the other one to [], we have
C1 ⊗CN−2 = [ ] and ΨN−3 = [(IT ⊗CN−3)

T , (C2 ⊗ IT )
T ]T .

Using the same analysis used when we considered ΨN−2, we
clearly have to set either CN−3 or C2 to IT . Again, it is reasonable
to set the other matrix to [ ].

At this stage, it can be found that we might face two possibilities
with respect to the next considered Ψn. First, we might be again re-
quired to set one of two selection matrices to IN in order to ensure
the full column rank of the next considered Ψn. Second, we might
have an option to set two selection matrices to [ ] while maintaining
the full column rank of the next considered Ψn. These two possi-
bilities are repeatedly faced for every considered Ψn as long as we
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set one selection matrix to IN and the other one to [ ], when the first
one occurs, and we set both selection matrices to [ ], when the second
one occurs. If this procedure is followed, we can find that each of
{Cn}

N−1
n=0 is equal to either IT or [ ], which is the constraint that we

considered when we formulated Theorem 3. Considering that this
procedure is a reasonable way to minimize the compression rate, we
suggest to design {Cn}

N−1
n=0 by following Theorem 3 and minimiz-

ing the cardinality of W in Theorem 3, i.e., solving the minimal
linear sparse ruler problem. Many solutions for the minimal linear
sparse ruler problem have been tabulated.

8 10 12 14 16 18 20 22
0.2

0.25

0.3

0.35

0.4

0.45

The value of N

A
ch

ie
ve

d
 C

o
m

p
re

ss
io

n
 R

at
e

 

 

Minimal Circular Sparse
Ruler (all T)
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Fig. 1. The achievable compression rate for the selection matrices
designed using the greedy algorithm in Table 1 and those designed
based on the minimal circular sparse ruler.

5.2. Limited Correlation Support Case

Recall that we do not have any condition similar to Theorem 2 for
the limited correlation support case. Hence, unlike in Section 5.1,
it is reasonable for this case to expect that there might be better op-
tions than setting Cn either to IT or [ ] for all n, which leads to a
circular sparse ruler based matrices design in Theorem 4. This mo-
tivates us to propose an algorithm, provided in Table 1, for design-
ing {Cn}

N−1
n=0 for the limited correlation support case in Section 4.

The main for loop in step 4 of Table 1 decides on some rows of
{Cn}

N−1
n=0 while focusing on the full column rank condition of Ψk.

Only non-negative k is considered since Ψ−k has full column rank
once Ψk has full column rank. Each element of the indicator ma-
trix Z(k) is equal to either 0 or 1. [Z(k)]i,j = 1 indicates that the
((i − 1)T + j)-th column of Ψk already has at least a single one.
The while loop in step 5 checks if all columns of the considered Ψk

have at a least single one and, as long as this is not the case, it will
iterate and add one row to one of the matrices {Cn}

N−1
n=0 . The inner

for loop in steps 6-9 determines the indices of the candidate rows of
IN to be added to each of the matrices {Cn}

N−1
n=0 . However, steps

10-11 will decide that only one of the matrices {Cn}
N−1
n=0 is going

to be updated in each iteration of the while loop. Fig. 1 describes the
achievable compression rate for the selection matrices designed us-
ing the greedy algorithm in Table 1. We run the algorithm 1000 times
and pick the matrix offering the best compression for each N and T .
Here, T is varied from T = 18 to T = 30 and N is varied from
N = 9 to N = 21. We also plot the achievable compression rate for
the selection matrices designed based on the minimal circular sparse
ruler, which is independent of T since the minimal circular sparse
ruler based Cn is set to either IT or []. Observe that the minimal
circular sparse ruler based selection matrices offer a stronger com-
pression than the ones produced by the greedy algorithm. However,

the minimal circular sparse ruler problem is a combinatorial prob-
lem whose solution has to be found using a brute force, which might
be computationally infeasible for a large N . Moreover, the circular
sparse ruler based selection matrices lead to many Nyquist-spaced
samples and thus, the greedy algorithm might be more attractive for
some applications.

Table 1. A greedy algorithm to find a sub-optimal solution for
{Cn}

N−1
n=0 for limited correlation support case.

Algorithm
1: Introduce Z(k) as a T ×T indicator matrix with respect

to Ψk and denote its element at the i-th row and the j-th
column by [Z(k)]i,j .

2: For all k = 0, . . . , N − 1, initialize Z(k) = 0T×T with
0T×T a T × T matrix containing only zeros.

3: For k = N − 1, randomly select i, j ∈ {1, 2, . . . , T},
and set C0 = i, CN−1 = j, and [Z(N−1)]i,j = 1.

4: for k = N − 1 to 0 in decreasing order do
5: while Z(k) has at least one zero entry do
6: for n = 0 to N − 1 do
7: Define a set Ξ = {1, 2, . . . , T} \Cn and a func-

tion f(g′n, n) as
f(g′n, n) =

∑
i′∈C(n−k) mod N

(1− [Z(k)]i′,g′n)

+
∑

i′′∈C(n+k) mod N
(1− [Z(k)]g′n,i′′).

8: Search in Ξ for the element gn that satisfies:
gn = argmaxg′n∈Ξ

f(g′n, n), randomly pick one
if we have multiple gn, and set hn = f(gn, n).

9: end for
10: Find n̄ such that hn̄ is the maximum of {hn}

N−1
n=0 ,

randomly pick one if have multiple maxima hn̄,
and update Cn̄ to Cn̄ = Cn̄ ∪ {gn̄}.

11: For all i′ ∈ C(n−k) mod N and i′′ ∈ C(n+k) mod N ,
set [Z(k)]i′,gn̄ and [Z(k)]gn̄,i′′ to 1, respectively.

12: end while
13: if k > 0 do
14: for n = 0 to N − 1 do
15: For all i′ ∈ C(n−k+1) mod N , i′′ ∈ C(n+k−1) mod N

and j′ ∈ Cn, set [Z(k−1)]i′,j′ and [Z(k−1)]j′,i′′
to 1.

16: end for
17: end if
18: end for

6. CONCLUSION

The knowledge of the cyclic period allows us to set the span of
the random linear projections such that the block Toeplitz structure
emerges in the WSCS signal correlation matrix. We have shown how
to exploit this block Toeplitz structure, have introduced compression
using non-uniform sampling, and have presented the reconstruction
problem as an overdetermined system. We have presented the condi-
tion for the system matrix to have full column rank, which allows for
LS reconstruction of WSCS signal correlation matrix. We consid-
ered two cases, the general case and the limited correlation support
case. For the general case, we proposed the minimal linear sparse
ruler based sampling matrices design as a reasonable way to approx-
imately minimize the compression rate. For the limited correlation
support case, we proposed a greedy algorithm to find a suboptimal
solution for the sampling matrices, which might be more attractive
in particular situations than the minimal circular sparse ruler based
solution, though the latter appears to offer a stronger compression.
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