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Abstract—The selection of the minimum number of sensors
within a network to satisfy a certain estimation performance
metric is an interesting problem with a plethora of applications.
We have recently explored the sparsity embedded within this
problem and have proposed a relaxed sparsity-aware sensor
selection (SparSenSe) approach as well as a distributed version
of it. In this paper, we generalize our recently proposed sensor
selection paradigm to be able to operate even in cases where
the measurement noise experienced by the sensors is correlated.
We derive the related centralized and distributed algorithms and
analyze them in terms of their computational and communication
complexities. We also provide general remarks on the conver-
gence of our proposed distributed algorithm. Our simulation
results corroborate our claims and illustrate a promising perfor-
mance for the proposed centralized and distributed algorithms.

Index Terms—Distributed estimation, sensor selection, sparse
reconstruction.

I. INTRODUCTION

We study the problem of selecting the minimum number

of sensors among a network of sensor nodes in order to

estimate a vector of interest so that a given mean squared

error (MSE) is satisfied. This problem is of great interest in

several practical application domains including robotics, target

tracking, and energy efficient network management, to name

a few (see for instance [1] and references therein). A straight-

forward method to solve such a problem is a combinatorial

approach considering all possible combinations of all possible

sizes of candidate sensors to satisfy the constraint, which is

numerically intractable for a large number of sensors and

thus motivates a more intelligent and structured approach. The

problem becomes even more challenging when a distributed

context is considered.

A related sensor selection problem has been studied in

[1] where elegant convex relaxations are designed for primal

and dual problems. However, instead of optimizing different

performance metrics and fixing the number of sensors as in

[1], we minimize the number of sensors given a performance

constraint, which is generally more practical. Interestingly,

this enables us to exploit the sparsity embedded within the

This work was supported in part by NWO-STW under the VICI program
(10382) and in part by STW under the D2S2 project from the ASSYS program
(Project 10561). X. Ma was supported in part by NSF Grant No. ECCS-
1202286.

problem. From this angle, our approach is closer to what

is proposed in [2] for selecting reliable sensors, also called

“robust sensing”. However, we consider a different constraint

than the one in [2], and we do not need the sensors to take

measurements for solving the selection problem; we only need

them to know their regression coefficients. Also, in both [1]

and [2], a distributed approach has not been considered.

A decentralized implementation of [1] is proposed in [3];

however, the heuristic assumption of two “leader” nodes

violates the classical definition of a distributed approach.

In [4], two distributed implementations of [1] based on a

truncated Newton algorithm are proposed. In [5] we have

explored the sparsity embedded within the problem and have

propose a relaxed sparsity-aware sensor selection approach

called SparSenSe. We have also presented a reasonably low-

complexity and elegant distributed version of SparSenSe,

called DisParSense, such that each sensor can decide itself

whether it should contribute to the estimation or not. Com-

pared to [5], the work of [4] deals with a slightly different

problem and also requires the private sensor information to be

broadcast whereas the proposed approach in [5] avoids that.

Moreover, the distributed approach of [5] is considerably more

efficient in terms of complexity compared to [4]. Finally, an-

other relevant problem, but of a different nature, is considered

in [6], where a distributed algorithm is designed to identify the

sensors containing relevant information by a sparsity-aware

decomposition of the measurement covariance matrix.

In [5], we have only considered the case where the noise

experienced by the sensors is uncorrelated. This might be

a justifiable assumption in some cases, but in general the

experienced noise of the sensors can be correlated. Particularly,

as it is pointed out in [7], [8], since the measurement noises of

different sensors may depend on a common “estimatee” (as is

the case in our problem formulation), the sensors can observe

correlated noise. Another example occurs where the estimatee

is observed by sensors in a common noisy environment, such

as noise generated by a jammer. In such cases the measurement

noises of the sensors are often correlated. This motivates us

to extend our previously proposed algorithms to be able to

operate in a more practical (and more general) framework of

correlated noise.

The rest of this paper is organized as follows. In Section II,



the problem of interest is defined and our goal is stated. In

Section III, the centralized problem is explained and a relaxed

convexified solution is provided. Section IV is devoted to

a distributed derivation of the centralized problem where a

convergence analysis is briefly summarized. In Section V,

the computational and communication costs involved in the

proposed algorithms are investigated and compared. Finally,

in Section VII, some important features of the proposed

distributed algorithm are discussed and the paper is concluded

by highlighting our future research directions.

II. PROBLEM DEFINITION

We consider m sensor nodes distributed over an area of

interest in Rd, with d ≤ m, which are supposed to estimate

the unknown vector x ∈ Rn. The sensor nodes are equipped

with (limited) computational and communication capabilities

and each of them measures

yi = aTi x+ ηi, i = 1, . . . ,m, (1)

where the ai’s ∈ Rn span Rn (m ≫ n) and the ηi’s are the

noise experienced by different sensors which are considered

to be zero-mean and “correlated”. Note that, considering the

spatial distribution of the sensors, we assume that the ai’s are

different so that we can distinguish the sensors based on their

regressors. Here, we are interested in selecting a priori the

minimum number of sensors (namely, measurements) so that

the mean squared error (MSE) of estimating x is smaller than

a desired value γ. Furthermore, we are interested in algorithms

that would enable the sensors themselves to decide their own

active/inactive status, without a centralized collection of the

ai vectors, i.e., we are interested in distributed algorithms.

III. CENTRALIZED OPTIMIZATION PROBLEM

In a centralized setup, all ai’s are available in a cen-

tral unit which permits us to define the matrix A =
[a1, · · · , am]T . Now, we can construct y = Ax + η, where

y = [y1, · · · , ym]T , and η = [η1, · · · , ηm]T . Note that, by

considering correlated noise η ∼ N (0, C), where C by

definition is a symmetric and positive semidefinite (PSD)

matrix [9]. For the linear measurement model (1) and the

maximum likelihood estimator, the MSE can be expressed as

MSE = E
[

‖x− x̂‖22
]

= tr
(

(AT C−1 A)−1
)

,

where tr(.) stands for the trace operator. Notably, different

from the case of uncorrelated noise in [5], here C is not

diagonal and can even be a full matrix due to the correlated

noise assumption. The non-diagonal elements [C]ij , i 6= j,
should also be incorporated within our selection procedure.

In order to handle the non-diagonal elements, we define a

symmetric PSD selection matrix W = wwT , where w =
[w1, . . . , wm]T is the selection vector (similar to [5]) and

the variable wi ∈ {0, 1} encodes whether the i-th sensor

(measurement) is to be used. Notice that based on this new

definition of W, [C]ij will only be incorporated if both wi

and wj are non-zero at the same time. The associated selection

constraint on the MSE can then be stated as

tr
(

(AT [W ⊙C−1]A)−1
)

≤ γ, (2)

where ⊙ stands for the Hadamard product. In practice, only a

few sensors should be activated to satisfy the MSE constraint,

which triggers the idea of exploiting the sparsity embedded

within the problem. Note that since wi ∈ {0, 1}, we have

diag(W) = w, where diag(.) returns a vector containing

the diagonal elements. Thus, the problem can be cast as the

following optimization program

minimize
W,u

‖diag(W)‖0 (3a)

s.t.

[

AT [W ⊙C−1]A ej
eTj uj

]

� 0, j = 1, . . . , n,

(3b)

||u||1 ≤ γ, uj ≥ 0, j = 1, . . . , n, (3c)

[W]i,j ∈ {0, 1}, W ∈ S
m
+ , rank(W) = 1, (3d)

where u = [u1, . . . , un]
T is a vector of auxiliary variables,

ej is the j-th column of the n × n identity matrix In, and

Sm+ = {X ∈ Rm×m|X � 0, XT = X} denotes the set of

symmetric PSD matrices. The constraints (3b) and (3c) are

a more suitable representation of the original constraint (2),

obtained using the Schur complement [10]. We denote the

solution to (3) as (W∗,u∗). Clearly, (3) is non-convex due to

its objective (ℓ0 norm), and the first and the third terms in (3d)

(finite-alphabet constraint on the elements of W and rank-1
constraint, respectively). In order to define a convex problem,

we relax these three non-convex terms as

minimize
W,u

tr(W) (4a)

s.t.

[

AT [W ⊙C−1]A ej
eTj uj

]

� 0, j = 1, . . . , n,

(4b)

||u||1 ≤ γ, uj ≥ 0, j = 1, . . . , n, (4c)

0 ≤ [W]i,j ≤ 1, W ∈ S
m
+ . (4d)

We call this algorithm SparSenSe-C to distinguish it from the

algorithm previously developed for uncorrelated noise, and

we denote its solution as (Ŵ, û). A final step to recover

ŵ from Ŵ would be to apply a Choleskey decomposition

and a possible randomization procedure to compensate for

the relaxed rank-1 constraint. Alternatively, we can simply

consider ŵ = diag(Ŵ), which is what we do in this paper.

IV. DISTRIBUTED ALGORITHM

Triggered by the localized nature of many phenomena of

interest in practical applications, in this section, we develop

a distributed version of the centralized approach proposed

earlier. In practice, the noise correlation follows a regional

(localized) pattern. This means C will not be a full matrix but

there will be correlation regions within which the noise expe-

rienced by the sensors is correlated and the cross-correlations

of the noise experienced by these regions would be orders of

magnitude smaller than the correlation within each region. Let
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 =

C
∑

l=1

Ll(Wl,u,G). (6)

us call these regions “clusters”.

Assumption 1: For the sake of simplicity of our next deriva-

tions, we assume that the inter-cluster noise cross-correlations

are negligible. As a result, we can rearrange the rows (and

columns) of C so that we have a block-diagonal matrix.

Evidently, C will still be symmetric and PSD as each of its

blocks will own these properties.

Let us now define some notations. We consider a total of

C clusters and we call the set of sensors in the l-th cluster

Mc
l with cardinality |Mc

l | = M c
l . Besides, we call the

neighborhood set of the l-th cluster including l itself N c
l , with

cardinality |N c
i | = N c

i . Furthermore, we denote the (i, j)-th
element of C, C−1 and W by cij , c−1

ij and wij , respectively.

This helps us to expand (2) as

tr
(

m
∑

i=1

m
∑

j=1

wij c
−1

ij ai a
T
j

)−1

≤ γ,

and form the Lagrangian of (4a)-(4b) given by

L =
m
∑

i=1

wii−

n
∑

j=1

tr

(

[ ∑m
i=1

∑m
k=1

wikc
−1

ik aia
T
k ej

eTj uj

]

Gj

)

, (5)

where Gj � 0, ∀j are appropriately sized dual variables, and

G = [G1, . . . ,Gn]. Note that different from the derivations in

[5], we cannot simply decompose (5) with respect to (w.r.t.)

wii’s because there exist some coupling terms wik, i 6= k.

A possible solution and the idea behind our next derivations

is to look at the problem “cluster-wise” and rewrite (5) as

(6) (shown on top of this page). Note that W is rearranged

so that the rows (and columns) corresponding to members of

each cluster are placed within one subblock. This means Wl

is the subblock of W corresponding to the l-th cluster, and

therefore,
∑

i∈Mc
l

wii = tr(Wl).

We also define the following convex sets:

Wl = {Wl | 0 ≤ wl,ik ≤ 1, ∀i, k ∈ Mc
l ,Wl ∈ S

m
+ },(7)

U = {u | uj ≥ 0,

n
∑

j=1

uj ≤ γ}, (8)

where wl,ik denotes the (i, k)-th element of Wl. Now, the

dual function defined on L can be given by

q(G) = min
Wl∈Wl,u∈U

C
∑

l=1

Ll(Wl,u,G)

=

C
∑

l=1

(

min
Wl∈Wl,u∈U

Ll(Wl,u,G)

)

=

C
∑

l=1

ql(G).

Notably, since both Wl and U are convex sets, given a certain

value of G, the functions ql(G) and their subgradient w.r.t.

G, called Q and defined later on, can be computed locally, for

instance, using CVX [11] to solve the resulting semidefinite

program (SDP) at each cluster [12]. This again mandates

performing cluster-wise operations, where all the information

of the sensors in each cluster should be collected and processed

somewhere, for instance, in a “data-gathering node” or “cluster

head”. We simply consider one of the sensors in each cluster

as the cluster head.

Whenever γ is large enough so that we expect sparse

solutions in terms of ŵ = tr(Ŵ), Slater’s condition holds

for (4), which can be formulated as the following proposition.

Proposition 1: Slater’s condition holds for (4), for suffi-

ciently large γ.

Proof: For sufficiently large γ, we can always find a pair

(W, u) that satisfies (4b) - (4d) strictly. ✷

Therefore, the relaxed ℓ1-regularization (4) leads to the dual

optimization problem

maximize
G1�0,...,Gn�0

C
∑

l=1

ql(G), (9)

with zero duality gap. This convex optimization program can

be solved iteratively in a distributed fashion using a few

possible algorithms. For instance, we can use subgradient-

based methods, such as the dual averaging scheme of [13]

with a variable stepsize, or the simpler dual subgradient of [12]

with a fixed stepsize. The latter method has the advantage of

providing a recovery mechanism for the primal solution, i.e.,

we recover Ŵ and hence ŵ as a by-product of the optimal

G, which is in fact our goal. That is why we opt to employ

the dual subgradient method of [12].

However, in order to implement the dual subgradient of [12],

each cluster requires a copy of the subgradient of q(G) w.r.t.



Gj , defined as

Qj = −
C
∑

l=1

[

∑

i∈Mc
l

∑

k∈Mc
l
w̄ikc

−1

ik aia
T
k ej/C

eTj /C ūj/C

]

.

(10)

where w̄ik’s and ūj’s are the optimizers of

q(G) = min
Wl∈Wl,u∈U

C
∑

l=1

Ll(Wl,u,G). (11)

The need to this “global” parameter can be circumvented by

using the method of [14] where the clusters have different

local copies of G and Q, say Gl and Ql, and they run an

inexact consensus procedure for ϕ times (where ϕ ∈ N+). In

particular, to solve (9), we will consider the following inexact

subgradient update. We call the l-th cluster version of G at

iteration t, Gl,t. We start with a given initial condition G
l,0
j

for each clusters, then for each t ≥ 0

V
l,τ=0,t
j = G

l,t
j + αCQl,t

j , for j = 1, · · · , n, (12)

where α is the stepsize. Next, we run ϕ times a consensus

procedure as

V
l,τ,t
j =

C
∑

p=1

[Z]lpV
p,τ−1,t
j , (13)

and we finish with the standard projection over the cone of

PSD matrices as

G
l,t+1

j = P�0

[

V
l,ϕ,t
j

]

, for j = 1, · · · , n. (14)

In (13), Z ∈ R
C×C indicates a proper cluster-wise consensus

matrix whose weights have been defined using a Metropolis

weighting, i.e.,

[Z]lp =







1/(max{N c
l , N

c
p}) if p ∈ N c

l

0 if p /∈ N c
l , p 6= l

1−
∑C

p=1
[Z]lp if l = p.

If we execute (13) for ϕ → ∞, we recover the procedure

of [12], whereas if ϕ is limited we introduce an additional

error in the distributed optimization procedure. Our proposed

distributed SparSenSe-C (DiSparSenSe-C) algorithm can be

summarized in Algorithm 1.

A. Convergence Analysis of DiSparSenSe-C

We would like to highlight that DiSparSenSe-C will con-

verge to the solution of SparSenSe-C with an error floor

dependent on α and ϕ. This can be proven extending the ǫ-
subgradient argument discussed in [12] and [14], as is briefly

summarized in this subsection. The detailed derivations of the

complete proof are omitted for brevity and interested readers

are referred to our extended work [15].

In short, since the sets Wl and U in (7) and (8) are

compact, the subgradient Q
l,t
j is bounded for all l and t.

Let us denote such a finite bound by Q, and let q̂ be the

optimal dual value solution of SparSense-C in (9). In [15], we

investigate both primal and dual convergence problems. For

Algorithm 1 DiSparSenSe-C

1: Let an initial value for Gl,t be given at each cluster head.

Initialize the Ŵt
l ’s with Ŵ0

l = 0.

2: Compute, in parallel at each cluster l, the value of ql(G
l,t)

as in (11), its derivative Ql,t = ∇Gl,tql(G
l,t) as in

(10), and the related optimal primal variable W̄t
l . This

is actually an SDP problem. Note that the dimension of

Ql,t is the same as that of Gl,t.

3: Following the primal recovery method of [12], compute

Ŵt
l = Ŵt−1

l (t− 1)/t+ W̄t
l/t.

4: For τ = 1 to ϕ do

• Send Gl,t and Ql,t to the neighboring cluster heads;

• Perform, in parallel, one consensus step as

V
l,τ,t
j =

C
∑

p=1

[Z]lpV
p,τ−1,t
j ,

which is initialized as in (12).

5: Update each cluster’s dual variable

G
l,t+1

j = P�0

[

V
l,ϕ,t
j

]

.

6: Go to 2 for the next iteration.

the latter, we prove that there exists a finite ϕ ≥ ϕ̄ > 0, for

which the sequence of dual functions {q(Gl,t)} generated by

DiSparSenSe-C converges as

lim sup
t→∞

q(Gl,t) ≥ q̂ − Cψ1(α,Q, ϕ), l = 1, · · · , C,

where ψ1 is a positive function of ϕ, α, and Q. Besides, we

know that under Slater’s condition, the dual variables lie in a

bounded compact set (comprising the zero element) and,

||Gl,t
j || ≤ G, j = 1, · · · , n, l = 1, · · · , C, t ≥ 0,

for a certain finite positive constant G. Based on this, we prove

in [15] that the convergence of the running average primal

sequence {Ŵt, ût} (as defined in step 3 of the algorithm)

can be formulated in terms of a constraint violation, and an

upper and lower bound on the primal function. The results in

[15] show that the running average primal function is bounded

above as

tr(Ŵt) ≤ tr(Ŵ) +
(nCG)2

2αCt
+
αC3

2
Q2n2,

and it is bounded below as

tr(Ŵt) ≥ tr(Ŵ)− nG

(

G

αt
+
ψ2(α,Q,Z, ϕ)

α

)

,

where ψ2 is a positive function of ϕ, α, Z, and Q. These

lower and upper bounds on the primal function indicate a

convergence rate of O(1/t) for the running average primal

sequence to a bounded region around the optimal primal cost

tr(Ŵ). The width of this region depends on α and ϕ.



TABLE I: Complexity Order Comparision

Algorithm Comp. complexity Comm. complexity

SparSenSe O(m3) −

SparSenSe-C O(m3) −

DiSparSenSe O(n4) O(ϕNin
3)

DiSparSenSe-C O((Mc

l )
3n4) O(ϕNc

l n
3)
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Fig. 1: Schematic view of the network and clusters

V. COMPLEXITY ANALYSIS

Let us investigate the computational and communica-

tion complexities of the proposed distributed algorithm

(DiSparSenSe-C) compared to the centralized one (SparSenSe-

C). A deeper look into the steps of Algorithm 1 reveals that

step 2 requires the solution of an SDP problem whose compu-

tational complexity is O((M c
l )

3). Besides, the communication

cost involved in step 4 is O(ϕN c
l n

3). Furthermore, step 5
requires n singular value decompositions (SVDs), each of

which requires a computational complexity O(n3). Thus, all

in all, the total computational complexity of DiSparSenSe-

C is O((M c
l )

3n4) per node per iteration which is consid-

erably lower compared to the computational complexity of

SparSenSe-C O(m3) (m ≫ n,m ≫ M c
l ). The communica-

tion cost of DiSparSenSe-C is O(ϕN c
l n

3) per node per itera-

tion which is reasonably low as it is independent of m. Table I

summarizes the discussed complexities of both centralized and

distributed algorithms and their predecessors proposed in [5].

Note that according to [5], Ni denotes the number of sensors

in the neighborhood of the i-th sensor including i itself. From

the table, we observe that the computational complexity of

DiSparSenSe-C is increased by a factor (M c
l )

3 compared to

DiSparSenSe, whereas its communication cost is relatively

decreased by a factor of N c
l /Ni (N c

l < Ni).
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DiSparSenSe-C (t = 100)

DiSparSenSe-C (t = 300)

SparSenSe-C

Fig. 2: Centralized vs. distributed; selected sensors

VI. SIMULATION RESULTS

In this section, we investigate the performance of the pro-

posed algorithms to see if SparSenSe-C actually selects a few

sensors to satisfy the MSE constraint as well as to illustrate

that DiSparSenSe-C selects the same sensors as SparSenSe-

C. To this aim, we consider m = 50 sensors to estimate a

parameter of interest x of dimension n = 2. The measurement

(regression) matrix A ∈ R50×2 is drawn from a zero-mean

unit-variance Gaussian distribution N (0, 1). For DiSparSenSe

we assume that the sensors are connected based on a random

connectivity graph G. We define C = 11 clusters and consider

one of the sensors within each cluster as the cluster head as

is depicted in a schematic view in Fig. 1. In order to account

for the noise experienced by the sensors, we generate a block-

diagonal symmetric PSD matrix C. Further, we set the number

of consensus steps to ϕ = 2, the MSE constraint to γ = 0.1,

and the SNR to 10dB. Notably, for SparSenSe-C, we consider

a sensor as active if ŵi > 0, whereas for DiSparSenSe-C, due

to the fixed stepsize error floor, we consider a sensor as active

if ŵt
i > α/10.

In the first simulation, depicted in Fig. 2, we plot the

estimated ŵ by SparSenSe-C and ŵt by DiSparSenSe-C for

α = 0.05. As can be seen, only 2 sensors (out of 50) are

activated by SparSenSe-C to satisfy our MSE constraint which

corroborates the fact that ŵ is indeed sparse. Note that for t =
30 many different sensors are activated by DiSparSenSe-C.

However, as expected, by increasing the number of iterations

(from t = 30 to t = 300), the same sensors as for SparSenSe-

C are activated by DiSparSenSe-C, and the magnitude of the

related ŵt
i ’s gets closer to the values estimated by SparSenSe-

C. This illustrates the fact that our distributed implementation

(as expected) converges to the centralized algorithm.

In order to be able to quantitatively assess the performance

of the distributed algorithm, we define two performance met-

rics. The first metric quantifies the primal convergence of the
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Fig. 3: Primal convergence ζ vs. t for α = 1, 0.1, and 0.01

distributed algorithm and is defined by

ζ(t) = ‖ŵt‖1 − ‖ŵ‖1.

The result is plotted in Fig. 3 for different stepsize values α =
1, 0.1, and 0.01 and they are averaged over 20 independent

Monte Carlo trials. As is clear from the figure, DiSparSenSe is

converging in the primal sense as ζ goes down to the error floor

with increasing t, as explained in our convergence analysis.

The notable observation is that with α = 0.1 we have the

best convergence in the primal sense. Going further down to

α = 0.01 leads to some oscillations as is shown in the zoom-in

plot.

The second metric is an equivalence metric and investigates

the normalized level of similarity between the selected sensor

sets by the centralized and distributed algorithms. To this aim,

we define A as the set of indices of the selected sensors by

SparSenSe-C and B as the corresponding set for DiSparSenSe-

C. This helps us to define an equivalence metric between the

distributed and centralized algorithms as

ξ = 1− |A ∩ B|/max{|A|, |B|},

which means that if A ≡ B, then ξ = 0. The result for this

metric is depicted in Fig. 4 for α = 0.1 and 0.05 and for 20
independent Monte Carlo trials. As can be seen, we clearly

observe from the average of the Monte Carlo trials (the solid

line) that with increasing t an equivalence is acquired for α =
0.05 as ξ goes to zero. However, for α = 0.1 the solid line

shows that we cannot attain any better than ξ = 0.1 due to

the finite error floor.

VII. DISCUSSIONS AND FUTURE WORK

We would like to conclude the paper by highlighting that our

newly proposed algorithms (compared to their predecessors

in [5]) are generalized to operate in the scenarios where the

measurement noise experienced by the sensors is correlated.

Besides, the “private” information contained in the wi’s is

not broadcast in the whole network but only within each
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Fig. 4: Equivalence metric ξ vs. t for α = 0.1 and 0.05

cluster. Instead, their “encoded” versions, i.e., Ql,t and Gl,t

are communicated to reach convergence, which is an important

advantage in terms of network security.

As we discussed earlier, in this work for the sake of

simplicity of our derivations, we have made Assumption 1

which considered zero inter-cluster noise correlations. We

would like to generalize this assumption to the case where such

inter-cluster noise correlations exist, which basically leads to

overlapping clusters. This would be one of our future research

directions. Besides, detailed convergence analysis of all the

proposed distributed algorithms and a conclusive comparison

(on the convergence rate, etc.) is another part of an extended

version of this work. Furthermore, currently we omit the

possibility of imposing different “budget constraints” (such as

power budget, etc.) on the sensors. We do expect that involving

such constraints into our optimization problems would lead to

the selection of different subsets of sensors, which is worthy of

investigating. This will be yet another extension of this work.
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