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Abstract—This paper presents a censoring strategy for dis-
tributed estimation over adaptive networks in scenarios where
energy resources are limited. Sensors apply selective communi-
cation policies in order to save energy for being able to transmit
more important information later. Simulation results show an
enhancement in network lifetime, by reducing communication
processes among nodes with a slightly degraded result, compared
with energy unconstrained schemes.

Index Terms—Wireless sensor networks, energy efficiency,
decision rules, adaptive networks, distributed estimation.

I. INTRODUCTION

Adaptive Networks (ANs) consist of a collection of spatially

distributed nodes that are connected through a particular

topology. These networks allow solving estimation problems

in a distributed manner, by exploiting cooperation among

neighboring nodes that can only access local information.

Thus, each node in the AN should rely on local information

captured and sent by its neighbors. Several rules to combine

and assign weights to the neighboring local information have

been proposed in the literature [1], [2], [3], but many of them

ignore the different noise profiles that nodes may have across

the network because they operate under different Signal-to-

Noise (SNR) ratio conditions. The work in [4] proposes a rule

to assign weights based on the estimation of the noise variance

in real time.

When ANs are implemented on Wireless Sensor Networks

(WSNs), interactions between nodes, and in general all tasks

carried out by a sensor node, have a cost in terms of energy

consumption. But resources are not infinite. In fact, energy

is the most critical constraint in WSNs. For this reason,

research efforts in WSNs are aimed at reducing the energy

consumption due to communication processes.The question is

which information should be exchanged among neighboring

nodes and how often it should be exchanged in order to obtain

a good estimate while keeping interaction among nodes to a

minimum. Selective transmission (censoring) strategies allow

nodes to make autonomous decisions about transmitting or not

transmitting the available data to neighboring nodes, according

to the relevance of the information and the energy cost [5].

This way, the network lifetime will be prolonged, thereby

also guaranteeing a good overall performance. Therefore,
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an important and key aspect is how sensors determine the

relevance of the information they should transmit.

In this work, the problem of distributed estimation over

adaptive networks is considered when energy constraints are

taken into account. Starting from the Adapt-then-Combine

(ATC) diffusion algorithm proposed in [6] and applying the

combining weight rule included in [4], nodes apply selective

communication policies when exchanging their local estimate

information with their neighbors in order to save energy for

being able to transmit more relevant information later. Up to

now, the energy concern in this scenario has only been taken

into account in probabilistic diffusion networks, which were

initially proposed to cover the dynamic topology case given

that links and nodes may be subject to failures [7]. In the

probabilistic diffusion approach, a node only communicates

with a randomly selected subset of its direct neighbors. This

way, the traffic of the network is reduced. In [8], a link

probability control strategy for probabilistic diffusion networks

with communication resource constraints is proposed. It is

shown that communication processes are reduced and the

system performance is improved compared to algorithms that

control links with static probabilities. Further, a data selection

method formulated as a censoring problem for parameter

estimation in WSNs was explored in [9], where sensors have

to send their measurements to a fusion center. However, all

these works neither include explicitly the cost of the different

actions taken by them nor take into account how important

the information coming from each node is. In this paper, as

in a censoring scheme, the decision whether to share (or not)

the local information is made comparing a function of the

data with a threshold, which is computed as a solution of

a Markov Decision Process (MDP). Furthermore, unlike the

probabilistic diffusion approaches, the instantaneous neighbor-

hood of our approach is determined by the local decisions

made by nodes and not selected by each node randomly with

a certain probability. This way, at every time instant, only

the most useful information is exchanged. Results will show

an enhancement in network lifetime at the cost of a slightly

degraded performance.

The rest of the paper is structured as follows. Section II de-

scribes the adaptive diffusion strategy and Section III presents

the sensor model and the optimal selective transmitter. Sec-

tion IV describes the general procedure to apply selective com-

munication strategies to adaptive networks while Section V

depicts the simulation experiments and results. Conclusions

and future lines are drawn in Section VI.
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II. ADAPTIVE DIFFUSION STRATEGIES

Consider a network of N nodes with a predefined net-

work topology. Two nodes are neighbors if they can share

information, and denote by Nk the neighborhood of node k
including k itself. In adaptive diffusion, the neighborhood Nk

remains fixed when nodes are static. At each time i ≥ 0, each
node k has access to a scalar measurement zk(i) ∈ C and a

regression vector uk(i) ∈ CM×1 of length M , both arising

from realizations of zero-mean random processes z̃k and ũk,

respectively, which are related via zk(i) = uTk (i)w
o + vk(i),

where wo ∈ CM×1 is the unknown vector we wish to estimate

and vk(i) ∈ C accounts for noise, which is assumed to be zero-

mean with variance σ2
v,k , and it is independent of the other

variables. The objective of the distributed estimation problem

is to generate an estimate of wo in a distributed manner by

solving the following optimization problem

min
w

N
∑

k=1

E
∣

∣zk(i)− uTk (i)w
∣

∣

2
. (1)

Several diffusion adaptation schemes for solving (1) have

been developed (see [1] and references therein), and one of

them is the Adapt-then-Combine (ATC) diffusion algorithm

[6]. It consists of two steps. The first one involves local

adaptation, where each node k updates its local estimate

ϕk(i) using the combined estimate from the previous iteration,

wk(i− 1), and its own data, {zk(i); uk(i)}:

ϕk(i) = wk(i− 1) + ηk(i)u
∗
k(i)

[

zk(i)− uTk (i)wk(i− 1)
]

,
(2)

where the normalized least-mean squares (NLMS) algorithm

has been considered, and ηk(i) =
η̂k

δ+‖u(i)‖2 , with η̂k a positive

step size, δ is a regularization factor (a small positive constant),

* denotes complex conjugate and ‖·‖ the Euclidean distance.

The second step is a combination stage where the inter-

mediate estimates {ϕl(i)} from the neighborhood of node

k (l ∈ Nk) are combined through the coefficients {al,k} to

obtain the updated weight estimate wk(i):

wk(i) =
∑

l∈Nk

al,kϕl(i), (3)

where the combining weights {al,k}, collected into the

N × N matrix A as [A]l,k = al,k should satisfy: A1 =
1 and al,k = 0 if l /∈ Nk, where 1 stands for a column

vector with all elements equal to one.

To select the combining weights, several approaches have

been proposed [1]. However, most of the rules ignore the

noise profiles across the network and since some nodes may

be noisier than others, it is not enough to rely on a sensor

connectivity to assign weights to neighboring estimates. In

[4], after solving an optimization problem to find the optimal

combining weights, an algorithm is proposed which includes

the noise variance, here labeled as the Adaptive Combining

Weights (ACW) algorithm. More specifically, node k combines

the intermediate estimates {ϕl(i)} from its neighbors in an

inversely proportional manner to the noise variance. Defining

σ2
l,k(i) as a scaled estimate of the noise variance σ2

v,l for node

k at time i we can compute a set of time-dependent weights

{al,k(i)} as

al,k(i) =







σ
−2

l,k
(i)

∑

j∈Nk

σ
−2

j,k
(i)

if l ∈ Nk

0, otherwise

(4)

where σ2
l,k(i) is updated following

σ2
l,k(i) = (1− νk)σ

2
l,k(i− 1) + νk ‖ϕl(i)− wk(i− 1)‖2 (5)

and νk is a positive step size. Thus, nodes with smaller

variances will be given larger weights.

But since adaptive diffusion strategies are implemented over

WSNs, which are energy-constrained, communications should

be kept to a minimum in order not to waste energy and to

last longer, without decreasing significantly the performance.

It is not enough to compute optimally the combining weights

because the number of packet exchanges is not reduced.

Hence, a way of reducing communications among nodes is

applying selective communication (censoring) strategies. Next,

we describe the sensor model and the selective transmission

policy before explaining how it will be applied to adaptive

diffusion networks.

III. SELECTIVE COMMUNICATION POLICY

A. Sensor model

1) State vector: Following the analysis carried out in [10],

the node state will be characterized by two variables: the

energy at a given node at time i, e(i), and the importance

(relevance) of the message to be sent at time i, y(i). The node
state vector is defined as s(i) = [e(i), y(i)]T .
2) Actions: At time i, the sensor must make a decision d(i)

about sending or not sending the current information message.

We take d(i) = 1 if the message is transmitted, while d(i) = 0
if discarded. Thus, the decision rule is a function of the state

vector; i.e., d(i) = d(s(i)) = d(e(i), y(i)).
3) State dynamics: Sensors deplete their batteries according

to the taken actions. The available energy after time i can be

expressed recursively as

e(i+ 1) = e(i)− d(i)c1(i)− (1− d(i))c0(i), (6)

where c1(i) represents the energy consumption due to a

transmission, and c0(i) is the energy consumed when the

message is discarded. The latter may include the cost of

sensing data, the cost of data reception or the cost of idle states.

Parameter c1(i) accounts for all the previous costs together

with the cost of transmitting the message. We assume that the

energy consumption may have some random components, so

that c1(i) and c0(i) can be viewed as stochastic processes.
4) Rewards: With u(·) standing for the Heaviside step

function (with the convention u(0) = 1), the reward at time i
for a node that decides to transmit a message will be

r(i) = y(i)u(e(i)− c1(i)). (7)

It means that whenever a node transmits a message, the

reward it obtains is the message importance.

Defining the total reward up to time i as t(i) =
∑i

p=0 d(p)r(p), decisions will be made in order to maxi-

mize the total expected reward (i.e., maximize (on average)

the importance sum of all transmitted messages), defined as

E{t∞} = E {limi→∞ t(i)}.
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B. Optimal selective transmission

Provided that messages are properly quantified, nodes could

eventually discard low graded messages with the expectation

of transmitting more important upcoming messages. There-

fore, from the perspective of the network efficiency, a selective

transmitting policy at each node may serve to optimize energy

resources to transmit only the most relevant information.

Considering the fact that the sensor model described above

has the structure of a Markov Decision Process (MDP) [11],

optimal sequences of decision rules in the form d(i) =
d(e(i), y(i)) and maximizing E{t∞} are derived in [5]. It turns
out that, under some stationarity conditions and for large e(i),
the optimal decision rules only depend on y(i) and can be

expressed in the form

d(i) = u

(

y(i)

∆(y(i))
− τ

)

, (8)

where ∆(y(i)) = E{c1(i)− c0(i)|y(i)} and τ is the solution

of

E{c0(i)}τ = E{(y(i)−∆(y(i))τ)+}, (9)

with (h)+ = hu(h), for any h. The stationarity conditions

mentioned above state that c1(i) and c0(i) are stationary

stochastic processes.

1) Estimating asymptotic thresholds: In general, the value

of τ satisfying (9) cannot be analytically computed, but it can

be estimated iteratively using [10]:

τ(i) = (1− 1/i) τ(i − 1) + (y(i)−∆(y(i))τ(i − 1))+/iǫ0,
(10)

where ǫ0 = E{c0(i)} can be estimated by sample averaging.

We assume that ∆(y(i)) does not depend on y(i) (because the
energy consumption is independent of the importance values).

Therefore, we consider ∆(y(i)) = ∆ which can be estimated

by sample averaging, too.

Considering µ(i) = ∆τ(i) and a deterministic energy model

(where ER and ET are the energy spent on receiving or

sensing, and transmitting states, respectively, so that c1(i) =
ET +ER and c0(i) = ER), the optimal forwarding threshold

is computed as

µ(i) =

(

1−
1

i

)

µ(i − 1) +
ρ

i
· (y(i)− µ(i − 1))+, (11)

where ρ = ET

ER
. Note that we do not consider the energy

consumption due to idle states because sensors always receive

data at every time instant i.

IV. APPLYING SELECTIVE TRANSMISSION POLICIES TO

ADAPTIVE DIFFUSION NETWORKS

The selective transmission policy can be integrated into the

ATC algorithm in the combination step in order to reduce the

number of communication processes while it is assured that

the most relevant information is exchanged. Every node is able

to make a decision whether to transmit its local estimate to

its neighbors (which can then be used during the combination

step to obtain a better estimate of the parameter of interest),

or to censor it because it is similar to the one transmitted

previously, irrelevant or noisier and less reliable than the others

due to a low SNR. Fig. 1 shows schematically the cooperation

strategies followed by the selective ATC algorithm.

Fig. 1. Illustration of the adaptive ATC strategy combined with selective
transmitters; AF stands for adaptive filter.

Note that when censoring is applied, the neighborhood of

node k is not static anymore but dynamic (it may change from

one time instant to the following) due to the decisions made

by its neighbors. Therefore, the instantaneous neighborhood

Nk(i) is a subset of the neighborhood established according

to the network topology, i.e., Nk(i) ⊂ Nk. Also, nodes can

receive local estimates from its neighbors even if they do not

send. It means that the graph is directed so if node n does not

send to node k (n /∈ Nk(i)), k may still send updates to n.
In order to apply selective policies, it is crucial that nodes

assign an importance value to the local estimates (information

to be transmitted). Moreover, the importance value is the key

component of the reward in (7). It should reflect the contri-

bution of a node’s local estimate to improve its neighboring

estimates in order to obtain a better global estimate of wo. This

way, the extra estimation error due to the fewer communication

processes among sensors is minimized.

Let us denote ϕk(i) as the local estimate from node k at

time i, wk(i− 1) as the combined estimate at node k at time

i − 1 and akk(i − 1) as the weight that node k assigns to

its own estimate at time i − 1, which is inversely related to

the estimated noise variance. Every node then assigns a local

importance given by

yk(i) = ‖ϕk(i)− wk(i − 1)‖ akk(i − 1). (12)

Nodes quantify how different the current local estimate and

the previous combined estimate are and adjust it with their

combination weight. Thus, if both estimates are similar or the

estimated noise is high, nodes will assign a low importance

based on the intuition that censoring estimates that are highly

deviated from the true value increases the estimation error

more than censoring similar estimates.

V. SIMULATIONS

In this section, we assess the performance of the proposed

algorithm. Several approaches have been compared, including

the non-cooperative one (sensors do not exchange information

with their neighbors, i.e., wk(i) = ϕk(i)), the ACW algorithm

[4], the ACW algorithm with an initial percentage of sensors

in sleep mode (ACW-Sleeping), the ACW algorithm where

nodes reduce the updating frequency and behave as the non-

cooperative one during the remaining time (ACW-Slow), the
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Fig. 2. Network topology

ACW algorithm combined with selective transmission (ACW-

Selective), which is explained in Section IV, and the ACW-

Selective algorithm combined with sleeping nodes (ACW-

Sleeping-Selective). Furthermore, results are also compared

with the ACW probabilistic diffusion algorithm, which decides

with a certain probability which links from its neighborhood

are active and disabled at every time instant. In this case, the

instant neighborhood may also change.

The metric that is used to compare the performance of

the algorithms is the network mean square deviation (MSD).

Defining the weight error vector as w̃k(i) = wo − wk(i), and
MSDk(i) = ‖w̃k(i)‖

2
[1], the network MSD error is defined as

MSD(i) = 1
N

N
∑

k=1

MSDk(i), with steady-state value obtained

when i → ∞.

The regressors uk(i) follow a multidimensional zero-mean

Gaussian distribution with covariance matrix equal to the

identity matrix. The observation noise follows a Gaussian

distribution with zero mean and variance selected so that the

SNR at each node is taken from a uniform distribution between

[−20,−30] dB. The regressors and the observation noise are

independent. Besides, the observations and regression vectors

are the same for all the algorithms, as well as the initialization

parameter values.

The network consists of 15 nodes with a topology shown

in Fig. 2, which is also used in [8]. The vector to esti-

mate, wo, follows a uniform distribution between −1 and

1, with M = 50. The maximum number of iterations is

Tmax = 40000, the initial energy of the sensors is 200000,
the transmitting energy consumption is ET = 1, ER = 2 is

the energy for reception and sensing and finally η̂k = 0.1
and νk = 0.2 for all nodes [4]. The percentage of nodes that

apply a sleeping policy is 25% (for the sleeping approaches)

and the probability that a link between two neighbors is active

during a time instant is 50% (for the probabilistic approach).

The combination interval for the ACW-Slow algorithm is 3,
i.e., sensors exchange information with their neighbors every

3 iterations. The network is dead when the first node runs out

of battery. All results are averaged over 50 simulation runs.

Note that we show average results; however, each simulation

has a different duration. Hence, we average according to the

number of alive networks at every time instant.

Fig. 3 shows the network MSD. We can observe that the

ACW algorithm achieves the lowest network MSD; however,

the batteries are becoming empty very fast due to the huge

number of communication processes with the neighboring

nodes to carry out the combination step. On the other hand,

the network lasts much longer using a selective transmission
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Fig. 3. Learning curve of the network MSD for the different algorithms.
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Fig. 4. Evolution of the number of communication processes.

(see also Table I for the specific values) while the estimation

error does not increase excessively. Furthermore, the ACW-

Sleeping-Selective algorithm also achieves a reasonable per-

formance, mainly in the stationary case, because the penalty

it pays is only a slight degradation in performance. However,

these algorithms have a slower convergence after the first time

instants due to the censoring of transmissions.

Method Lifetime (iterations)

Non-Cooperative 40000

ACW 11813

ACW-Slow 28619

ACW-Sleeping - 25 % 13795

ACW-Probabilistic 20029

ACW-Selective 31738

ACW-Sleeping-Selective 35236

TABLE I
AVERAGE NETWORK LIFETIME FOR ALL THE ALGORITHMS.

Besides, we can see that the ACW-Selective and the ACW-

Sleeping-Selective algorithms both follow the non-cooperative

one during some time instants because most of the sensors

decide not to share the local estimates with their neighbors,

and therefore, every sensor uses only its own information

for computing the estimate. Fig. 4, which shows the number

of communication processes in the network, illustrates this

behavior as the number of exchanges approximates 0. But it
is constant for the ACW algorithm and oscillates between 0
and the previous constant amount for the ACW-Slow.

Fig. 5 depicts the evolution of the remaining energy along

time. For the sake of clarity, we keep the average energy con-

stant once the network lifetime expires. It is worth mentioning

that the methods which apply a mechanism for reducing

the number of communications have a smaller slope than

the ACW. Among them, the algorithms that apply selective
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Fig. 5. Evolution of the remaining energy in the network for the different
algorithms. The legend is the same as in Fig. 3.
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Fig. 6. Learning curve of the network MSD for ET = 4.

transmission are the best ones in terms of balancing energy.

The discontinuities that appear in the ACW-Sleeping algorithm

are due to averaging. The sensors that are put into sleep mode

differ from one simulation to another. Due to this, there are

simulations that last longer, because the number of communi-

cation processes is smaller (see also the discontinuities in Fig.

4), while the MSD error increases slightly.

The network MSD evolution for a higher transmission

energy, ET = 4, is depicted in Fig. 6. The greater ET , with

respect to ER, the larger the gain in terms of network lifetime

for those algorithms that apply selective transmission schemes,

but the slower the convergence. As the energy consumed for

transmitting a local estimate is higher, the sensors should make

the right decision about which estimate to transmit in order

to maximize the reward. This way, the number of censored

transmissions increases.
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Fig. 7. Learning curve of the network MSD when an abrupt change is
introduced in the middle of the iterations.

Next, let us consider the network topology of Fig. 2 when

Tmax = 45000. An abrupt change is introduced in the middle

of the maximum number of iterations, so we can analyze the

ability to reconverge. The network MSD evolution is shown

in Fig. 7. It can be seen that some algorithms, such as the

ACW, ACW-Probabilistic or the ACW-Sleeping, do not have

enough energy to detect the change of the parameter vector

to estimate, and the ACW-Slow depletes them earlier than

those that are selective. The reconvergence of the selective

algorithms is much faster after the abrupt change, because

nodes have learnt from the past.

VI. CONCLUSIONS AND FUTURE WORK

A selective communication policy for parameter estimation

in energy-constrained adaptive networks was explored in this

paper. Nodes should make decisions whether to transmit their

local estimates to neighboring nodes or to censor them in order

to save energy, while assuring that the most relevant informa-

tion is exchanged. The energy consumption should be taken

into account in adaptive diffusion scenarios in order not to miss

abrupt changes of the parameter vector to estimate. Simulation

results showed that the proposed selective algorithm achieved

error values that are comparable with those that did not censor

information, while increasing the network lifetime.

The presented results are based on heuristics. Future work

includes the search for the optimal number of nodes to put

into sleep without degrading the network performance. Also,

a faster convergence of the selective schemes is of importance.
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