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a b s t r a c t

The detection reliability of a cognitive radio network improves by employing a cooperative
spectrum sensing scheme. However, increasing the number of cognitive radios entails a
growth in the cooperation overhead of the system. Such an overhead leads to a throughput
degradation of the cognitive radio network. Since current cognitive radio networks consist
of low-power radios, the energy consumption is another critical issue. In this paper,
throughput optimization of the hard fusion based sensing using the k-out-of-N rule is
considered. We maximize the throughput of the cognitive radio network subject to a
constraint on the probability of detection and energy consumption per cognitive radio in
order to derive the optimal number of users, the optimal k and the best probability of false
alarm. The simulation results based on the IEEE 802.15.4/ZigBee standard, show that the
majority rule is either optimal or almost optimal in terms of the network throughput.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Spectrum sensing is a key functionality of a cognitive
radio system. It is shown that single radio sensing is
prone to the hidden terminal problem and its detection
performance degrades with fading and shadowing effects.
Cooperative spectrum sensing is considered as a solution
for the low detection reliability of a single radio detection
scheme [1]. In this paper, we consider a cognitive radio
network where each cognitive user senses a specific
frequency band in a fixed sample size detection period
and makes a local decision about the primary user’s
presence. The results are then sent to a fusion center (FC)
in consecutive time slots by employing a time-division-
multiple-access (TDMA) approach. The final decision is
made at the FC. Although, several fusion schemes have
been proposed in literature [2,3], we consider a hard
fusion scheme due to its improved energy and bandwidth
efficiency. Among them, the OR and AND rules have been
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studied extensively in literature. The OR and AND rules
are special cases of the more general k-out-of-N rule with
k = 1 and k = N , respectively. In a k-out-of-N rule, the FC
decides the target’s presence, if at least k out of N sensors
report to the FC that a target is present [2].

Optimization of the k-out-of-N rule based spectrum
sensing is considered in this paper. The optimal k and
optimal N is derived for a throughput optimization setup.
The sensing time of each cognitive radio is given but the
reporting time which is directly related to the number of
cognitive users is unknown.

The throughput of the cognitive radio network is
maximized subject to a constraint on the global probability
of detection and energy consumption per cognitive radio
in order to determine the optimal number of cognitive
users N and k. It is shown that the underlying problem
can be solved by a bounded two-dimensional search. Aswe
will discuss later, the reporting time of the cognitive radio
system is directly proportional to N and thus by deriving
the optimal N , the reporting time is also optimized.

Cooperative spectrum sensing optimization is studied
extensively in the literature. The sensing-throughput
trade-off is studied in [4,5]. The optimal sensing time is
determined bymaximizing the cognitive radio throughput
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subject to the probability of detection constraint in [4].
An extended version of [4] including k as an argument
of optimization is discussed in [5]. Our work is different
from [5], in the sense that in the proposed throughput
optimization setup for a given sensing time, the combined
optimization of the reporting time and k is discussed,
and further the energy consumption per cognitive radio is
included as an additional constraint in our work. Lee and
Akyildiz [6] propose an optimal spectrum sensing scheme
where the sensing efficiency of a cognitive radio network
is maximized subject to an interference constraint. The
sensing efficiency is defined as the transmission time
divided by the total cognitive radio time frame. However,
this work also ignored the effect of the reporting time on
the sensing efficiency of the cognitive radio network.

The reporting time optimization is studied in [7,8]. Choi
et al. [7] optimized the cognitive radio network through-
put subject to a detection probability constraint in order to
find the optimal sensing and reporting time. An extension
of [7] to a general k-out-of-N rule based spectrum sens-
ing is considered in our earlier work [8]. The difference is
that in [8] and our paper the sensing time is assumed to be
given. In the current work, a combined optimization of N
and k is given while optimization of k is ignored in [7,8].
In contrast to [8], we include an additional constraint on
the energy consumption per cognitive radio in this paper.
As shown in Section 3, this additional constraint requires
new algorithms to solve the problem. Peh et al. [9] consider
the optimization of the cognitive radio network energy
efficiency. Energy efficiency is defined as the ratio of the
average network throughput over the average network en-
ergy consumption. Optimization of the energy efficiency is
considered for two cases. In the former case, energy effi-
ciency is optimized in order to find k and in the latter case,
the sensing threshold at the energy detector is derived by
optimizing the energy efficiency. However, the combined
optimization of k,N as well as the sensing threshold is not
considered. Further, no typical performance constraint is
considered for the optimization problem such as the prob-
ability of detection which is inherent in a cognitive radio
design technique.

The remainder of the paper is organized as follows.
The considered cooperative sensing configuration and its
underlying system model are presented in Section 2.
The problem formulation is discussed and analyzed in
Section 3.We provide some numerical results based on the
IEEE 802.15.4/ZigBee standard in Section 4 and draw our
conclusions in Section 5.

2. Systemmodel

We consider a network with N identical cognitive
radios under a cooperative spectrum sensing scheme.
Each cognitive radio senses the spectrum periodically and
makes a local decision about the presence of the primary
user based on its own observations. To avoid any false
detections of the secondary users instead of a primary user,
the secondary users are silent during the sensing period.
The local decisions are to be sent to the FC in consecutive
time slots based on a TDMA scheme. The FC employs a
hard decision fusion scheme over a soft fusion scheme due
to its higher energy and bandwidth efficiency along with
a reliable detection performance that is asymptotically
similar to that of a soft fusion scheme [1].

To make local decisions about the presence or absence
of a primary user, each cognitive radio solves a binary
hypothesis testing problem, by choosing hypothesis H1
in case the primary user is present and hypothesis H0
when the primary user is absent. Denoting y[n] as the n-th
sample received by the cognitive radio, w[n] as the noise
and x[n] as the primary user signal, the hypothesis testing
problem can be represented by the following model

H0 : y[n] = w[n], n = 1, . . . ,M
H1 : y[n] = x[n] + w[n], n = 1, . . . ,M

(1)

where the noise and the signal are assumed to be i.i.d.
Gaussian random processes with zero mean and variance
σ 2
w and σ 2

x , respectively, and the received signal-to-noise-

ratio (SNR) is denoted by γ =
σ 2
x
σ 2
w
.

Each cognitive radio employs an energy detector in
which the accumulated energy of M observation samples
is compared with a predetermined threshold denoted by λ
as follows

E =

M
n=1

y2[n]
H1
R
H0

λ. (2)

For a large number of samples, we can employ the cen-
tral limit theorem, and the decision statistic is given by [1]

H0 : E ∼ N (Mσ 2
w, 2Mσ

4
w),

H1 : E ∼ N (M(σ 2
w + σ 2

x ), 2M(σ
2
w + σ 2

x )
2).

(3)

Denoting Pf and Pd as the respective local probabilities
of false alarm and detection, Pf = Pr(E ≥ λ|H0) and Pd =

Pr(E ≥ λ|H1) are given by

Pf = Q


λ− Mσ 2

w
2Mσ 4

w


,

Pd = Q


λ− M(σ 2

w + σ 2
x )

2M(σ 2
w + σ 2

x )
2


.

(4)

The reported local decisions are combined at the FC
and the final decision regarding the presence or absence
of the primary user is made according to a certain fusion
rule. Several fusion schemes have been discussed in
literature [3]. Due to its simplicity in implementation,
lower overhead and energy consumption, we employ a
k-out-of-N rule to combine the local binary decisions sent
to the FC. Thus, the resulting binary hypothesis testing
problem at the FC is given by, I =

N
i=1 Di < k for H0 and

I =
N

i=1 Di ≥ k for H1, where Di is the binary local
decision of the i-th cognitive radio which takes the binary
value ‘0’ if the local decision supports the absence of the
primary user and ‘1’ for the presence of the primary user.
For the sake of analytical simplicity, we assume that all
the cognitive radios experience the same SNR and each
cognitive radio employs an identical threshold λ to make
the decision. Such an assumption on the SNR is a valid
assumption when the SNR difference is less than 1 dB [10].
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This way, the global probability of false alarm (Qf ) and
detection (Qd) at the FC are given by

Qd =

N
i=k


N
i


P i
d(1 − Pd)N−i,

Qf =

N
i=k


N
i


P i
f (1 − Pf )N−i.

(5)

We can rewrite (5) using the binomial theorem as
follows

Qf = 1 − ψ(k − 1, Pf ,N),
Qd = 1 − ψ(k − 1, Pd,N)

(6)

where ψ is the regularized incomplete beta function as
follows

ψ(k, p, n) = I1−p(n − k, k + 1)

= (n − k)
n
k

  1−p

0
tn−k−1(1 − t)k dt.

Denoting Px as the local probability of detection or false
alarm and Qx as the global probability of detection or false
alarm, we can define Px = ψ−1(k, 1−Qx,N) as the inverse
function of ψ in the second variable.

Each cognitive radio employs periodic time frames of
length T for sensing and transmission. The time frame
for each cognitive radio is shown in Fig. 1. Each frame
comprises two parts namely a sensing time required for
sensing and decision making and a transmission time
denoted by Tx for transmission in case the primary user
is absent. The sensing time can be further divided into a
time required for energy accumulation and local decision
making denoted by Ts and a reporting timewhere cognitive
radios send their local decisions to the FC. Here, we employ
a TDMA based approach for reporting the local decision to
the FC, i.e., the first user reports its decision in the first time
slot, the second user in the second time slot and so on. This
way, we avoid collisions among the reported data from
the cognitive radios. Hence, denoting Tr as the required
time for each cognitive radio to report its result, the total
reporting time for a networkwithN cognitive radios isNTr .

Considering the above structure of a cognitive radio
time frame,wedefine the throughput of the cognitive radio
network, RCR, by

RCR = π0


T − Ts − NTr

T


(1 − Qf ) Pr(success|H0)

+π1


T − Ts − NTr

T


(1 − Qd) Pr(success|H1) (7)

where π0 = Pr(H0), π1 = Pr(H1) and Pr(success|Hi), i =

0, 1 is the probability that the cognitive radio can suc-
cessfully send its data to the cognitive receiver upon
the detection of a spectrum hole or miss detection of a
primary user. Upon the correct detection of a spectrum
hole, since the whole bandwidth is free for the cognitive
radio, Pr(success|H0) → 1. On the other hand, in case of
miss detection of a primary user, since the bandwidth
is almost occupied completely by the primary user,
Pr(success|H0) → 0. This way, the second part of RCR is
Fig. 1. Cognitive radio time frame.

negligible. Therefore, in this paper, after normalizing with
π0, the first part of RCR denoted by R is considered as the
throughput of the cognitive radio network and is given by

R =


T − Ts − NTr

T


(1 − Qf ). (8)

The energy consumption of each cognitive radio is
another critical element in a low-power cognitive radio
network. Denoting Ps and Pt to be the sensing and trans-
mission power respectively, the average energy consump-
tion at each cognitive radio, E, is defined as follows

E = PsTs + PtTr + π0(1 − Qf )Pt(T − Ts − NTr)

+π1(1 − Qd)Pt(T − Ts − NTr). (9)

In the following section, a throughput optimization
setup is considered to optimize the k-out-of-N rule
based spectrum sensing subject to a constraint on the
probability of detection and average energy consumption
per cognitive radio.

3. Analysis and problem formulation

The cooperative sensing performance improves with
the number of cognitive users. However, a larger number
of cooperating users lead to a higher reporting time and
hence a lower network throughput. Further, in a low-
power cognitive radio network, the energy consumption
of each cognitive radio is constrained. Therefore, it is
desirable to find the optimal number of users and fusion
rule that satisfies a certain detection performance and
energy consumption by optimizing the cognitive radio
network throughput. The cognitive radio throughput
depends on the specific choice of the k-out-of-N rule.
In this section, we consider a setup where the network
throughput is maximized subject to a constraint on the
probability of detection and energy consumption per
cognitive radio to find the system parameters including
the number of users, the optimal k-out-of-N rule and the
probability of false alarm.

The sensing-throughput trade-off has been extensively
studied in literature, e.g. [4–6]. However, the combined
reporting time and k-out-of-N rule optimization attracted
less attention while it is a critical factor in the cognitive
radio throughput. Reducing the reporting time leads to an
increase in the throughput of the cognitive radio network.
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In a TDMA based scheme, the reporting time directly
corresponds to the number of cognitive radios. As such, N
becomes an argument of the optimization in the following
discussions. Here, we fix the sensing time, Ts, and focus
on optimizing the reporting time NTr where Tr =

1
Rb
, with

Rb the cognitive radio transmission bit rate. The other
important factor is the parameter k in the k-out-of-N
rule. For a given N , it is shown that different values of
k lead to different throughputs. Thus, the optimization
of k along with N is an important issue in cognitive
network design. Naturally, also the local sensing threshold,
λ, which is related to the local probability of false alarm,
Pf , is part of the optimization problem. Avoiding harmful
interference to the primary user is one of the requirements
of a cognitive radio network. Cognitive radios interfere
with the primary user if they miss the detection of the
primary user. Therefore, it is desirable that the probability
of detection is lower bounded. Finally, most cognitive
radio networks consist of low-power radios. Hence, the
energy consumption of each cognitive radio should also
be constrained. To summarize, we define our problem as
an optimization of the network throughput over k,N and
Pf (or λ) subject to the constraint on the probability of
detection and average energy consumption per cognitive
radio as follows:

max
N,k,Pf


T − Ts − NTr

T


(1 − Qf )

s.t. Qd ≥ α

1 ≤ N ≤


T − Ts

Tr


1 ≤ k ≤ N
E ≤ Emax

(10)

where E is defined in (9).
For a given N and k, the optimization problem reduces

to

max
Pf

(1 − Qf )

s.t. Qd ≥ α

E ≤ Emax

(11)

which can be further simplified to

min
Pf

Qf

s.t. Pd ≥ ψ−1(k − 1, 1 − α,N)
E ≤ Emax

and is equivalent to finding theminimum Pf in the feasible
set of the problem. Since the probability of false alarm
grows with the probability of detection, the minimum Pf
considering the probability of detection constraint is the
Pf that satisfies Pd = ψ−1(k − 1, 1 − α,N). In this case, Pf
is given by

Pf = Q


Mσ 2

x + Q−1(ψ−1(k − 1, 1 − α,N))

2M(σ 2

x + σ 2
w)

2
2Mσ 4

w


. (12)

Since both Qf and Qd increase as Pf increases, E decreases
with Pf . Therefore, from the energy viewpoint, the
probability of false alarm is desired to be as high as
possible. The minimum Pf in this case is the one that
satisfies E = Emax. Denoting Pf (α) as the Pf that satisfies
Pd = ψ−1(k − 1, 1 − α,N) and Pf (Emax) as the Pf that
satisfies E = Emax, the optimal Pf denoted by P̃f is P̃f =

max{Pf (α), Pf (Emax)}.
Inserting P̃f in (10) for a given k, we obtain a line search

optimization problem as follows

max
N


T − Ts − NTr

T


(1 − Q̃f )

s.t. 1 ≤ N ≤


T − Ts

Tr

 (13)

where Q̃f = 1 − ψ(k − 1, P̃f ,N). Similarly inserting P̃f in
(10) for a given N , we obtain a line search optimization
problem as follows

max
k


T − Ts − NTr

T


(1 − Q̃f )

s.t. 1 ≤ k ≤ N.
(14)

Since both N and k are bounded, a two-dimensional
search utilizing (10) can be carried out if both N and
k are unknown. Further, employing (13) and (14), an
alternating optimization algorithm is possible that in
general converges faster than a two-dimensional search,
but is suboptimal.

4. Numerical results

A cognitive radio network with a number of secondary
users is considered for the simulations. A Chipcon CC2420
transceiver based on the IEEE 802.15.4/ZigBee standard
is considered to compute the sensing and transmission
power as well as the data rate [11]. Our cognitive radio
network comprises of such radios arranged in a circular
field with a radius of 70 m. This way, the data rate is Rb =

250 Kbps, the sensing power is Ps = 2.1 V × 17.4 mA and
the transmission power is Pt = 20mW[11]. Each cognitive
radio accumulates M = 275 observation samples in the
energy detector to make a local decision. The received
SNR at each cognitive user is assumed to be γ = −7 dB.
Unless mentioned otherwise, we take T = 105 µs, Ts =

45 µs and Tr = 1/Rb = 4 µs. The constraints are defined
so as to satisfy the current cognitive radio standard
requirements [12].

Fig. 2 depicts the optimal throughput versus Emax for
α = 0.9, 0.95 and π0 = π1 = 0.5. We can see that as Emax
increases, the optimal throughput increases up to a cer-
tain point. After this point the optimal throughput be-
comes saturated. The reason is that as Emax increases, for a
given N and k, Pf (Emax) decreases up to a point after which
max{Pf (α), Pf (Emax)} = Pf (α) and the optimal point be-
comes independent from Emax. As α increases, Pf (α)
also increases, thus the point where max{Pf (α), Pf (Emax)}
changes from Pf (Emax) to Pf (α) occurs for a lower Emax.

In Fig. 3, the optimal throughput versus the probability
of detection constraint,α, is considered for different values
of π0 and Emax. In this figure, El,max and Eu,max denote the
lower and upper bounds on the Emax for the considered
range ofα. For example, in caseπ0 = 0.2, for Emax less than
1970 nJ, the feasible set of (10) is empty and for Emax more
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Fig. 2. Optimal throughput versus Emax .

Fig. 3. Optimal throughput versus the probability of detection constraint.

than 2100 nJ, the optimal throughput does not increase
anymore. It is depicted that asπ0 increases, El,max increases
as well. Assume that for a certain π0, Emax,N and k, we
define β = Pf (Emax) and we choose β as the probability
of false alarm of the system. We keep all the parameters
the same and only increase the π0. Since in a cognitive
radio system, Qf ≪ Qd, we obtain (1 − Qf )Pt(T − Ts −

Tr) ≫ (1−Qd)Pt(T − Ts − Tr). Therefore, by increasing π0,
we increase the larger term more than that we decrease
the smaller term and so E increases and passes Emax. That
is why we need to increase El,max in order to make (10)
feasible for a higher π0. Furthermore, we can see that
as α decreases, the optimal throughput increases up to a
certain point after which the optimal throughput saturates
to a certain level. With a similar explanation as given for
Fig. 2, for the highest feasible α in the range El,max ≤ Emax
≤ Eu,max, we have max{Pf (α), Pf (Emax)} = Pf (α). As α
Fig. 4. Throughput versus N and k.

Fig. 5. Optimal N and k versus the probability of detection constraint.

decreases, Pf (α) also decreases and thus the optimal
throughput increases up to the point where max{Pf (α),
Pf (Emax)} becomes Pf (Emax). After that point, the optimal
throughput becomes independent from α.

Fig. 4 depicts the throughput versus the number of
cognitive users and k for a detection constraint equal to
α = 0.97, Emax = 2300 nJ and π0 = 0.5. It is shown that
the optimal throughput is a quasi-concave function of N
and k, and thus there is a unique optimal point. Themathe-
matical investigation of quasi-concavity is subject of future
work. Further, it is evident that the choice of N and k has a
significant impact on the cognitive network throughput.

In Fig. 5, the optimal N and k are depicted versus the
probability of detection constraint. In this figure, T = 0.5
ms and Emax = 6500 nJ. It is shown that for the desired
range of the detection rate constraint, the majority rule is
either optimal or nearly optimal.
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Fig. 6. Optimal N and k versus the maximum average energy
consumption per cognitive radio.

Fig. 6 illustrates the optimal N and k versus Emax. In this
figure, T = 0.5 ms and α = 0.95. We can see that similar
to the previous scenario, the majority rule is optimal.

5. Conclusions

In this paper, the network throughput is maximized
subject to a detection rate and energy constraint in order
to find the optimal reporting time, k and probability of
false alarm. We have shown that the problem can be
solved by a bounded two-dimensional search. It is also
shown that as the energy constraint reduces, the optimal
throughput also reduces while reducing the probability
of detection constraint for the same energy constraint
leads to a higher throughput. Furthermore, we have shown
that in the desired range of the probability of detection
constraint, the majority rule is either optimal or nearly
optimal in terms of the cognitive network throughput.
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