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Abstract— Most research efforts in the field of compressed
sensing have been pointed towards analyzing sampling and re-
construction techniques for sparse signals, where sampling rates
below the Nyquist rate can be reached. When only second-order
statistics or, equivalently, covariance information is of interest,
perfect signal reconstruction is not required and rate reductions
can be achieved even for non-sparse signals. This is what we
will refer to as compressive covariance sampling. In this paper,
we will study minimum-rate compressive covariance sampling
designs within the class of non-uniform samplers. Necessary and
sufficient conditions for perfect covariance reconstruction will be
provided and connections to the well-known sparse ruler problem
will be highlighted.

I. PROBLEM STATEMENT

Consider the problem of estimating the covariance matrix

Σ of a random vector x with components x[n] when it is

known that Σ is a linear combination of the matrices in the

set S . This problem has a long history and a wide range

of applications [1], [2]. Now consider a modification of the

same problem where only a subset of the samples x[n] is

available, i.e., when the observations are y[m] = x[nm] for

some I = {n0, n1, . . .} ⊂ Z. Intuitively, if the grid defined

by I is dense enough, then this estimation problem, which we

label as compressive covariance sampling, can still be solved.

More specifically, the above sample selection produces a

transformation of the problem: the vector y collecting the

compressed observations y[m], has a covariance matrix Σ̄,

which is a linear combination of the matrices in S̄ . The

coefficients in the linear combination are in both problems the

same so that solving the latter amounts to solving the former.

In this paper we address the optimal design of the index set I
so that the coefficients can be estimated, i.e., we look for sets

of indices with a minimum number of elements guaranteeing

that these parameters remain statistically identifiable.

A. Relation to Compressive Sampling

Recent interest in sampling signals below their Nyquist rate

owes to compressive sampling (or compressed sensing) [3],

which has motivated a great deal of research efforts in the

last few years. In compressive sampling we are interested in

reducing the number of samples by focusing on a special

family of signals referred to as sparse. These signals are

intrinsically redundant, so that this reduction does not entail

any information loss if properly done.

Non-uniform sampling [4] is a particular case of compres-

sive sampling. Mathematically, this process can be described

as first acquiring a continuous-index signal x(t) at rate 1/T ,

resulting in the sequence x[n] = x(nT ), and then down-

sampling x[n] to obtain y[m] according to a set of indices I,

in a periodic or non-periodic fashion (periodic non-uniform

sampling is also known as multi-coset sampling).

Either in the context of compressive sampling (the non-

uniform sampling version) or in the context of what we call

compressive covariance sampling, the design of the set I has

been addressed in the past. The common goal in both cases is

to minimize the number of elements in I, since this critically

determines the cost of the system. However, they differ as to

which index sets are regarded feasible:

• In compressive sampling, the perfect reconstruction cri-
terion is adopted, i.e., we must be able to exactly re-

construct x[n] from the compressed observations y[m].
Discarding the samples whose indices are not present

in I must entail no loss of information, at least in the

noiseless case. This is the philosophy used in [5] and [6]

for sampling of multi-band signals.

• In other applications, such as those described in the next

section, a covariance sampling criterion is employed.

The interest is no longer in sparse signals/vectors but in

stationary stochastic processes, and the goal is to estimate

the second-order statistics, not to reconstruct the signal

itself. No redundancy is required: we are only interested

in part of the information, thus allowing a reduction in the

number of samples. Designs of this kind include nested

arrays [7], coprime sampling [8], minimum-redundancy

linear arrays [9] and sparse ruler samplers [10], [11].

The purpose of this paper is to formalize the covariance

sampling criterion and to develop the theory of optimal

designs, in the sense that the number of elements in I is

minimized. Previous works address the compressive covari-

ance sampling problem from completely different perspectives

ranging from the number of degrees of freedom [7], [8], to

the difference/sum coarray [12] and the conditions for least

squares reconstruction of the second-order statistics [10]. We

aim to unify the treatment of this problem under the idea of

statistical identifiability of the unknown parameters, providing

a framework that encompasses most compressive covariance

sampling problems.



B. Applications

The formulation mentioned above accommodates several

problems in signal processing and array processing. The

differences lie in the particular choice of the set S .

1) Direction of Arrival Estimation: Assume that a uniform

linear array with N antennas receives I−1 narrowband signals

impinging from I − 1 locations, each one forming a different

angle with the array. If x ∈ C
N represents the signal received

at the N antennas at a particular time, we can write

x =

I−1∑
i=1

aisi +w,

where ai ∈ C
N is the channel from the i-th transmitter to the

array, si is the i-th transmitted signal and w ∈ C
N is spatially-

white noise with power σ2
0 . Then, by considering that si is

random with variance σ2
i , uncorrelated with sj for j �= i, and

ai as a (typically unknown) deterministic constant, we obtain

Σ = E
{
xxH

}
=

I−1∑
i=1

σ2
i aia

H
i + σ2

0IN

or, more compactly,

Σ =

I−1∑
i=0

σ2
iΣi (1)

with Σi = aia
H
i , i = 1, . . . , I − 1 and Σ0 = IN .

Because of the arrangement of the antennas in the array,

the channel responses have, up to some constant, the form

ai = [1, ejθi , ej2θi , . . . , ej(N−1)θi ]T , where θi is related to the

direction of arrival (DoA). The problem of DoA estimation

is thus that of estimating θi. A closely related problem is

incoherent imaging, where the goal is to estimate σ2
i [12].

In this example, the problem of compressive covariance

sampling is that of retaining only the antennas with indices

in I, removing the others, while taking into account that the

smaller the number of antennas, the lower the cost of the

system. The set S is composed of the I − 1 matrices aia
H
i

together with the identity matrix IN to model noise.

2) Power Spectrum Estimation: Assume that an analog

waveform x(t) is to be acquired and its power spectrum, or

equivalently, its auto-correlation sequence, is to be estimated.

If the frequency content of this signal is limited to a finite inter-

val, we can sample it at the Nyquist rate 1/T Hz obtaining the

samples x[n] = x(nT ). If this signal is stationary, the second-

order statistics can be collected in the Toeplitz covariance

matrix Σ = E
{
xxH

}
, where x = [x[0], x[1], . . . , x[K − 1]]T

for some K. Thus, we can write

Σ =
I−1∑
i=0

αiΣi

where I = 2K − 1, αi ∈ R and Σi ∈ B, with B given by

B = {B0,B1, . . . ,BK−1} ∪ {B̃1, . . . , B̃K−1},
where Bi denotes the (Hermitian Toeplitz) matrix with all

zeros but the diagonals +i and −i that have ones, i = 0 being

used to represent the main diagonal, and B̃i denotes the matrix

with all zeros but the coefficients in the diagonals +i and −i,
that take on, respectively, the values j and −j. For example,

B1 and B̃1 respectively look like:

B1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 . . . 0 0
1 0 1 0 . . . 0 0
0 1 0 1 . . . 0 0
0 0 1 0 . . . 0 0
...

0 0 0 0 . . . 0 1
0 0 0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B̃1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 j 0 0 . . . 0 0
−j 0 j 0 . . . 0 0
0 −j 0 j . . . 0 0
0 0 −j 0 . . . 0 0
...

0 0 0 0 . . . 0 j
0 0 0 0 . . . −j 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

In this case, the problem of compressive covariance sam-

pling is to design a pattern where we retain the samples

with indices in I whereas we discard the others (see [10]

and references therein). We thus obtain a sequence y[m] =
x[nm], nm ∈ I = {n0, n1, . . .}, which, in general, is no

longer stationary, but must preserve the information about the

second-order statistics of x, i.e., we should be able to estimate

αi if I is properly selected. Clearly, in this case, S = B.

3) Line Spectrum Estimation: Assume that the n-th sample

of the signal under analysis is of the form

x[n] =
I−1∑
i=1

σie
jωin+jφi + w[n]

where σi ∈ R, w[n] is white noise with variance σ2
0 and the

φi’s are independent and identically distributed (i.i.d.) uniform

U(0, 2π) random variables. By arranging these samples as x =
[x[0], x[1], . . . , x[K − 1]]T we obtain that

Σ = E
{
xxH

}
=

I−1∑
i=1

σ2
i eie

H
i + σ2

0IK

where ei = [1, ejωi , ej2ωi , . . . , ej(K−1)ωi ]T . Expression (1)

can be applied again with Σi = eie
H
i , i = 1, . . . , I − 1 and

Σ0 = IN . The problem of compressive covariance sampling

is to retain the samples x[n] with index n in I in such a way

that the coefficients σ2
i can still be estimated. As before, the

lower the number of elements in I, the lower the cost of the

system.

4) Wideband Spectrum Sensing: Assume that a wide fre-

quency band is sampled resulting in the sequence x[n]. A

certain number of users are transmitting in this band, typically

in different frequency channels. The sequence x[n] can thus



be seen as a sum of independent unit-power signals xi[n] as

x[n] =
I−1∑
i=0

σixi[n]

for some values of σi ∈ R. By vectorizing these signals and

computing their covariance, expression (1) comes up again,

where x0[n] may account for noise and Σi contains the

second-order statistics of xi[n], which are typically known

since channelization information is publicly available [13],

[14]. As in most communications applications, the signals

xi[n] are assumed wide-sense stationary so that the associated

covariance matrices Σi will be Toeplitz.

In wideband spectrum sensing, the set S is given by S =
{Σ0,Σ1, . . . ,ΣI−1} and we wish to estimate the coefficients

σ2
i , which actually represent the power received from the

i-th user since Σi is normalized. This is of application in

the context of Dynamic Spectrum Sharing [15]. The problem

of compressive covariance sampling is that of selecting the

smallest subset of samples that allows estimation of the

coefficients σ2
i .

C. Paper Structure

We start by introducing periodic non-uniform sampling,

also known as multi-coset sampling, in Sec. II. From this

perspective, a design principle termed the covariance sam-
pling criterion, which was implicitly used in some works

in the literature, is formalized and generalized in Sec. III.

Universal covariance samplers are defined as those satisfying

the covariance sampling criterion for any set S , a concept

which is the dual of the universal sampler concept for perfect

reconstruction of multi-band signals in [5]. Necessary and

sufficient conditions for universality are derived, leading to

the well-known sparse ruler problem [16]. Later, it is shown

in Sec. V that the problem of periodic sampling simplifies

under mild conditions, resulting in quasi-universal covariance

samplers. A mathematical tool referred to as a circular sparse
ruler is proposed to design optimal quasi-universal covariance

samplers.

II. MULTI-COSET SAMPLING

Let x[n] represent a discrete-index sequence of complex

numbers which is to be processed. Multi-coset sampling

considers independently each group of N samples, which can

be denoted as x[l] = [x[lN ], x[lN+1], . . . x[lN+(N−1)]]T ∈
C

N . From each period, only M samples are retained according

to the pattern P = {p0, p1, . . . , pM−1}, forming the vector

y[l] = [x[lN + p0], x[lN + p1], . . . x[lN + pM−1]]
T ∈ C

M .

If a total of L periods are acquired, it is possible to arrange

these vectors as x = [xT [0],xT [1], . . . ,xT [L − 1]]T ∈ C
NL

and y = [yT [0],yT [1], . . . ,yT [L − 1]]T ∈ C
ML. The set I

containing the indices of the samples selected from all periods

can be expressed as

I = {lN + p : l = 0, 1, . . . , L− 1, p ∈ P} . (2)

In view of (2), we can say that the set I is periodic with

period defined by the set P . To remove ambiguities, P is the

smallest set satisfying (2) or, alternatively, N is the smallest

integer satisfying the same equation. This is so since replacing

N by any of its integer multiples may define the same set I
by extending P accordingly.

This sample selection described above can also be expressed

in matrix form by writing y = Φ̄x, where Φ̄ ∈ C
ML×NL is

a row selection matrix where each row contains a single one

and NL − 1 zeros. In other words, Φ̄ is a submatrix of the

identity INL including only the rows indexed by the set I.

Alternatively, due to the periodicity in I, it is clear that Φ̄
can be written as Φ̄ = IL ⊗ Φ where ⊗ denotes Kronecker

product and Φ ∈ C
M×N is a submatrix of IN where only

the rows indexed by P are retained. It is also convenient to

define φ as the linear mapping associated with I that takes the

covariance matrix of x and returns the covariance matrix of y,

i.e., φ(Σ) = Σ̄ = Φ̄ΣΦ̄H . This map transforms S into S̄ as

Σ̄i = φ(Σi) = Φ̄ΣiΦ̄
H . Thus, we may also write S̄ = φ(S).

The non-periodic version of non-uniform sampling can be

viewed as a particular case of multi-coset sampling where

only one period is considered (L = 1). Typically we consider

periodic non-uniform sampling when the acquisition is done

in the time domain, i.e., for power spectrum estimation, line

spectrum estimation and wideband spectrum sensing, whereas

we consider non-periodic non-uniform sampling when the

acquisition is carried out in the space domain, i.e., for direction

of arrival estimation. The reason is that acquisition in the

time domain is typically accomplished by means of analog to

information converters (AICs) [17], which work in a periodic

fashion, whereas in the space domain we are free to place the

antennas using any non-periodic pattern.

III. THE COVARIANCE SAMPLING CRITERION

Although the covariance sampling criterion can be stated

in different ways, the conclusions they result in are the same.

Because it is quite intuitive, we have chosen an approach based

on second-order identifiability, which is described next.

Assume that the second-order statistics of the sampled

signal x[n], arranged in the covariance matrix Σ = E
{
xxH

}
,

can be written as a linear combination of the covariance

matrices in S = {Σ0,Σ1, . . . ,ΣI−1} as

Σ = E
{
xxH

}
=

I−1∑
i=0

αiΣi, (3)

where αi ∈ R. After multi-coset sampling, the statistical

behavior of the resulting sequence in y[m] can be characterized

in terms of the matrix Σ̄ as:

Σ̄ = E
{
yyH

}
= Φ̄ΣΦ̄H =

I−1∑
i=0

αiΣ̄i (4)

where Σ̄i = Φ̄ΣiΦ̄
H . Clearly, the coefficients αi in (4)

equal those in (3) so that estimating Σ̄ amounts to estimating

Σ, but it should be taken into account that Σ̄ is now a

linear combination of the matrices in the transformed set

S̄ = {Σ̄0, Σ̄1, . . . , Σ̄I−1} determined by I. The covariance

sampling criterion can be stated as follows:



Definition 1: A sampler defined by I satisfies the covari-
ance sampling criterion if the associated transformation φ
preserves the identifiability of the coefficients αi.

In other words, if S is such that no two different sets of

coefficients αi can result in the same Σ in (3), then S̄ = φ(S)
must be such that no two different sets of coefficients αi can

result in the same Σ̄ in (4). This is just the classical definition

of statistical identifiability [18] applied to the covariance

sampling problem. The importance of this idea is in the fact

that no parameter can be estimated consistently if it is not

identifiable [18].

IV. UNIVERSAL COVARIANCE SAMPLERS

The concept of a universal covariance sampler is the dual

of a universal sampler for perfect-reconstruction of multi-

band signals defined in [5], but in the context of the covari-

ance sampling criterion rather than in compressive sampling.

Specifically, it is clear that a particular sampler defined by

a given I may satisfy the covariance sampling criterion for

certain choices of S but not for all of them. In cases where

knowledge of S is available at the moment of designing the

acquisition system, a set I may be tailored for that specific

application, potentially obtaining optimal designs. However,

in other cases we may be interested in general designs being

able to work under any choice of S .

Definition 2: A universal covariance sampler is a sampler
I satisfying the covariance sampling criterion for any choice
of the set S .

Note that, in view of the covariance sampling criterion, we

can confine our attention to linearly independent sets S . Thus,

a universal covariance sampler can be defined as a sampler

that preserves linear independence1. The subsequent sections

aim to formalize this notion and to provide simpler conditions

that may assist in the design of universal covariance samplers.

A. Design of Universal Covariance Samplers

The results in this section require the definition of S, which

is the span, with real (not necessarily non-negative) coeffi-

cients of all possible Toeplitz covariance matrices. Clearly

S is an R-subspace and, in particular, the smallest subspace

containing the cone of all Toeplitz covariance matrices.

Lemma 1: Let B be a basis for S. Then, a necessary and
sufficient condition for a sampler to be a universal covariance
sampler is that φ(B) is an independent set of matrices.

Proof: For any S satisfying that∑
i

αiΣi =
∑
i

βiΣi ⇒ αi = βi∀i,

the set S̄ = φ(S), where φ represents a universal covariance

sampler, must also satisfy∑
i

α′iΣ̄i =
∑
i

β′iΣ̄i ⇒ α′i = β′i∀i.

1Note that in some applications of Sec. I-B the coefficients αi are
constrained to be non-negative. However, it can be readily seen that this fact
does not have any influence on the aforementioned condition.

In other words, the matrices in S̄ have to be linearly indepen-

dent for any choice of S . This means that the mapping φ has

to be injective when defined over S, and this is so if and only

if the image of a basis is an independent set.

Lemma 1 simplifies the task of looking for a universal

sampler that preserves identifiability of any set of covariance

matrices S to that of verifying that the image of a basis

of S is a set of independent matrices. This result could

be easily generalized for architectures other than multi-coset

ones. The next Theorem, however, exploits the peculiarities

of multi-coset sampling to simplify the search even more.

Before moving to state this result, the following definition is

necessary:

Definition 3: Given a finite or countable set A =
{a0, a1, . . .}, the difference set Δ of A, denoted as Δ(A),
is defined as

Δ(A) = {d ≥ 0 : ∃ai, aj ∈ A s.t. d = ai − aj}.

In other words, it is the set of all possible non-negative

differences of the elements of A. Note that every d in Δ(A)
is present once, i.e., we do not consider repetition. Now we

are ready to state the following theorem:

Theorem 1: A multi-coset covariance sampler defined by
the set I is universal if and only if it contains all the relative
time lags at least once, i.e., iff Δ(I) = {0, 1, . . . , NL− 1}.

Proof: Let us start by taking a basis for S, recalling that

it is an R-subspace and not a C-subspace. This basis is given

by

B = {B0,B1, . . . ,BNL−1} ∪ {B̃1, . . . , B̃NL−1}

where the matrices Bi and B̃i have been defined in Sec.

I-B. According to Lemma 1, we must ensure that φ(B) is

an independent set of matrices. As explained in Sec. II,

the sampling matrix Φ̄ is a row selection operator, which

means that φ(Σ) = Φ̄ΣΦ̄ selects the rows and columns

with indices in I and discards the others. It is easy to see

that deleting rows and columns from a matrix in B preserves

linear independence provided that the resulting matrices have

some non-null element. This is because of two reasons. First, if

matrices Bi and Bj , with i �= j, have their non-null elements

at different positions, so do Φ̄BiΦ̄
H and Φ̄BjΦ̄

H . Second,

even though the non-null positions of Φ̄BiΦ̄
H and Φ̄B̃iΦ̄

H

are the same, the fact that the base field is R makes these two

matrices independent.

The condition above states that the set I has to be such

that no matrix in B has a null image, that is, Φ̄BiΦ̄
H �= 0

and Φ̄B̃iΦ̄
H �= 0 for all i. Since the positions of the non-

null elements of Bi and B̃i are the same we may disregard

all B̃i matrices. Moreover, since the matrices Bi have their

non-null coefficients at symmetric positions with respect to

the main diagonal and the row/column selection is also done

symmetrically, we may concentrate on the lower triangular

part of these matrices (including the main diagonal).



Fig. 1: Example of minimal sparse ruler of length 20.

If Γ(B) denotes the set of indices of the non-null coeffi-

cients in the lower triangular part of matrix B, we have that

Γ(Bi) =

{
(i, 0), (i+ 1, 1), . . . , (NL− 1, NL− 1− i)

}

=

{
(k, l) : 0 ≤ k, l < NL, k − l = i

}

=

{
(l + i, l) : 0 ≤ l < NL− i

}

Now define Λ(I) as the set of indices of the elements in the

matrices in B that are selected (not deleted) using the index

set I, i.e.,

Λ(I) =
{
(k, l) : k ∈ I and l ∈ I

}
= I × I.

Hence, for all i = 0, 1, . . . , NL − 1 we have to ensure that

Γ(Bi) ∩ Λ(I) is non-empty, and this is achieved if and only

if there exist k, l ∈ I such that k − l = i.

Theorem 1 provides a simple means to verify whether a set

I defines a universal multi-coset covariance sampler or not.

However, in order to design a sampler I from scratch, the

periodicity of this set must be included in the picture. Before

we accomplish that task, let us devote a few words to the non-

periodic case, i.e., the case where L = 1, which results in the

classical sparse ruler problem.

Definition 4: A (linear) sparse ruler of length N − 1 is a
set I ⊂ {0, 1, . . . , N−1} such that Δ(I) = {0, 1, . . . , N−1},
and it is called minimal if no other sparse ruler of length N−1
exists with less elements.

Intuitively, we can say that a sparse ruler is a ruler with

some marks erased but which is still able to measure all integer

distances between 0 and its length. Fig. 1 shows an example

of sparse ruler (actually a minimal one) when N = 21.

Clearly, minimal sparse rulers exist for all values of N
although they need not be unique. For example, a minimal

sparse ruler of length 10 is given by the set {0, 1, 2, 3, 6, 10},
but also by the set {0, 1, 2, 5, 7, 10}. Unfortunately, there exists

no quick procedure to find minimal sparse rulers: one must

perform a brute-force search over the space of length-(N −1)
sparse rulers to find a minimal one. However, this procedure is

carried out in the design stage so that this does not constitute a

big problem. In view of Theorem 1 it is clear that when L = 1
(i.e., in the non-periodic case) I has to be a length-(N − 1)
sparse ruler in order to define a universal covariance sampler.

Moreover, it will be optimal in the sense of minimizing the

number of elements iff it is a minimal sparse ruler.

However, as we said before, the periodicity of I must be

imposed whenever L > 1. Therefore, one should look for a

set which is not only a sparse ruler but it is also periodic in

the sense of what was explained in Sec. II.

Definition 5: A periodic sparse ruler of length NL−1 and
period N is a set I of indices between 0 and NL − 1 that
satisfies these two properties:

1) if i ∈ I, then i + kN ∈ I for all integers k such that
0 ≤ i+ kN < NL

2) Δ(I) = {0, 1, . . . , NL− 1}
and it is called minimal if there does not exist any periodic
sparse ruler with the same length and period but smaller
cardinality.

Note that, because of the periodicity, we can find a set of

indices P called period such that I = {p+ lN, p ∈ P, l =
0, 1, . . . L − 1}. Clearly, if this set has M elements, then the

cardinal of I is ML. Note also that it is possible to reformulate

Theorem 1 to say that a set I defines a universal sampler iff

it is a periodic sparse ruler.

The following result reduces the problem of finding periodic

sparse rulers of length NL − 1 to that of finding a (conven-

tional) sparse ruler of length N − 1.

Theorem 2: A periodic sparse ruler I of length NL − 1
and period N is the result of concatenating L sparse rulers
of length N − 1, i.e., there exists a sparse ruler P of length
N − 1 such that

I = {p+ lN : p ∈ P, l = 0, 1, . . . , L− 1}

Proof: Any element of Δ(I) can be written as d+ lN , where

0 ≤ d < N and 0 ≤ l < L. Clearly the value of d divides

Δ(I) in N classes by gathering those elements with the same

d and different l. All these classes must be present and all of

them must have L elements in order for I to be a sparse ruler.

Since 0 ≤ d < N , it must be possible to obtain all d by

considering two adjacent periods of the ruler. In particular,

there are two kinds of distances, those of the form i−j where

i ≥ j and both i and j are in the first period; and those of the

form i− j where i is in the second period and j is in the first

one. The distances of the second kind can also be written as

d = N + i− j by considering i and j in the first period, with

i < j.

It is easy to verify that if a value of d can only be obtained

as a distance of the second kind, then d+LN /∈ Δ(I) so that

that particular class will only have L − 1 elements. On the

other hand, if d can be obtained as a distance of the first kind,

it is clear that d+kN ∈ Δ(I) for all 0 ≤ k < L. Thus, we can

only rely on distances of the first kind, i.e., we need Δ(P) =
{0, 1, . . . N − 1}, where P = I ∩ {0, 1, . . . , N − 1} is the

first period. In other words, the first period is a (conventional)

sparse ruler of length N − 1.

Equivalently, the (fundamental) period of a periodic sparse

ruler I is a sparse ruler itself. In other words, concatenating

sparse rulers does not relax the requirements of each one. Note

that this is not the case if the periodicity condition is released:

concatenating two minimal sparse rulers of length N − 1 and

M elements gives a sparse ruler of length 2N − 1 and 2M
elements, but there may exist sparse rulers of length 2N − 1
with less elements. For example, a minimal sparse ruler of



Fig. 2: Example of circular sparse ruler of length 20.

length 10 has 6 elements whereas the minimal sparse ruler of

length 21 has 8 < 6× 2 elements.

As a corollary of Theorem 2 we obtain that a minimal
periodic sparse ruler of length NL − 1 and period N is the

concatenation of minimal sparse rulers of length N − 1. This

solves the problem of designing optimal universal multi-coset

samplers by reducing it to finding a conventional minimal

sparse ruler L times smaller.

V. CIRCULAR SPARSE RULERS

Interestingly, the implications of Theorem 2 relax if we

consider that the number of periods is arbitrarily high. This

observation leads to a drastic reduction in the minimum M
needed for obtaining universal samplers in certain situations

like those where the acquisition never ends or when the

covariance matrices in S are banded, as we will see in the

next section.

A. Steady Acquisition

When the acquisition is performed over an infinite number

of periods, i.e., when L approaches infinity, the requirements

on every period of the periodic sparse ruler I relax. In

particular, an infinite version of Theorem 1 would require

that Δ(I) = {0, 1, 2, . . .}, thus prompting us to introduce the

concept of infinite periodic sparse ruler.

Definition 6: An infinite periodic sparse ruler of period N
is a set2 J of indices satisfying these two properties:

1) if j ∈ J , then j + lN ∈ J for all integers l such that
j + lN ≥ 0

2) Δ(J ) = {0, 1, 2 . . .}
and it is called minimal if no other infinite periodic sparse
ruler of period N exists whose period contains a lower number
of elements.

We say that the set P generates an infinite periodic sparse

ruler J of period N iff J = {p+lN, p ∈ P, l ∈ N+}, where

N+ denotes the set of non-negative integers. For instance, a

2we keep the notation I for finite rulers whereas the infinite ones will be
denoted as J . This will be important in Sec. V-B.

generator set for an infinite periodic sparse ruler J is the first

period P = J ∩{0, 1, . . . , N−1}. In order to design this kind

of rulers we shall first introduce a couple of definitions.

Definition 7: Given a finite or countable set A =
{a0, a1, . . .}, the N -modular difference set ΔN of A, denoted
as ΔN (A), is defined as

ΔN (A) = {d ≥ 0 : ∃ai, aj ∈ A s.t. d = (ai − aj)N}
where (x)N denotes the remainder of the integer division (x+
lN)/N , where l is any integer such that x+ lN ≥ 0.

In view of this definition it is clear that if d is in ΔN (A),
then also is N − d. Thus, it is clear that Δ(A) ⊂ ΔN (A)
and, consequently, that the number of elements in ΔN (A) is,

at least, the number of elements in Δ(A). For example, if

A = {0, 1, 5} and N = 10, we have that Δ(A) = {0, 1, 4, 5}
whereas ΔN (A) = {0, 1, 4, 5, 6, 9, 10}. The modular differ-

ence set naturally leads to the following definition:

Definition 8: A circular (or modular) sparse ruler of length
N − 1 is defined to be a set P ⊂ {0, 1, . . . , N − 1} such that
ΔN (P) = {0, 1, . . . , N − 1}, and it is called minimal if no
other circular sparse ruler of length N − 1 exists with less
elements.

A circular sparse ruler can be thought of as a linear sparse

ruler that wraps around. We bend the ruler until the two

endpoints are at unit distance, thus making a circular ruler.

In this way, given two points in the ruler, which divide the

circle into two circular segments, we take into account the

length of both segments. A circular sparse ruler of length 20

is depicted in Fig. 2.

Clearly, the number of elements of a minimal circular sparse

ruler of length N − 1 is never greater than the number of

elements of a minimal (linear) sparse ruler. This is so since

any linear sparse ruler is also a circular sparse ruler, but

the opposite needs not be true. Unfortunately like for linear

sparse rulers, there is no standard means, to the best of the

authors’ knowledge, to design minimal circular sparse rulers:

a brute-force search over the set of circular sparse rulers is, in

principle, required.

The definition above allows us to state the following Theo-

rem, which provides a means to design infinite periodic sparse

rulers.

Theorem 3: A set J is an infinite periodic sparse ruler J
of period N if and only if every period is (up to an additive
constant) a circular sparse ruler of length N − 1.

Proof: Take P0 = J ∩{0, 1, . . . , N − 1} and P1 = J ∩
{N,N+1, . . . , 2N−1}. Since Δ(J ) = N+, for any integer d
between 0 and N−1 we can find two elements i, j ∈ J , i ≥ j
such that i− j = d. Now take k such that j′ = j − kN ∈ P0

and define i′ = i− kN . If i′ ∈ P0 we have that d = i′ − j′ ∈
ΔN (P0). On the other hand, if i′ ∈ P1, take i′′ = i′ − N ,

which belongs to P0. Then we have that (i′′−j)N ∈ ΔN (P0),
but (i′′ − j)N = (i′ − N − j′)N = (d − N)N = (d)N = d.

Therefore ΔN (P0) contains all integers between 0 and N − 1
so that P0 is a circular sparse ruler.

In order to show the converse theorem, take an integer d ∈
N+ and decompose it as d = p + lN with 0 ≤ p < N and l



an integer. If P0 is a circular sparse ruler, there exist i, j ∈ P0

such that p = (i − j)N . If i > j then p = i − j so that

taking i′ = i + lN , which is also in J since it is periodic,

together with j provides two points in J whose difference is

d. On the contrary, if i < j, then p = i − j + N , so that

considering i′ = i + (l − 1)N together with j provides two

points in J whose difference is d. Therefore d ∈ Δ(J ) and

J is an infinite sparse ruler.

An immediate consequence of this result is that the period

of a minimal infinite periodic sparse ruler is a minimal circular

sparse ruler. This enables us to optimally design this class of

infinite rulers and, therefore, universal covariance samplers for

steady acquisition.

B. Banded Covariance Matrices

A p-banded matrix is a matrix where all elements above

the diagonal +p and below the diagonal −p, these diagonals

noninclusive, are zero. The fact that a covariance matrix Σ
is p-banded means that the auto-correlation of x[n] vanishes

for lags greater than p. If all covariance matrices in S satisfy

this property for p small enough, the problem of designing

universal samplers boils down again to that of looking for

minimal circular sparse rulers, thus leading to more efficient

solutions. Note that in this case, the samplers are not fully

universal since they are only universal for the class of sets

containing p-banded matrices. For this reason we may prefer

using the term quasi-universal instead.

Theorem 4: If the covariance matrices in the set S are p-
banded with N ≤ p ≤ N(L − 1), then an N -periodic set I
defines a quasi-universal sampler if and only if it generates
an infinite periodic sparse ruler of period N .

Proof: The smallest subspace containing the p-banded

covariance matrices is generated by the following basis:

B′ = {B0,B1, . . . ,Bp} ∪ {B̃1, B̃2 . . . , B̃p}
Thus, following similar arguments as those used to prove

Theorem 1, it is possible to conclude that I defines a quasi-

universal sampler iff Δ(I) contains all integers from 0 to p. In

particular Δ(I) should include all distances from 0 to N − 1.

Since the set J = {i + kN ≥ 0, i ∈ I, k ∈ Z} is periodic

and contains all integer distances, J is an infinite periodic

sparse ruler generated by I.

To prove the converse statement, we shall show that if I
is periodic and generates an infinite periodic sparse ruler J ,

then the difference set Δ(I) contains all distances from 0 to

p or, in general, from 0 to N(L−1). Clearly, all the distances

in Δ(J ) can be obtained as d = i − j + lN , where i, j ∈ I
and l ∈ N+. According to this, we can classify them into

two classes. The first one includes all distances that can be

obtained by taking i, j < N . Since i, j ∈ I, it is clear that

i − j + lN ∈ Δ(I) for l = 0, 1, . . . L − 1. The second class

comprises the distances not included in the first class. They

can be obtained by taking j < N and N ≤ i < 2N so that

Δ(I) will also include the distances of the form i−j+lN with

l = 0, 1, . . . , L− 2 but not those with l = L− 1. Thus, Δ(I)

contains all distances between 0 and NL− 1 except those of

the form i − j + N(L − 1) with j < N and N ≤ i < 2N .

Since in this case i − j + N(L − 1) > N(L − 1), we have

that Δ(I) contains all integers from 0 to N(L−1) so that the

sampler defined by I is quasi-universal.

This Theorem shows that the design of quasi-universal

samplers for banded covariance matrices is in fact the same

problem as that in Sec. V-A, i.e., to find a quasi-universal

covariance sampler of length NL − 1 amounts to finding a

circular sparse ruler of length N−1. Observe that the condition

that p ≤ N(L− 1) is a weak assumption, since it only affects

the last N − 1 coefficients of the auto-correlation.

VI. RELATION TO PREVIOUS WORK

All the theory in the previous sections helps us to better un-

derstand the design of universal covariance samplers, showing

the ability of the covariance sampling criterion to unify the

treatment of a wide variety of problems in signal processing.

In the context of power spectrum estimation, the conclusions

of the present paper agree with those in [10] in the sense

that a N/2�-length sparse ruler is universal for covariance

sampling. This is so since they assume the covariance matrices

to be banded and since any N/2�-length sparse ruler is also

an (N −1)-length circular sparse ruler. However, this solution

is not optimal since an (N − 1)-length circular sparse ruler

may have less elements than a N/2�-length linear minimal

sparse ruler.

In the context of DoA estimation, the authors of [8] (see also

references there) have proposed the idea of coprime sampling,

where a sampling set C is constructed as

C = {Qn, n = 0, 1, . . . , P − 1}
∪ {Pm, m = 0, 1, . . . , 2Q− 2},

with P and Q two coprime integers satisfying Q < P ; and

they show that {0, 1, . . . , QP} ⊂ Δ(C). Observe that this

scheme spans from inf C = 0 to sup C = P (2Q−2), achieving

supΔ(C) = QP different consecutive lags with P + 2Q − 1
elements. However, using a P (2Q − 2)-length sparse ruler

it is possible to attain supΔ(C) = P (2Q − 2) lags. To see

the reduction in the number of elements (antennas, in this

case) consider the example in [8, Sec. 5], where Q = 5 and

P = 7: in that case they take P + 2Q − 1 = 16 elements

and obtain consecutive lags up to QP = 35. However, with a

P (2Q − 2) = 56-length sparse ruler it is possible to achieve

lags up to 56 with only 13 elements, which is the number

of elements of the 56-length minimal sparse ruler. A similar

remark can be done about the nested arrays of [7], where

the cardinality of Δ(I) is known in advance, but present the

disadvantage that Δ(I) is not a filled set, in the sense that

not all integers between the minimum and the maximum are

present. Both these schemes, along with minimum redundancy

arrays [9], are not, in general, universal covariance samplers.

The interest of these schemes is that in DoA estimation we are

typically interested in resolving a large number of sources, but

sometimes we do not care about the length of the array. On



the contrary, the covariance sampling criterion leads to arrays

that resolve the maximum number of sources for a given array

length3. On the other hand, the scheme in [11] actually defines

a universal covariance sampler.

VII. CONCLUSIONS

We have unified the treatment of several problems included

in what we called compressive covariance sampling under the

same framework, which is based on the covariance sampling

criterion. An intuitive theory was seen to arise from that idea,

resulting in simple design rules that eventually lead to the

minimal sparse ruler problem. Under mild conditions, it was

also seen that the problem simplifies and a novel mathematical

object, namely a circular sparse ruler, was proposed to accom-

plish the design. Future work will be pointed to analyze the

properties of this structure.
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