
Introduction

Novel single-sensor seismic acquisition systems (possibly in combination with high-productivity source
methods) allow for more complete sampling of the wavefield, more efficiently and affordably than tradi-
tional systems using field arrays. In this way, single-sensor systems enable the application of advanced
wavefield-based processing and imaging methods.However, one persistent difficulty with land surveys
– and single sensor surveys in particular – is that the acquisition grid is often irregular due to obsta-
cles and surface conditions. As a result, in some applications, such as multiple elimination methods or
imaging, regularization of data may be necessary. At the same time, filtering of steeply dipping events,
for example, may be desirable. Another application of filtering irregular data is decimation. This is a
data-reduction step often carried out before imaging, a process sometimes referred to as digital group
forming (Özbek and Ferber, 2005). In both cases the filter is alow-pass (anti-alias) filter. The purpose
of our work is to develop a robust filtering method that accounts for nonuniform sampling and that can
output traces at regular intervals. We consider the method robust if different realizations of the receiver
locations lead to small differences in the array output. Theoutput should approximate the output one
would get in the ideal case, i.e. if no receiver misplacements had occurred. In order to accomplish these
goals, the proposed method takes advantage of the fact that new acquisition systems are equipped with
GPS/RTK, and we therefore know the location of each receiverwith high (but still limited) accuracy.
One approach to filtering non-uniformly sampled data is to first reconstruct the data on the uniform
(nominal) grid and perform filtering afterwards. Filteringcan then be carried out as a simple discrete
convolution. The reconstruction problem in general has been extensively studied in many engineering
applications. For example in exploration geophysics, Duijndam et al. (1999) propose a method that
can reconstruct spatially band-limited data using parametric inversion. Another approach is proposed
by Özbek and Ferber (2005) as part of their digital group forming algorithm. They interpolate a pre-
designed filter to the actual receiver locations and each resulting filter coefficient is reweighted based on
the sampling density around its location. Our proposed method has common elements with both of these
two approaches. Similar to the method of Özbek and Ferber (2005), our method designs a different FIR
filter per output location, based on a prototype filter to be approximated. Unlike it, however, the filter
coefficients are calculated as the result of a least-squaresproblem. In common with band-limited recon-
struction (Duijndam et al. (1999)), our method also assumesthat the data is band-limited, but our aim
is to design filters having limited number of taps that combine regularization and filtering. The limited
number of taps means that each designed filter is applied onlyto a relatively small part of the data, cov-
ered by the physical length of the filter, in this way minimizing the contribution of data from potentially
different (sub) surface conditions in the output trace. Although we only consider the one-dimensional
low-pass filtering problem here, our method can be extended to allow for arbitrary multi-dimensional
filters. We discuss both the implementation in the space domain and in the wave number domain.

Theory

For simplicity we only consider filtering along one spatial dimension,x. The data is represented by the
function d(t,x), which is sampled in time at instantsti = i∆t and in space at theN locationsx j , j =
0, . . . ,N− 1. The nominal locations of the receivers are defined on the grid x̄n = n∆x. The actual
locations of the receiver are assumed to lie on the denser grid ¯̄xm = mδx= m(∆x/M) with M ≥ 1 and
integer. This is not overly restrictive, sinceM can be large and the precise receiver locations are known
with high, but nonetheless limited, accuracy. We also definethe indicator functions( ¯̄xm) takes the value
s( ¯̄xm) = 1 when a receiver is present at¯̄xm and the value zero otherwise. Leth(x̄i), i = 0,1, . . . ,L f −1 be
an FIR filter of lengthL f . All the filter taps lie in the rangeA = [0, L f ∆x). The main idea is to design
a new FIR filtergl (x) for each output location ˇxl , such that

N−1

∑
n=0

h(x̌l − x̄n)d(t, x̄n) =
NM−1

∑
m=0

gl (x̌l − ¯̄xm)s( ¯̄xm)d(t, ¯̄xm) (1)

holds. In other words, for each output location, the output of gl (x) applied to the actual gathered data
should ideally be identical to that ofh(x) applied to the data that would have been gathered if no mis-
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placements had occurred. We require thatgl (x) = 0 for x /∈A , so thatgl (x) has the same spatial support
ash(x). Sinced(t,x) is assumed to be band-limited,d(t, ¯̄xm) can be approximated with the aid of a
discrete version of the sinc-interpolation kernel,

d(t, ¯̄xm)≈
N−1

∑
q=0

sincd(N; ¯̄xm, x̄q)d(t, x̄q). (2)

The definition of sincd(·) can be found in Kontakis (2013). Substituting (2) in (1) we get

N−1

∑
n=0

h(x̌l − x̄n)
︸ ︷︷ ︸

hl n,1

d(t, x̄n)
︸ ︷︷ ︸

dn,1

≈
NM−1

∑
m=0

gl (x̌l − ¯̄xm)
︸ ︷︷ ︸

gl m,1

s( ¯̄xm)
︸ ︷︷ ︸

Sm,m

N−1

∑
q=0

sincd(N; ¯̄xm, x̄q)
︸ ︷︷ ︸

Qm,q

d(t, x̄q)

In matrix-vector notation, this can be written as

hT
l d ≈ gT

l SQd (3)

where the elements ofhl , d, gl , the diagonal ofS andQ are given byhl n,1, dn,1, gl m,1, Sm,m andQm,q

respectively. We would like (3) to hold irrespective of the (unknown) datad. A sufficient condition for
this to hold is

hT
l ≈ gT

l SQ

It is possible to find a suitablegl by solving the least-squares problem

min
gl

{
||hT

l −gT
l SQ||22

}
≡ min

g̃l

{
||hT

l − g̃T
l Q̃||22

}
,

whereg̃T
l is formed by removing its elements corresponding to the zeros of gT

l S. Similarly, Q̃ is con-
structed after removing the rows ofQ corresponding to the rows that would have been set to zero by

the productgT
L SQ. The problem has a closed-form solution given byg̃T

l = hT
l Q̃T

(

Q̃Q̃T
)−1

. If d̃ is the

irregularly sampled data, then our filtering method works asexplained in Figure 1.

gT
l d̃ = hT

l Q̃T
(
Q̃Q̃T

)−1
d̃

filtered and regular-
ized data

filter interpolated to the
actual receiver locations

"deconvolve"
irregularly sampled
input

Figure 1 Explanation of the different terms in our formulation

A different approach is to approximate the ideal lowpass filter which is defined in the wavenumber
domain. In this respect, the method to be outlined next can beviewed as a least-squares filter design
method for designing a linear space-varying filter G′, which is similar to traditional least-squares FIR
filter design for space- or time- invariant filters. Each row of G′ represents a filter with at mostL f taps.
Let F be anN-point discrete Fourier transform matrix. Then the objective is to findG′ such that

HwFd = (FG′SQFH)Fd, (4)

whereHw is a diagonal matrix whose diagonal elements are given by sampling of the wavenumber
responseHw(k) = 1,k ∈ [−kpass, +kpass] and Hw(k) = 0 otherwise. kpass is the largest normalized
wavenumber in the passband of the filter. Similar to the spacedomain method, a sufficient condition for
(4) to hold regardless of the spectrum is

Hw ≈ (FG′SQFH),
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which can be again stated as a least-squares problem:

min
G′

{||W⊙ (Hw− (FG′SQFH)||2F}, (5)

where⊙ denotes the Hadamard (elementwise) product and|| · ||F the Frobenius norm.W can be used to
assign different weights on the optimization of the passband and stopband region of the filter. A detailed
solution of (5) is not provided due to space restrictions.

Results

In order to test the performance of our algorithms, synthetic data were created using a finite difference
method. The nonuniform sampling is simulated by oversampling (at .5 m) and then using only a subset
of the traces. A simple velocity model was used with three layers. The wavelet has a bandwidth of
approximately 70Hz and was generated by a source atx=+500m. The receiver perturbations are chosen
from a uniform distribution in the range[0m, 4m]. The rest of the parameters as well as the velocity
model and the wavenumber response of the prototype filter areshown in Figure 2. Without pertur-

Parameter Value
∆x 5m
δx 0.5m
M 10
N 250
Nt 1501
∆t 1ms
L f 7

ρ1 = 2100kg/m3

ρ2 = 3000kg/m3

ρ3 = 4500kg/m3

P-wave: 1500m/s
S-wave: 700m/s

P-wave: 2900m/s
S-wave: 1400m/s

P-wave: 4000m/s
S-wave: 2500m/s
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Figure 2 From left to right: the simulation parameters, the velocitymodel and the prototype FIR filter.

bations, applying the filter in Figure 2 to the data gives the output in Figure 3. The output locations
are x̌l = l∆x, l = 0, . . . ,N. In order to test the performance of the proposed method, we applied our
method to 50 realizations of the perturbed receiver locations. We also implemented a one-spatial di-
mension version of the algorithm outlined in Özbek and Ferber (2005), that uses the trapezoidal rule
instead of Delaunay triangulation. We will further refer tothis method as geometry compensated filter-
ing (GCF). The results are presented in Figure 4. The averageoutputs of the algorithms show that the
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Figure 3 a) Regularly sampled input data and b) output in the ideal case of uniformly sampled data.

location perturbations have a more detrimental effect at higher frequencies. The reason for this is that
the spatial bandwidth is also larger at those frequencies, which leads to more energy leakage resulting
from nonuniform sampling (Beutler and Leneman, 1968). Our methods display better accuracy than our
implementation of GCF, which can be verified by the plots in the third row. This can be attributed to the
fact that we attempt a deconvolution of the effects of nonuniform sampling, much in the same way as
described in Duijndam et al. (1999).
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Additionally, we can see that our method gives a result that is more robust especially at higher frequen-
cies, i.e. it has a lower standard deviation than GCF. Note that areas that correspond to the zeros of the
prototype filter are not attenuated as much in our method. This is because the individually designed fil-
ters do not always have zeros at the exact same locations as the prototype filter. Since each output trace
is the result of filtering data with a different filter the composite f-k spectrum does not necessarily inherit
the regular zero spacing from the prototype filter. In our experience, the wavenumber domain method
yields slightly worse results than the space domain method.This might be attributed to the weighting
scheme we used. Optimizing the weights remains to be studiedin future work.
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Figure 4 From left to right column: space domain method, wavenumber domain method and the nonuni-
form filtering method proposed in Özbek and Ferber (2005). From top to bottom row: average, standard
deviation and average difference from the ideal filtered output seen in Figure 3. These results are over
50 different realizations of the receiver locations.

Conclusions

We formulated a method for jointly filtering and regularizing nonuniformly sampled seismic data as an
optimization problem in the space and in the wavenumber domain. Our results show good filtering and
regularization accuracy and a high degree of robustness when compared to another similar method. The
increase in robustness, however, comes at the price of a higher computational cost. The wavenumber
domain formulation of our method does not seem to yield significantly better results, but this may be
improved by choosing different relative weights for the stop and pass band in the optimization scheme.
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