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Abstract—A novel approach is developed for nonlinear compression
and reconstruction of high- or even infinite-dimensional signals living
on a smooth but otherwise unknown manifold. Compression is effected
through affine embeddings to lower-dimensional spaces. These embed-
dings are obtained via linear regression and bilinear dictionary learn-
ing algorithms that leverage manifold smoothness as well as sparsity of
the affine model and its residuals. The emergent unifying framework
is general enough to encompass known locally linear embedding
and compressive sampling approaches to dimensionality reduction.
Emphasis is placed on reconstructing high-dimensional data from
their low-dimensional embeddings. Preliminary tests demonstrate the
analytical claims, and their potential to (de)compressing synthetic and
real data.

I. INTRODUCTION

Consider N ∈ N∗ high-dimensional (column) vectors
{xn}Nn=1 ⊂ RD , located on or close to a smooth but otherwise
unknown manifold M ⊂ RD , D ∈ N∗. Given these training
data vectors, critical for efficient source encoding and decoding
of out-of-sample vectors x are: (a) the dimensionality reduction
module, which effects (generally lossy) compression from high-
dimensional (x ∈ RD) to low-dimensional (y ∈ Rd, N∗ 3 d �
D) vectors at the transmitter (Tx); as well as (b) the reconstruction
module at the receiver (Rx), which yields estimates x̂ of the high-
dimensional vectors from their low-dimensional renditions.

Principal component analysis (PCA) relies on the Karhunen-
Loeve transform, which constitutes the “workhorse” of dimen-
sionality reduction using a linear operator, namely a d × D
matrix V > (> denotes transposition) formed by the eigenvectors
corresponding to the d (out of D) largest eigenvalues of the sample
covariance matrix N−1∑N

n=1 xnx
>
n [1, Chap. 14.5]. PCA’s

premise for compressing x to its lower-dimensional rendition
y = V >x at the Tx, and reconstructing it optimally, in the mean-
square sense, is that x is stationary with the same covariance
matrix as {xn}Nn=1. From a deterministic viewpoint, PCA is
effective in (de)compression provided that both training and out-
of-sample vectors live on (or stay close in the least-squares (LS)
sense to) an affine subspace.

Data vectors, however, do not generally lie on an affine sub-
space but often on a manifold. In addition, they are typically
realizations of nonstationary or locally stationary processes, in-
cluding those formed by e.g., image and speech signals. These
considerations motivate approaches to nonlinear dimensionality
reduction [1, Chap. 14.9]. Among those, the so-termed locally
linear embedding (LLE) approach has well-documented merits,
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because [2]: (a) it is computationally affordable, entailing closed-
form expressions and eigen-decomposition level complexity; (b) it
does not require knowledge but only smoothness of the manifold;
and (c) it leverages smoothness to learn the manifold, and obtain
LLEs that can be thought of as being applied on tangential affine
subspaces.

So far, LLE has been advocated for manifold learning, cluster-
ing, and classification [3]. Recently, sparsity has been exploited
for LLE-type robust manifold learning and low-dimensional
embedding [4]–[7], but not for reconstruction purposes in a
source (de)coding setup. Sparsity is also the enabling attribute
for compressive sampling (CS) via random projections [8]–[13],
dictionary learning (DL) [14], [15], and reconstruction, but its role
for LLE-like nonlinear (de)compression has not been investigated.

The present paper aims to fill in these gaps, through a two-
pronged objective: (a) Based on {xn}Nn=1, the goal is to develop
a sparsity-aware, outlier-resilient estimate of the manifoldM, and
map it to a lower-dimensional space Rd (with d� D) by robust
sparse embeddings (RSE) in the training phase; and (b) leverage
this mapping during the operational phase to “compress” x ∈ RD
as y ∈ Rd at the Tx, and use the latter (or its noisy version ŷ)
to reconstruct an estimate x̂ of x at the Rx.

The rest of the paper is organized as follows. The basic princi-
ples of RSE are given in Section II, and its special case, the robust
sparse global embedding (RSGE) is established in Section III.
The more general approach of robust sparse embedding via
dictionary learning (RSE-DL) is presented in Section IV. The RSE
framework is further broadened in Section V to accommodate
compression and reconstruction of continuous-time or continuous
argument signals lying close to smooth manifolds in generally
infinite dimensional Hilbert spaces. Numerical tests on synthetic
and real data corroborate the analytical claims in Section VI, and
conclusions are offered in Section VII.

For notational brevity, collect {xn}Nn=1 to form the D × N
matrix X := [x1, . . . ,xN ]. The classical vector Euclidean norm
is denoted by ‖·‖, while the `1-norm by ‖·‖1. Moreover, given
any integers j1, j2, with j1 ≤ j2, let j1, j2 := {j1, j1+1, . . . , j2}.

II. ROBUST SPARSE EMBEDDING

Available to both Tx and Rx are the training data X , and
prescribed are the dimensions (D, d), with d � D, and the
cardinality K(� N), of the set of training data that can be
approximately considered to lie on an affine subspace.

The first step during the training phase is to determine per
datum xn an N × 1 weight vector wx

n (with Kn nonzero entries
wxnν ), and a D × 1 sparse bias vector bxn. Based on wx

n and bxn,
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each training datum can be approximated as an affine combination
of its “affiliates,” that is xn ≈

∑N
ν=1 w

x
nνxν + bxn. Vectors

(wx
n, b

x
n) will be obtained by solving the least-absolute shrinkage

and selection operator (Lasso)-type minimization task:

(wx
n, b

x
n) = arg min

(w,b)∈RN×RD

w>1N=1, wn=0

∥∥∥xn − N∑
ν=1

wνxν − b
∥∥∥2

+ λwn‖w‖1 + λbn‖b‖1 (1)

where 1N denotes the vector of all ones; λwn ≥ 0 can be tuned
to yield up to Kn nonzero entries in wx

n, and λbn ≥ 0 controls
the number of dimensions that can be offset to better fit the basis
affiliates of xn to an affine subspace tangential to the smooth
M at xn. It is worth stressing that these scalars are generally
n-dependent thus, e.g., allowing bases of variable size Kn per
datum.

RSE bears similarities with LLE, which are instructive to
recap in order to gain intuition. Suppose that {xn}Nn=1 form
clusters on M, and say xn belongs to one of these clusters.
Thanks to smoothness, this cluster comprises points that can be
thought of as residing on an affine subspace. Hence, xn can
be well approximated by an affine combination of other points
in its cluster. As with LLE, the rationale behind RSE is that
data (perhaps locally) belonging to an affine subspace can afford
PCA-like linear dimensionality reduction. However, compressing
matrices must be n-dependent and cannot be estimated reliably
as in PCA since the number of points per affine subspace maybe
too small.

Despite their similarities, there are also distinct differences
between RSE and LLE. To start, RSE does not necessarily find
Kn neighbors of each training datum based on their Euclidean
distances from xn, but instead it lets the `1-norm of wn select the
Kn affiliates defining its affine subspace. This sparsity-promoting
regularization has been also recognized by [4]–[7]. However, the
auxiliary sparse vector bxn is unique to the RSE here and can be
viewed as a “de-biasing” or outlier-capturing variable, as in the
robust PCA and multi-dimensional scaling approaches of [16].
Correspondingly, regularization with the `1-norm of bxn renders
the RSE- as well as the LLE-based manifold learning approaches,
robust to outliers.

Instead of employing bxn and the LS cost in (1), robustness
to outliers can be effected by adopting alternative costs such as
the ε-insensitive one (ε > 0), which is the criterion of choice
for support vector regression. In this case, the following convex
problem is solved per xn [cf. (1)]

min
w∈RN

w>1N=1, wn=0

D∑
δ=1

max

{
0,
∣∣∣xnδ − N∑

ν=1

wνxνδ

∣∣∣− ε}
+ λwn‖w‖1.

Having learned the manifold through its weights {wx
n}Nn=1,

RSE proceeds to find the nonlinear mapping which embeds
M into Rd by solving the following constrained optimization
problem:

min
Y ∈Rd×N

Y Y >=Id, Y 1N=0d

N∑
n=1

∥∥∥yn − N∑
ν=1

wxnνyν

∥∥∥2

(2)

where Y := [y1, . . . ,yN ]; vector 0d is the d× 1 all-zero vector;
and Id denotes the d × d identity matrix. The first constraint in
(2) excludes the trivial solution Y = 0d×N , while the second
one centers the columns of Y around 0d, since the cost in (2)
is invariant to translation of the Y columns [cf. (1)]. Note also
that if Y solves (2), then so does UY for any orthogonal matrix
U ∈ Rd×d. As in LLE, the solution of (2) is given by the eigen-
decomposition of an appropriate N × N matrix [2]. Intuitively,
this second step of the training phase ensures a globally consistent
alignment of the (possibly local) affine subspace models of the
tangential manifold patches.

Moving on to the operational phase, consider the out-of-sample
vector x. The first step is to learn the affine subspace x belongs
to by solving the robust Lasso-type problem [cf. (1)]

(wx, bx) = arg min
(w,b)∈RN×RD

w>1N=1

∥∥∥x− N∑
n=1

wnxn − b
∥∥∥2

+ λw‖w‖1 + λb‖b‖1 (3)

where λw, λb ≥ 0. Using this weight vector, the d×1 compressed
version of x is readily obtained as

y =

N∑
n=1

wxnyn = Y wx (4)

where Y is available from the training phase. This linear means
of obtaining y replaces the computationally complex eigen-
decomposition approach in (2).

At the Rx end, y may be received in noise as ŷ. Nonetheless,
it is possible to identify its affiliates in the d-space, by once again
solving a Lasso-type problem:

(ŵy, b̂y) = arg min
(w,b)∈RN×Rd

w>1N=1

∥∥∥ŷ − N∑
n=1

wnyn − b
∥∥∥2

+ λw‖w‖1 + λb‖b‖1. (5)

Upon recalling that the RSE weights in d-space remain invariant
in D-space, it follows readily that x can be reconstructed as x̂ =∑N
n=1 ŵ

y
nxn = Xŵy .

III. RSGE

By construction, RSE embedsM in Rd so that affine relations
among training vectors in RD are preserved in Rd [cf. (1) and
(2)]. RSE implicitly assumes the existence of a linear mapping
V >n per datum xn (cf. the discussion on PCA in Section I), with
weights wx

n capturing affine relations in the cluster of xn that are
preserved after the embedding into Rd. In contrast to the mappings
{V >n }Nn=1, each corresponding to a specific xn, the key idea of
this section is to specialize RSE through a global linear mapping
A> ∈ Rd×D that explicitly maps M to A>(M) ⊂ Rd. Due to
linearity, the affine relations of M ⊂ RD are also preserved in
the embedded A>(M) ⊂ Rd.

Care must be taken for A> not to deform the structure of
M in Rd. To this end, stable embedding operators A> have
been developed in the context of compressive sampling (CS) to
preserve, up to a scale factor, the original Euclidean distances of
{xn}Nn=1 [8]–[11]. Conditions on d, N , and A are reported in



[10], [11] to ensure that M is stably embedded in Rd with high
probability.

Selecting such a stable embedding A>, the compression oper-
ator of Section II can be replaced by yn = A>xn, ∀n ∈ 1, N .
As in the operational phase of Section II, for each out-of-sample
x ∈ RD , an optimization identical to (3) is solved at the Tx to find
a sparse wx, based on which the compressed vector is obtained
as y = A>

(∑N
n=1 w

x
nxn

)
=
∑N
n=1 w

x
nyn = Y wx.

Vector y or its noisy version ŷ is available at the Rx, where a
task identical to (5) is carried out. Since RSGE is a special case
of RSE, and upon recalling that RSE weights in Rd coincide with
those in RD , the reconstruction step yields x̂ =

∑N
n=1 ŵ

y
nxn =

Xŵy .

IV. RSE BASED ON DICTIONARY LEARNING

In certain applications it is conceivable that {xn}Nn=1 do
not contain only manifold-related information, but also noise
and outliers. As a result, {xn}Nn=1 are not located onto but
rather “close” to M. Moreover, if N is small or the data are
non-uniformly distributed, {xn}Nn=1 may not describe well the
manifold M. It is thus prudent to remove noise and outliers
from {xn}Nn=1, while leveraging the smoothness ofM and affine
relations among data subsets. Such an objective was pursued in
Section II through bxn.

In this section, a more general approach is followed by allowing
each neighborhood to be described by a basis other than the one
provided by the training data themselves. Specifically, a general
dictionary X := [χ1, . . . ,χQ] ∈ RD×Q is sought, for some
positive integer Q < N , such that the basis vectors {χq}Qq=1

for the entire manifold are located and distributed close to M in
a more flexible manner than {xn}Nn=1, while at the same time
describing accurately {xn}Nn=1 through an affine model. This
dictionary learning (DL)-based RSE approach solves

min
X∈RD×Q, Γ∈RD×N , B∈RD×Q

Ω∈RQ×N , Ω>1Q=1N

W∈RQ×Q, W>1Q=1Q

Diag(W )=0

N∑
n=1

∥∥∥xn − Q∑
q=1

ωnqχq − γn
∥∥∥2

+ λX

Q∑
q=1

∥∥∥χq − Q∑
τ=1

wqτχτ − bq
∥∥∥2

+

N∑
n=1

(
λωn‖ωn‖1 + λγn‖γn‖1

)
+

Q∑
q=1

(
λwq‖wq‖1 + λbq‖bq‖1

)
(6)

where λX ≥ 0, Ω := [ω1, . . . ,ωN ] ∈ RQ×N , Γ :=
[γ1, . . . ,γN ] ∈ RD×N , W := [w1, . . . ,wQ] ∈ RQ×Q, B :=
[b1, . . . , bQ] ∈ RD×Q, and {λωn, λγn}Nn=1, {λwq, λbq}Qq=1 are
non-negative real-valued parameters which control the sparsity
level of the vectors in (6). Different from e.g., [15], RSE-DL
in (6) is constrained by the smoothness of M.

Once the sought dictionary X becomes available from (6),

x X X

y
(ψ)

Y Y

(
wx, bx

)

wx

(
wx, bx

)

wx

(
Ω,Γ

)
W

Ω

(a)

x̂ X X

ŷ(
ψ̂
) Y Y
(
ŵy, b̂y

)
ŵy

(
ŵy, b̂y

)

ŵy

(b)

Fig. 1. (a) Training and operational phase of RSE-DL at Tx. Dashed
lines correspond to the training phase, while solid lines to the operational
one. Arrows pointing to the right precede in time. Moreover, bent lines
stand for the optional less computationally demanding route discussed in
Section IV. (b) Operational phase of RSE-DL at Rx. Bent lines stand for
the optional less computational demanding route employing (X ,Y).

embedding of M into Rd is possible by solving

min
Y∈Rd×Q

YY>=Id, Y1Q=0d

Q∑
q=1

∥∥∥ψq − Q∑
τ=1

wqτψτ

∥∥∥2

(7)

where Y := [ψ1, . . . ,ψQ] ∈ Rd×Q. Upon defining Y :=
[y1, . . . ,yN ] := YΩ, and having available (X,Y ) at both Tx
and Rx, the operational phases follow identical steps to those in
Section II.

However, one can consider a reduced-complexity route (recall
Q < N ) by utilizing (X ,Y) instead of (X,Y ) as follows. In
the operational phase, a procedure similar to (3) can be adopted,
but with X instead of X; that is

(wx, bx) = arg min
(w,b)∈RQ×RD

w>1Q=1

∥∥∥x− Q∑
q=1

wqχq − b
∥∥∥2

+ λw‖w‖1 + λb‖b‖1. (8)

Having available the dictionary Y in the low-dimensional space
Rd, compression of x is achieved via ψ = Ywx. At the Rx end,
the potentially noisy ψ̂ ∈ Rd is utilized to solve the following
Lasso-type problem

(ŵψ, b̂ψ) = arg min
(w,b)∈RQ×RD

w>1Q=1

∥∥∥ψ̂ − Q∑
q=1

wqψq − b
∥∥∥2

+ λw‖w‖1 + λb‖b‖1. (9)

Finally, the original x is reconstructed at the Rx as x̂ :=∑Q
q=1 ŵ

ψ
q χq = X ŵy . Both the training and operational phases

of RSE-DL are summarized in Fig. 1.

Remark 1. If the solver of (8) yields vectors wx with support
having cardinality upper bounded by d, then wx can be taken as
the compressed version of x instead of ψ. This resembles the
DL-based sparse coding scheme of e.g., [15], and bypasses the
need for solving (9). Vector x can be reconstructed as x̂ = X ŵx,
where ŵx is the noisy version of the wx sent to Rx. Of course,
in addition to the nonzero entries of wx, their locations must be
communicated from the Tx to the Rx.



Remark 2. The RSE-DL approach can be viewed as a de-
terministic alternative to the Bayesian multi-factor analysis (B-
MFA) scheme in [12]; see also [13]. B-MFA utilizes training data
to learn low-dimensional signal models (specifically to estimate
(hyper)parameters of Gaussian mixture priors based on costly
Monte Carlo sampling). But unlike RSE-DL which relies on data-
adaptive training to find the embedding, B-MFA relies on data
non-adaptive CS measurement matrices to obtain the embedding.
As such, B-MFA is neither tailored for clustering and classifica-
tion based on low-dimensional features, nor for (de)compression
especially when the reduced dimension renders the CS matrix
information lossy.

V. RSE IN HILBERT SPACES

The scope of RSE is broadened in this section to dimensionality
reduction and reconstruction of signals belonging even to infinite
dimensional (real) Hilbert spaces H instead of RD . Rather than
vectors x ∈ RD , of interest here are compression and recon-
struction of (nonlinear) functions Rp 3 t 7→ f(t) ∈ R, for some
p ∈ N∗, which are located onto or close to a smooth but unknown
manifold M ⊂ H. Space H is assumed equipped with an inner
product 〈·, ·〉H and induced norm ‖·‖H.

In this context, consider a training set of functions {fn}Nn=1 ⊂
H. Parallel to vector bx in Section II, M ∈ N∗ user-defined
functions {gm}Mm=1 ⊂ H are also considered to approximate the
residual f−

∑N
ν=1 w

f
νfν . With {wfν}Nν=1 and {vfm}Mm=1 denoting

scalar weights, f ∈ H located close to M is expressed as

f ≈
N∑
ν=1

wfνfν +

M∑
m=1

vfmgm . (10)

It can be readily verified that application of any linear mapping
S : H → RD : f 7→ S(f) onto (10) yields S(f) ≈∑N
ν=1 w

f
νS(fν) +

∑M
m=1 v

f
mS(gm). In other words, affine re-

lations inM⊂ H are preserved in S(M) ⊂ RD . For specificity,
consider the following example.

Example 1. The mapping H 3 f 7→ ST (f) :=
[f(t1), . . . , f(tD)]> ∈ RD is linear, if e.g., T :=
{t1, . . . , tD} ⊂ Rp denotes a generally non-uniform set of
sampling points.

Compression and reconstruction of functions in H is trans-
formed via ST into a corresponding problem in the finite di-
mensional RD . The original task is relaxed from everywhere
approximation in (10) to an interpolation problem onto a finite
number of sampling points T . Upon defining xn := ST (fn),
∀n ∈ 1, N , the framework of Sections II and IV can be readily
applied to the problem in RD . For example, (1) translates to

(wf
n, b

f
n) = arg min

(w,b)

∥∥∥ST (fn)−
N∑
ν=1

wνST (fν)− b
∥∥∥2

+ λwn‖w‖1 + λbn‖b‖1

s.t.
{

(w, b) ∈ RN × RD,
w>1N = 1, wn = 0

where b was used to generalize
∑M
m=1 v

f
mST (gm).

Since the only requirement on S is linearity, there are more
ways to specify S other than that of Example 1.

Example 2. Given Φ := {ϕ1, . . . , ϕD} ⊂ H, define the linear
operator H 3 f 7→ SΦ(f) := [〈f, ϕ1〉H, . . . , 〈f, ϕD〉H]> ∈ RD .
Here too the results of Sections II and IV can be directly applied
to the problem at hand after defining xn := SΦ(fn), ∀n ∈ 1, N .

There is a special class of H where the inner products
{〈f, ϕδ〉}Dδ=1 in Example 2 are easily obtained. Indeed, if H is
a reproducing kernel Hilbert space (RKHS) [17], [18], ST and
SΦ can be made to coincide. Recall that H is RKHS iff there
exists a (unique) kernel function κ(·, ·) : Rp × Rp → R such
that (i) κ(·, t) ∈ H, and (ii) the reproducing property holds, i.e.,
〈f, κ(·, t)〉H = f(t), ∀f ∈ H, ∀t ∈ Rp.

Example 3. Let H be RKHS, with kernel κ, and Φ :=
{κ(·, t1), . . . , κ(·, tD)}. Then, by the reproducing property,
SΦ(f) = [f(t1), . . . , f(tD)] = ST (f), ∀f ∈ H.

It is worth stressing here that S is no longer required and that
RSE-type operations become viable in the original H, if inner
products 〈·, ·〉H are realizable. For example, following (1), the
first step of the RSE’s training phase in H is formulated as

(
wf
n,v

f
n

)
= arg min(

wf ,vf
) ∥∥∥fn − N∑

ν=1

wfνfν −
M∑
m=1

vfmgm

∥∥∥2

H

+ λwn‖wf‖1 + λvn‖vf‖1

s.t.
{(
wf ,vf

)
∈ RN × RM ,

1>Nw
f = 1, wfn = 0.

(11)

If 〈fn1 , fn2〉H, ∀(n1, n2) ∈ 1, N
2
, and 〈fn, gm〉H, ∀(n,m) ∈

1, N × 1,M are assumed available, then (11) is equivalent to(
wf
n,v

f
n

)
= arg min(

wf ,vf
) [wf>,vf>

] [C11 C12

C>12 C22

] [
wf

vf

]

− 2
[
wf>,vf>

] [h1

h2

]
+ λwn‖wf‖1 + λvn‖vf‖1

s.t.
{(
wf ,vf

)
∈ RN × RM ,

1>Nw
f = 1, wfn = 0

where C11 := [〈fi, fj〉H]
(i,j)∈1,N

2 ∈ RN×N ,
C12 := [〈fi, gj〉H](i,j)∈1,N×1,M ∈ RN×M , C22 :=

[〈gi, gj〉H]
(i,j)∈1,M

2 ∈ RM×M , and h1 := [〈fn, fi〉H]i∈1,N ∈
RN , h2 := [〈fn, gi〉H]i∈1,M ∈ RM . Similar derivations are also
possible for the RSE-type operational phase in H, provided that
{〈f, fn〉H}

N
n=1 and {〈f, gm〉H}

M
m=1 are realizable for every

f ∈ H.

VI. NUMERICAL EXAMPLES

To validate the proposed RSE family of algorithms, synthetic
and real data are utilized from the celebrated “Swissroll manifold”
and “Frey faces” database, respectively [19]. For comparison,
PCA and LLE are also tested.

For the Swissroll data, D = 3 and d = 2. A number of N =
500 training and Ntest = 500 out-of-sample data were generated
by adding zero-mean Gaussian noise, at SNR = 20dB, on 3-
dimensional samples taken randomly out of the manifold. Zero-
mean Gaussian noise at SNR = 10dB was added to y to obtain
ŷ. The parameters used for the RSE family of algorithms are
as follows: λwn = 10−1, λbn = 0, λωn = 10−1, λγn = 0,



Method MSE (dB) Method MSE (dB)
PCA −10.395 RSE −13.748
LLE +3.382 RSE-DL (X ,Y) −15.707

RSGE −9.459 RSE-DL (X,Y ) −13.766

TABLE I
MSES ON 100 REALIZATIONS. THE “RSE-DL (X ,Y)” TAG REFERS

TO THE DISCUSSION IN SECTION IV REGARDING THE
REDUCED-COMPLEXITY PROMOTING DICTIONARIES (X ,Y) OF

CARDINALITY Q; SEE ALSO FIG. 1.

∀n ∈ 1, N , while λX = 1, Γ = B = 0, and Q = 250 for
RSE-DL in Section IV. In LLE, K = 20 neighbors were used.
Both embedding and reconstruction results are depicted in Fig. 2.
To assess performance, the normalized reconstruction error was

MSE :=
1

100Ntest

100∑
r=1

Ntest∑
l=1

‖x(r)
l − x̂

(r)
l ‖

2

‖x(r)
l ‖2

where r indexes the realization of the experiment. A number of
100 realizations were conducted to yield the results of Table I.
Both in Fig. 2 and Table I, the tag “RSE-DL (X,Y )” refers to
Section IV where all N training data X , and their “compressed”
counterparts Y are utilized, while “RSE-DL (X ,Y)” indicates
the reduced complexity approach of Section IV, where the Q-
cardinality dictionaries (X ,Y) are employed.

Results on embedding a number of N = 1965, (20 × 28)-
dimensional (D = 560) “Frey faces” in R2 are shown in Fig. 3. In
this context, the following values for the parameters in the RSE-
family of algorithms are utilized: λwn = 10−1, λbn = 10−1,
λωn = 10−1, and λγn = 0, ∀n ∈ 1, N , while λX = 1, Γ =
B = 0, and Q = 1500 for the RSE-DL approach of Section IV.
Again, K = 20 is used for the LLE.

The numerical results of Figs. 2, 3 and Table I corroborate the
analytical claims, and reveal the potential of RSE and RSE-DL
for reconstruction, clustering and classification tasks.

VII. CONCLUSIONS

A robust, sparsity-aware, data-adaptive, nonlinear embedding
methodology was developed for (de)compression of high- or
even infinite-dimensional signals located close to smooth but
otherwise unknown manifolds. The novel RSE approach enabled
unsupervised learning of both local and global geometrical char-
acteristics of smooth manifolds with computationally affordable
training and operational phases. Moreover, the introduced RSE-
DL alternative offered desirable morphing of the training data and
noise mitigation to obtain a smoother basis for the manifold with
reduced computational complexity. Numerical results were also
presented to support the analytical claims.

Future research directions of prime interest include performance
analysis results on the RSE and RSE-DL based reconstruction
schemes, and thorough comparisons with existing alternatives on
real images.
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Fig. 2. Embedding of the Swissroll manifold in R2 and reconstruction.
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Fig. 3. Embedding of “Frey faces” in R2.


