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Emitter Localization Given Time Delay and
Frequency Shift Measurements

Given time and frequency differences of arrival measurements,

we estimate the position and velocity of an emitter by jointly

eliminating nonlinear nuisance parameters with an orthogonal

projection matrix. Although simulation results show that this

estimator does not always perform as well as the two-step

estimator, the benefit is its computational simplicity. Whereas

the complexity of the two-step estimator increases cubically with

respect to the number of sensors, the complexity of the proposed

estimator increases quadratically.

I. INTRODUCTION

Estimating the location of an emitter with a

passive sensor array has been of considerable interest

for many years, and has found many applications

in several fields including radar, sonar, wireless

communications, satellites, airborne systems, and

acoustics [1—11]. With the common indirect estimation

approach [1, 2], one or more parameters (e.g., angle

or time of arrival) are measured, and the emitter

parameters (position and/or velocity) are then

determined. A different approach is to estimate the

emitter parameters directly from the observations

[10, 11]. Herein, we focus on the former approach

assuming a stationary passive sensor array and a

moving emitter.

Given the measurements of time differences of

arrival (TDOAs) and frequency differences of arrival

(FDOAs) between pairs of observed signals, the

goal is to estimate the source position and velocity.1

Weinstein proposed an estimation technique which

is applicable for a linear array only and assumes

a source in the far-field region [5]. The estimation

procedure suggested by Ho and Xu [9] extended the

two-step approach of Chan and Ho [8] by taking

1The TDOAs and FDOAs are obtained by maximizing the

ambiguity function [12]. Their statistical properties are discussed

in [13], [14], and [16], assuming a known, an unknown

deterministic, and a random transmitted signal, respectively.
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into account the FDOA measurements. The idea of

Ho and Xu [9] is to obtain a set of linear equations

by introducing two nuisance parameters (the range

and range rate associated with the reference sensor

and the source). In the first step, a weighted least

squares (WLS) solution is proposed to estimate

the position and velocity of the source together

with these nuisance parameters, and in the second

step, the relations between the nuisance parameters

and the parameters of interest are used to solely

estimate the position and velocity using another WLS

minimization. The performance of this method was

shown to be close to the Cramér-Rao lower bound

(CRLB) [9, Appendix C]. Friedlander suggested

to estimate the source position and velocity by

extending his least squares (LS) method which was

developed to locate a stationary source given TDOAs

only [7]. The LS position estimate of a stationary

source relies on an orthogonal projection matrix to

eliminate the nuisance parameter (range between

the reference sensor and the source). The notion of

Friedlander’s extension [7, Section V] was to use

two similar orthogonal projections in a subsequent

manner as follows: first obtain the LS source position

as previously explained, and then eliminate the second

nuisance parameter (range-rate between the reference

sensor and the source) using the same orthogonal

projection to get the LS velocity estimate. Our

simulation results show that this subsequent projection

approach has poor performance compared with the

two-step approach [9] and the CRLB.

Herein, by exploiting the idea leading to

Friedlander’s TDOA-based positioning method [7],

we propose an LS estimator of the source position

and velocity which is obtained from using a joint

elimination (a single orthogonal projection) of the

two nuisance parameters. It is noteworthy to mention

that this LS estimate is closely related to the first

step WLS estimate in [9] following the results in

[15]. We show that the estimates are asymptotically

unbiased, and also derive their covariance matrix. The

performance of the proposed estimator is evaluated

with simulations for a source in the near-field and

far-field regions as a function of 1) the noise variance

using a circular sensor array and a random sensor

array, 2) the number of sensors, and 3) the ratio

between the variances of the TDOA and the FDOA

measurements. We show that there is a trade-off

between performance and complexity. Although the

proposed algorithm does not always perform as well

as the two-step approach, the main advantage is its

computational complexity. Whereas the complexity of

the previously suggested two-step estimator increases

cubically with respect to the number of sensors, the

complexity of the proposed estimator only increases

quadratically.

Notation: Uppercase and lowercase bold fonts

denote matrices and vectors, respectively. (¢)T, (¢)¡1

stand for transpose, and inverse, respectively. In is the

n£ n identity matrix, 0n is an n£ 1 vector with all
elements equal to zero. diag(z1, : : : ,zN) is a diagonal

matrix with z1, : : : ,zN on the main diagonal. E[x]

represents the expectation of the random vector x. _x

is the time derivative of x(t) with respect to t, i.e., _x=

dx(t)=dt. kxk is the 2-norm of x. − is the Kronecker
product. X? is the orthogonal projection matrix of X,
i.e., X? = I¡X(XHX)¡1XH . x̄ is the concatenation of
x and _x, i.e., x̄= [xT, _xT]T. x̂ is the estimate of x in the

presence of Gaussian noise, i.e., x̂= x+ e where e is a

zero mean Gaussian vector representing the estimation

error. x̃ represents the first-order error of the estimate

x̂, i.e., x̂= x+ x̃.

II. PROBLEM FORMULATION

Consider M stationary sensors and a moving

source distributed in a q-dimensional Cartesian

coordinate system (q= 2 or q= 3). Let p̄s
¢
=[pTs , _p

T
s ]
T

be the 2q£1 vector, where ps and _ps are the q£1
true unknown position and velocity vectors of

coordinates of the source. Let pm, m= 1,2, : : : ,M

denote the known q£ 1 vector of coordinates of the
mth sensor. (We note that the setup in [9] is developed

for the case of moving sensors. The extension of the

current problem formulation and the proposed method

to this case is straightforward.) Let ¢tm,1 and ¢fm,1
be the true TDOA and FDOA between the signals

received by the mth sensor and the first (reference)

sensor. Denote by c the signal propagation speed and

by fc the carrier frequency of the signal. The true

range rm,1 and range-rate _rm,1 differences are

rm,1
¢
=c¢tm,1 = dm,s¡d1,s (1)

_rm,1
¢
=
c

fc
¢fm,1 =

_dm,s¡ _d1,s (2)

where the range dm,s and range-rate
_dm,s between the

mth sensor and the source are defined as

dm,s
¢
=kps¡pmk (3)

_dm,s
¢
=
(pm¡ps)T _ps

dm,s
: (4)

We note that the TDOA and FDOA measurements

are taken over a short interval and the assumption is

that the source position and velocity to be estimated

(assumed to be at some point in the interval) do not

change much during the measurements.

Define the 2(M ¡ 1)£ 1 vector r̄ ¢=[rT, _rT]T where
r
¢
=[r2,1, : : : ,rM,1]

T and _r
¢
=[_r2,1, : : : , _rM,1]

T are (M ¡ 1)
£1 vectors. In practice, we are given the noisy
2(M ¡ 1)£ 1 vector,

ˆ̄r= r̄+± (5)
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where ˆ̄r
¢
=[r̂T, _̂r

T

]T, and r̂
¢
=[r̂2,1, : : : , r̂M,1]

T, _̂r
¢
=

[_̂r2,1, : : : , _̂rM,1]
T are (M ¡ 1)£ 1 vectors containing

the noisy measurements of the range and range-rate

differences, respectively. The 2(M ¡ 1)£ 1 vector
±
¢
=[²T,»T]T is the additive noise where ²

¢
=

[²2,1, : : : ,²M,1]
T and »

¢
=[»2,1, : : : ,»M,1]

T are (M ¡ 1)£ 1
vectors. We assume that ± is a zero mean Gaussian
random vector with a covariance matrix E[±±T].
The problem we discuss is briefly expressed

as follows: given the vector of measurements ˆ̄r,

determine the vector of interest p̄s.

III. THE PROPOSED LEAST-SQUARES ESTIMATOR

We start by developing a model which linearly

depends on p̄s following the mathematical derivations

introduced in [7]. Define the (M ¡ 1)£ q matrix S and
the (M ¡1)£ 1 vector u as

S
¢
=[p2¡p1, : : : ,pM ¡p1]T (6)

u
¢
= 1
2
[kp2k2¡kp1k2¡ r22,1, : : : ,kpMk2¡kp1k2¡ r2M,1]T:

(7)

According to [7, eq. (7a)] we have the following

relation,

Sps = u¡d1,sr: (8)

Next, define the (M ¡1)£ 1 time derivative vector of
u, denoted by _u, and the 2£ 1 vector d̄1,s as

_u
¢
=[¡r2,1 _r2,1, : : : ,¡rM,1 _rM ,1]T (9)

d̄1,s
¢
=[d1,s,

_d1,s]
T: (10)

Then, according to [7, eq. (60)] we get

S _ps = _u¡ [_r r]d̄1,s: (11)

In [7] the two models in (8) and (11) were considered

separately. Herein, we note that these two models

contain the vectors of interest, i.e., the position and

the velocity of the source. Hence, by combining (8)

and (11) we get a linear model with respect to (w.r.t.)

p̄s given as

Fp̄s+Hd̄1,s = ū (12)

where the 2(M ¡ 1)£ 1 vector ū, the 2(M ¡ 1)£ 2q
matrix F, and the 2(M ¡1)£ 2 matrix H are

ū
¢
=[uT, _uT]T (13)

F
¢
=I2−S (14)

H
¢
=

·
r 0M¡1
_r r

¸
(15)

where In is an n£ n identity matrix, − is a Kronecker
product, and 0n is an n£ 1 vector of zeros.
The linear model in (12) contains both the

unknown nonlinear nuisance vector d̄1,s (range and

range-rate of the source w.r.t. the reference sensor)

and the unknown vector of interest p̄s. In [9] the

approach is to first estimate d̄1,s together with p̄s,

and then to use the relation between the two vectors

to further refine the previous estimate of p̄s. In

[7] the estimation is based on 1) eliminating the

term associated with d1,s in (8), with an orthogonal

projection matrix [7, eq. (8)], and obtaining the LS

solution for ps, and 2) eliminating the term associated

with _d1,s in (11), using the same orthogonal projection

matrix [7, eq. (8)], and then obtaining the LS solution

for _ps (where d1,s involved in the latter solution is

calculated using the estimate of ps obtained after the

first step).

We adopt a different approach. The idea is to

jointly eliminate the unknown nonlinear nuisance

vector d̄1,s in (12) using an appropriate orthogonal

projection matrix which leads to an equation that

solely depends on the unknown vector of interest

p̄s. It is noteworthy to mention that this operation

considers the two vectors d̄1,s and p̄s as independent,

and ignores the fact that they are mathematically

related.

We define the 2(M ¡ 1)£ 2(M ¡ 1) orthogonal
projection matrix of H as

P? = I2(M¡1)¡H(HTH)¡1HT: (16)

Premultiplying (12) with P? yields a linear model
which only depends on the vector of interest p̄s,

P?Fp̄s = P
?ū: (17)

In the presence of noise we replace the true vectors

and matrices in (17) by their noisy versions (i.e., we

write ˆ̄u instead of ū and P̂? instead of P?), since we
will adopt the noisy measurements vector ˆ̄r given in

(5). This results in the error vector, denoted by ´, and
(17) is then given by

P̂? ˆ̄u= P̂?Fp̄s+´: (18)

The LS estimate of p̄s is obtained by minimizing the

square norm of ´, that is,

ˆ̄ps = argmin
p̄s

kP̂?(Fp̄s¡ ˆ̄u)k2 = Q̂ ˆ̄u (19)

where Q̂ is a 2q£ 2(M ¡ 1) matrix defined as

Q̂
¢
=(FTP̂?F)¡1FTP̂?: (20)

This concludes the derivation of the proposed

estimator. Notice that following the results in [15], the

LS estimator in (19) is related to the WLS estimator
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obtained in the first step in [9]. In the next sections

we focus on the small error performance and the

computational complexity of this LS estimator.

IV. SMALL ERROR ANALYSIS

We examine the effect of noise on the position

and the velocity estimates using small error analysis.

The idea is to express the estimate ˆ̄ps as
ˆ̄ps
»= p̄s+ ˜̄ps

where ˜̄ps is the first-order error of
ˆ̄ps (higher order

error terms of ˆ̄ps depend on products involving both ²
and » and are therefore ignored). The approximated

bias of the estimate ˆ̄ps is then given by E[
˜̄ps], and

the approximated covariance of ˆ̄ps is then given by

E[( ˜̄ps¡E[ ˜̄ps])( ˜̄ps¡E[ ˜̄ps])T]. We start by obtaining an
explicit expression for ˜̄ps and then analyze its two first
moments.

Considering the estimate in (19), we express

the noisy matrix Q̂ and the noisy vector ˆ̄u using

first-order approximations as Q̂=Q+ Q̃ and ˆ̄u=

ū+ ˜̄u, respectively (the explicit expressions for the

first-order error terms, Q̃ and ˜̄u are given in Appendix

I). We then get

ˆ̄ps = Q̂(ū+
˜̄u)

= Q̂(Fp̄s+Hd̄1,s)+ Q̂
˜̄u

= p̄s+ Q̂Hd̄1,s+ Q̂
˜̄u

»= p̄s+(Q+ Q̃)Hd̄1,s+Q ˜̄u

= p̄s+ Q̃Hd̄1,s+Q
˜̄u (21)

where in the second passing we substituted ū by

Fp̄s+Hd̄1,s, in the third passing we used the result

that Q̂F= I, in the fourth passing we neglected the

term Q̃ ˜̄u which involves products of errors, and finally
in the fifth passing we used the result that QH= 0.

The first-order error of ˆ̄ps is thus

˜̄ps
¢
=Q̃Hd1,s+Q

˜̄u: (22)

Substituting in (22) the expressions for Q̃ and ˜̄u

(obtained in (32) and (35) in Appendix I) results in

˜̄ps =QJ± (23)

where we define the 2(M ¡ 1)£ 2(M ¡ 1) matrix J as

J
¢
=¡

"
diag(r) + d1,sIM¡1 0M¡10

T
M¡1

diag(_r) + _d1,sIM¡1 diag(r) + d1,sIM¡1

#
:

(24)

Since E[±] = 0, we conclude that the first-order

approximation of the bias of the estimate ˆ̄ps is zero,

that is, E[ ˜̄ps] = 02q£1. The first-order approximation of

the covariance matrix of ˆ̄ps is

E[ ˜̄ps
˜̄p
T

s ] =QJE[±±
T]JTQT: (25)

This concludes the derivation of the bias and the

covariance matrix.

V. COMPUTATIONAL COMPLEXITY

We evaluate the computational complexity of the

proposed LS positioning technique and compare it

with the complexity of the two-step method. For

simplicity we denote by RM(X) the number of real

multiplications (RMs) involved in calculating the

parameter X.

A. Proposed Estimator

The total number of RMs which are required to

calculate ˆ̄ps with the proposed estimator (refer to
Appendix II) is

RM( ˆ̄ps) =

8>><>>:
32M2 +2M +40,

q= 2 (two-dimensional space)

48M2 +10M +166,

q= 3 (three-dimensional space)

:

(26)

For a large number of sensors, the complexity of the

proposed estimator increases quadratically w.r.t. M.

B. Two-Step Estimator

The two-step algorithm is detailed in [9, Section

IV, p. 2458] and for exhibition simplicity is rewritten

in Table II in Appendix II where we use the same

notation as used in [9]. In Appendix II we detail the

computational complexity of this method. According

to this algorithm we need to refine the estimate by

performing a few steps (at least two) if the source

is in the near-field region. These steps (and their

repetition) are neglected if the source is in the far-field

region. However, in practice we cannot a priori know

whether the source is in the near-field region or the

far-field region. Therefore, we need to consider the

case of a source in the near-field only (worst case).

Following the results in Appendix II, the total RMs

which are required to calculate ˆ̄ps with the two-step

approach assuming a source in the near-field region is

RM( ˆ̄ps) =

8>><>>:
48M3¡ 72M2 +468M +2328,

q= 2 (two-dimensional space)

48M3¡ 48M2 +768M +8010,

q= 3 (three-dimensional space)

:

(27)

The main part of the calculation of this approach

is calculating the weighting matrix required for the

first estimation step, which involves the inversion of a

2(M ¡ 1)£ 2(M ¡1) matrix and requires 24(M ¡ 1)3
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Fig. 1. Number of real multiplications (upper plot) and ratio between number of real multiplications (lower plot) involved in two-step

approach and proposed approach for both two-dimensional (2D) space and three-dimensional (3D) space, and for source in near-field

region.

RMs. Therefore, the complexity of the two-step

approach increases cubically with respect to the

number of sensors in the array.

In Fig. 1 we show the complexities of the

proposed LS method and the two-step method for q=

2 and q= 3, and assuming a source in the near-field

region, versus the number of sensors M where M =

5,6, : : : ,20. As can be seen, the ratio between the two

complexities increases as the number of sensors in the

array M is increased.

VI. NUMERICAL EXAMPLES

We present several simulation results that

demonstrate the root mean square error (RMSE) of

the position and velocity estimates using independent

Monte-Carlo trials (we used 5000 trials). We compare

the RMSE of the proposed LS estimator with

those of the two-step method [9], and the CRLB

[9, Appendix C]. We also compute the theoretical

RMSE of the proposed estimator according to (25),

and the theoretical RMSE of the two-step estimator

according to [9, eq. (25)]. We assume that the

transmitted signal is a white process with variance

¾2s , independent of the noise processes which are all

white, independent processes with variance ¾2n . Also,

the attenuations of the intercepted signal at all sensors

are assumed identical. We assume the covariance

matrix of the noise vector ± is [5, Section II]

¤±± =

·
E[²²T] 0

0 E[»»T]

¸
=

·
E[²²T] 0

0 ¯E[²²T]

¸
(28)

where ¯
¢
=12=T2 and T is the observation time, and

[5, eq. (10), eq. (14)]

E[²²T]
¢
=°(IM¡1 + 1M¡11

T
M¡1) (29)

°
¢
=
3¼c2

TW3

1+M SNR

M SNR2
(30)

SNR
¢
=¾2s =¾

2
n (31)

where W is the signal bandwidth. This covariance

matrix assumes that the transmitted signal is a
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Fig. 2. Normalized theoretical and simulated RMSE of estimated position and velocity of source in far-field and near-field regions

versus ° for array with eight elements in circular configuration, using LS proposed method, the two-step approach, and the subsequent

projection method [7], all compared with the CRLB.

Gaussian random process with a known power

spectrum density. Other covariance matrices (obtained

from a CRLB analysis) can be used also such as the

covariance matrix given in [13] where it is assumed

that the transmitted signal and the attenuations to the

sensors are known, or the covariance matrix given in

[14] where the signal is assumed to be deterministic

but unknown and also the attenuations to the sensors

are unknown.

In all the following plots we normalize the position

RMSE by the distance between the source position

and the origin, and normalize the velocity RMSE by

the Euclidean norm of the source velocity vector.

In the first simulation we evaluate the RMSE

versus the parameter ° for a sensor array with a

circular configuration. We consider two cases for the

source: far-field and near-field. In the far-field case

the position and the velocity vectors of the source

are ps = [10000cos(¼=3),10000sin(¼=3)]
T m and

_ps = [30sin(¼=3),30cos(¼=3)]
T m/s, respectively.

While in the near-field the position of the source

is ps = [1000cos(¼=3),1000sin(¼=3)]
T m with the

same velocity vector. We consider eight sensors where

pm = 100 ¢ [cos(2¼m=8),sin(2¼m=8)]T m, m= 1, : : : ,8.
We vary the parameter 10log10(°) from ¡50 dB m2
to ¡20 dB m2 (in case the source is in the near-field
region) and from ¡80 dB m2 to ¡50 dB m2 (in case
the source is in the far-field region). We assume that

¯ = 0:1 Hz2. The normalized RMSE of the position

and the velocity of the source using the proposed LS

estimator, and the two-step approach are shown in

Fig. 2, where the CRLB is also plotted. We also add

the RMSE of the subsequent orthogonal projection

approach suggested in [7, Section V]. As can be seen,

the RMSE of the LS solution is close to that of the

two-step approach and the CRLB, while the RMSE

of the subsequent orthogonal projection approach

in [7, Section V] is inferior compared with the LS

estimator and the two-step method. As a result we do

not consider this approach in the following simulation

results. We note that the theoretical performance

of the two-step method is known to be close to the

CRLB, and thus in this plot and in the subsequent

plots the line representing the theoretical performance

of the two-step method coincides with the CRLB.
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Fig. 3. Normalized theoretical and simulated RMSE of estimated position and velocity of source in far-field region versus ° for array

with eight elements in random configuration, using proposed LS method and two-step approach, both compared with CRLB (left

plot–RMSE for one random configuration. right plot–RMSE averaged over 50 random configurations.)

In the second simulation we again evaluate

the RMSE versus the parameter °, but this time

for a sensor array with a random configuration.

We consider a source located in the the far-field

region. The position and velocity vectors are

ps = [10000,10000]
T m and _ps = [30,¡20]T m/s,

respectively. We consider eight sensors where pm =

rm ¢ [cos(Ám),sin(Ám)]T m, rm is uniformly distributed
on [0,100] m, and Ám is uniformly distributed on

[¡¼,¼]. We perform 50 realizations of the sensor

configuration, and then average the RMSEs. We vary

10log10(°) as detailed in the previous simulation, and

also assume that ¯ = 0:1 Hz2. The normalized RMSE

of the position and the velocity of the source using

the proposed LS solution, and the two-step approach

are shown in Fig. 3, where the CRLB is also plotted.

In the left plot, we show the result of one random

configuration, while in the right plot we show the

RMSE and the CRLB results averaged over all the

configurations. As can be observed, again the LS

solution has a similar RMSE as that of the two-step

approach for small values of ° (high SNR), and the

two-step method achieves the CRLB for any SNR.

In the third simulation we evaluate the RMSE

versus the number of sensors in the array. We

consider a circular configuration as in the first

example and a source in the far-field region. The

position and the velocity vectors of the source are

ps = [10000cos(¼=3),10000sin(¼=3)]
T m and _ps =

[30sin(¼=3),30cos(¼=3)]T m/s, respectively. We vary

the number of sensors in the configuration from 8

to 32 with a step of 4. We consider a source in the

far-field region, and set 10log10(°) =¡40 dB m2, and
¯ = 0:1 Hz2. The normalized RMSE of the position

and the velocity of the source using the proposed LS

and the two-step approach are shown in Fig. 4, where

the CRLB is also plotted. Observe that compared

with the two-step approach, the decrease of the

RMSE of the LS method w.r.t. the number of sensors

is smaller. In other words, the proposed approach

provides increasingly worse accuracy (relative to the

two-step approach) as the number of sensors in the

array increases. On the other hand, as the number of
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Fig. 4. Normalized theoretical and simulated RMSE of estimated position and velocity of source in far-field region versus number of

sensors in array with circular configuration, using LS proposed method and two-step approach, both compared with CRLB.

sensors increases, the proposed approach becomes

more computationally efficient.

In the fourth simulation we evaluate the RMSE

versus the parameter ¯. We consider a circular

configuration as in the first example and a source

in the far-field region with the same position and

velocity vectors as in the previous simulation. We

vary the parameter ¯ from 10¡3 Hz2 to 10 Hz2. We
set 10log10(°) =¡40 dB m2. The normalized RMSE
of the position and the velocity of the source using the

proposed LS solution, and the two-step approach are

shown in Fig. 5, where the CRLB is also plotted. As

can be seen, the LS and the two-step approach have

similar velocity RMSE compared with the CRLB,

while the position RMSE of the LS solution is poor.

We note that the reason for the drop of some of the

results of the two-step method below the CRLB is due

to the finite number of realizations that we simulated.

Finally, we compare the processing time (using

MATLAB time commands), required for the proposed

approach and the two-step approach to reach the

estimate of the parameters of interest, as a function

of the number of sensors in the array. We consider

a circular array, with 10log10(°) =¡30 dB m2,

¯ = 0:1 Hz2, and a source in the near-field region.

The position and the velocity vectors of the source are

ps = [1000cos(60¼=180),1000sin(60¼=180)]
T m and

_ps = [30,15]
T m/s, respectively. We vary the number

of sensors from 5 to 20 with a step of 1. For each

value of M we calculate the processing time of each

method. In Fig. 6 (upper subplot) we plot the absolute

processing time of each method, and in Fig. 6 (lower

subplot) we plot the ratio between the processing time

of the two-step approach and the proposed approach.

It can be seen that the complexity of the proposed

approach is much smaller than the two-step approach

especially for a large number of sensors.

VII. CONCLUSIONS

We proposed an LS method to estimate the

position and velocity of an emitter given TDOA and

FDOA measurements acquired by a sensor array.

The idea is to obtain a linear model with respect to

the parameters of interest by eliminating nonlinear

unknown nuisance parameters (range and range-rate

differences between the reference sensor and the

source) using an orthogonal projection matrix.

Although the estimator does not always perform
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Fig. 5. Normalized theoretical and simulated RMSE of estimated position and velocity of source in far-field region versus ¯ for array

with eight elements in circular configuration, using proposed LS method and two-step approach, both compared with CRLB.

as well as the two-step estimator, the benefit is the

reduction of the computational complexity by an order

of the number of sensors.

APPENDIX I. EXPLICIT EXPRESSION OF ˜̄ps

We derive the explicit expression of ˜̄ps as given
in (23). We start by considering the first-order

approximation of ˆ̄u and then the first-order

approximation of Q̂.

A. First-Order Approximation of ˆ̄u

We approximate ˆ̄u using a first-order

approximation, that is, ˆ̄u= ū+ ˜̄u. By substituting the

noisy measurements vector ˆ̄r given in (5) into (13),
and neglecting terms that contain products of errors,

we get the first-order error term of ˆ̄u given by

˜̄u
¢
=R± (32)

where we define the 2(M ¡ 1)£ 2(M ¡ 1) matrix,

R
¢
=¡

·
diag(r) 0M¡10

T
M¡1

diag(_r) diag(r)

¸
(33)

and where diag(x) is a diagonal matrix with the

elements of the vector x on the main diagonal.

B. First-Order Approximation of Q̂

We approximate Q̂ using a first-order

approximation, that is, Q̂=Q+ Q̃. We first start by

expressing the noisy orthogonal projection matrix

P̂? using a first-order approximation, that is, P̂? =
P?+ P̃? (the explicit expression of the first-order
error term P̃? is given later). Substituting P̂? in (20)
yields

Q̂= (FT(P?+ P̃?)F)¡1FT(P?+ P̃?)

= [(FTP?F)(I+(FTP?F)¡1(FTP̃?F))]¡1FT(P?+ P̃?)

»= [I¡ (FTP?F)¡1(FTP̃?F)](FTP?F)¡1FT(P?+ P̃?)
»=Q+(FTP?F)¡1FTP̃? ¡ (FTP?F)¡1

£ (FTP̃?F)(FTP?F)¡1FTP? (34)

where in the second passing we used the first-order

approximation (I+X)¡1 »= I¡X given that X¿ I, and
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Fig. 6. Total processing time of proposed approach and two-step approach (upper plot), and ratio of processing times (lower plot)

versus number of sensors in circular array and source in near-field region.

in the third passing we neglected terms that contain

products of errors. Hence, the first-order error term Q̃

can be defined as

Q̃
¢
=(FTP?F)¡1FTP̃? ¡ (FTP?F)¡1

£ (FTP̃?F)(FTP?F)¡1FTP?: (35)

Notice that according to (22), in order to calculate ˜̄ps
we need to multiply Q̃ by Hd1,s. Recall that P

?H= 0.
We thus conclude that we can neglect the second term

in (35). By substituting (35) and (32) into (22) we get

˜̄ps = (F
TP?F)¡1FTP̃?Hd1,s+QR±

= (FTP?F)¡1FT(P̃?Hd1,s+P
?R±): (36)

We now need to express the first-order error term

of P?, denoted by P̃?. By recalling the definition
of P? as given in (16), we start by expressing the
matrix Ĥ using a first-order approximation, that is,

Ĥ=H+ H̃ (the explicit expression of H̃ is presented

later). Substituting this approximation in (16) (where

we replace H by Ĥ) we get

P̂? = I¡ (H+ H̃)((H+ H̃)T(H+ H̃))¡1(H+ H̃)T

= I¡ (H+ H̃)((HTH)(I+(HTH)¡1(H̃TH+HTH̃))¡1

£ (H+ H̃)T
»= I¡ [(H+ H̃)(I¡ (HTH)¡1(H̃TH+HTH̃))]
£ (HTH)¡1(H+ H̃)T

»= P?+H(HTH)¡1(H̃TH+HTH̃)(HTH)¡1HT

¡H(HTH)¡1H̃T¡ H̃(HTH)¡1HT (37)

where in the second passing we use the first-order

approximation (I+X)¡1 »= I¡X given that X¿ I,

and in the third passing we neglect terms that contain

product of errors. Thus, we define the first-order error

term of P̃? as

P̃?
¢
=H(HTH)¡1(H̃TH+HTH̃)(HTH)¡1HT

¡H(HTH)¡1H̃T¡ H̃(HTH)¡1HT: (38)
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Note that according to (38) the product P̃?Hd1,s which
appears in (36) is given by

P̃?Hd1,s =H(H
TH)¡1HTH̃d1,s¡ H̃d1,s =¡P?H̃d1,s:

(39)

Substituting (39) back into (36) results in

˜̄ps = (F
TP?F)¡1FTP?(R±¡ H̃d1,s): (40)

Finally, we need to find an explicit expression for the

first-order error term H̃. By substituting the noisy

measurements vector ˆ̄r given in (5) into (15) we

obtain the first-order error term H̃ given by

H̃
¢
=

·
² 0M¡1
» ²

¸
: (41)

Note that by using (41) we get that the product H̃d1,s
given

H̃d1,s =

"
d1,sI 0M¡10

T
M¡1

_d1,sI d1,sI

#
±: (42)

By substituting (42) into (40) we get the expression of
˜̄ps given in (23). This concludes Appendix I.

APPENDIX II. COMPLEXITIES OF THE PROPOSED
ESTIMATOR AND THE TWO-STEP ESTIMATOR

We derive the computational complexities of the

proposed method and the two-step method.

A. Proposed Estimator

Note that according to (19) we need to compute ˆ̄u,

Q̂, and their product, in order to estimate the vector

p̄s. We now discuss each component separately.

1) Complexity of Computing ˆ̄u: According to (7)

and (9) we see that we need M ¡ 1 RMs to calculate
û and the same amount of RMs to calculate _̂u (note

that the norm of the sensor position is assumed to be

known). Therefore, RM( ˆ̄u) = 2(M ¡1).
2) Complexity of Computing Q̂: The calculation

of Q̂ involves several steps. We first need to calculate

P̂? in (16). To compute ĤTĤ we need 4q(M ¡ 1)2
RMs, and to further compute its inverse we need 8

RMs. The product Ĥ(ĤTĤ)¡1 involves 2q2(M ¡1)
RMs, and finally to multiply Ĥ(ĤTĤ)¡1 by ĤT we
need 4q(M ¡ 1)2 RMs. Therefore, to summarize,
RM(P̂?) = 8+2q2(M ¡ 1)+8q(M ¡ 1)2. Given P̂?
we calculate Q̂ according to (20). The product P̂?F
involves 8q(M ¡1)2 RMs. The product of FTP̂? by
F requires 8q2(M ¡ 1) RMs. Performing the inverse
(FTP̂?F)¡1 involves 8q3 RMs. Multiplying this inverse
with FTP̂? involves 8q(M ¡1) RMs. To summarize,
RM(Q̂)=8(1+q3)+(10q2+8q)(M¡1)+16q(M¡1)2.

TABLE I

Complexity of the Proposed Algorithm

Space Dimensionality

Step q= 2 q= 3 Section

1. Compute ˆ̄u 2(M ¡ 1) 2(M ¡ 1) IIA1

2. Compute Q̂ 32M2 ¡ 8M +48 48M2¡ 4M +180 IIA2

3. Compute Q̂ ˆ̄u 8(M ¡ 1) 12(M ¡ 1) IIA3

TABLE II

Complexity of the Two-Step Method [9, Section IV, p. 2458]

Space

Dimensionality

Step Eq. in [9] q= 2 q= 3 Section

1. First step

1.1 initialize W1 =Q
¡1 (32) 0 0

1.1 calculate μ1 (10) C
(2)
μ1

C
(3)
μ1

IIB2

1.2 Near field (repeat twice)

1.2.1 calculate W1 (11) Cw1
£ 2 Cw1

£ 2 IIB1

1.2.2 calculate μ1 (10) C
(2)
μ1
£ 2 C

(3)
μ1
£ 2 IIB2

2. Second step

2.1 compute cov(μ1) (13) 0 0

2.2 form W2 (19) 648 1536 IIB3

2.3 calculate μ2 (18) 280 840 IIB4

2.4 calculate μ (21)—(22) 4 6

2.5 Near field (repeat twice)

2.5.1 calculate B2 (37) 0 0

2.5.2 calculate W2 (19) 648£ 2 1536£ 2 IIB3

2.5.3 calculate μ2 (18) 280£ 2 840£ 2 IIB4

2.5.4 calculate ps and
_ps (21)—(22) 4£ 2 6£ 2

3) Complexity of Estimating p̄s: Given ˆ̄u and Q̂,

the computation of ˆ̄ps involves multiplying
ˆ̄u and Q̂.

The complexity of this step is RM(Q̂ ˆ̄u) = 4q(M ¡ 1).
The complexity of each component is summarized

in Table I.

B. Two-Step Estimator

In Table II we detail the complexity of each

step for a two-dimensional geometry (q= 2) and a

three-dimensional geometry (q= 3). For notation

simplicity we define C(2)μ1
= 24M2 +108M +84,

C
(3)
μ1
= 32M2 +208M +272, and Cw1 = 24(M ¡ 1)3.

The complexity of each term in this table is detailed

in the following subsections using the same vector and

matrix notation used in [9].

1) Complexity of Computing W1 [9, eq. (11)]:

Calculating W1 involves computing 1) B
¡1
1 , 2)

B¡11 Q
¡1, and 3) B¡11 Q

¡1B¡11 , where each requires
8(M ¡ 1)3 RMs. Summing 1)—3) involves 24(M ¡1)3
RMs.

2) Complexity of Computing μ1 [9, eq. (10)]:
Calculating μ1 involves computing 1) G

T
1W1
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(8(M ¡ 1)2(q+1) RMs), 2) GT1W1G1 (8(M ¡1)(q+
1)2 RMs), 3) (GT1W1G1)

¡1 (8(q+1)3 RMs), 4)
(GT1W1G1)

¡1GT1W1 (8(M ¡ 1)(q+1)2 RMs), and 5)
μ1 = (G

T
1W1G1)

¡1GT1W1h1 (4(M ¡ 1)(q+1) RMs).
Summing 1)—5) involves 24M2 +108M +84 RMs

(q= 2), and 32M2 +208M +272 RMs (q= 3).

3) Complexity of Computing W2 [9, eq. (19)]:

Calculating W2 involves computing 1) B
¡1
2 , 2)

B¡12 cov(μ1)
¡1, and 3) B¡12 cov(μ1)

¡1B¡12 , where each
requires 8(q+1)3 RMs. Summing 1)—3) involves 648

RMs (q= 2), and 1536 RMs (q= 3).

4) Complexity of Computing μ2 [9, eq. (18)]:
Calculating μ2 involves computing 1) G

T
2W2 (which

does not require calculations and therefore this

operation is represented by 0 RMs), 2) GT2W2G
(8q2(q+1) RMs), 3) (GT2W2G2)

¡1 (8q3 RMs), 4)
(GT2W2G2)

¡1GT2W2 (8q
2(q+1) RMs), and 5) μ2 =

(GT2W2G2)
¡1GT2W2h2 (4q(q+1) RMs). Summing

1)—5) involves 280 RMs (q=2), and 840 RMs (q=3).

This concludes Appendix II.
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