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T
he ever-increasing demand for higher data rates in wireless communications in the face of 
limited or underutilized spectral resources has motivated the introduction of cognitive radio. 
Traditionally, licensed spectrum is allocated over relatively long time periods and is intended 
to be used only by licensees. Various measurements of spectrum utilization have shown sub-
stantial unused resources in frequency, time, and space [1], [2]. The concept behind cognitive 

radio is to exploit these underutilized spectral resources by reusing unused spectrum in an opportunistic 
manner [3], [4]. The phrase “cognitive radio” is usually attributed to Mitola [4], but the idea of using learn-
ing and sensing machines to probe the radio spectrum was envisioned several decades earlier (cf., [5]). 

Cognitive radio systems typically involve primary users of the spectrum, who are incumbent licensees, 
and secondary users who seek to opportunistically use the spectrum when the primary users are idle. The 
introduction of cognitive radios inevitably creates increased interference and thus can degrade the quality 
of service of the primary system. The impact on the primary system, for example in terms of increased 
interference, must be kept at a minimal level. Therefore, cognitive radios must sense the spectrum to 
detect whether it is available or not and must be able to detect very weak primary user signals [6], [7]. 
Thus, spectrum sensing is one of the most essential components of cognitive radio. Note that here we are 
describing and addressing so-called “interweave” cognitive radio systems.  Other methods of spectrum 
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sharing have also been envi-
sioned. These include overlay and 
underlay systems, which make 
use of techniques such as spread-
spectrum or dirty-paper coding, 
to avoid excessive interference. 
Such systems are not addressed 
here except to the extent that they may also rely on spectrum 
sensing.

The problem of spectrum sensing is to decide whether a 
particular slice of the spectrum is “available” or not. That is, in 
its simplest form we want to discriminate between the two 
hypotheses 

 
H0 : y 3n 45w 3n 4,   n5 1, c, N
H1 : y 3n 45 x 3n 41w 3n 4,   n5 1, c, N, (1)

where x 3n 4 represents a primary user’s signal, w 3n 4 is noise 
and n represents time. The received signal y 3n 4 is vectorial, of 
length L. Each element of the vector y 3n 4 could represent, for 
example, the received signal at a different antenna. Note that 
(1) is a classical detection problem, which is treated in detec-
tion theory textbooks. Detection of very weak signals x 3n 4, in 
the setting of (1) is also a traditional topic, dealt with in depth 
in [8, Ch. II–III], for example. The novel aspect of the spec-
trum sensing when related to the long-established detection 
theory literature is that the signal x 3n 4 has a specific structure 
that stems from the use of modern modulation and coding 
techniques in contemporary wireless systems. Clearly, since 
such a structure may not be trivial to represent, this has 
resulted in substantial research efforts. At the same time, this 
structure offers the opportunity to design very efficient spec-
trum sensing algorithms. 

In the sequel, we will use boldface lowercase letters to 
denote vectors and boldface capital letters to denote matrices. 
A discrete-time index is denoted with square brackets and the 
mth user is denoted with a subscript. That is, ym 3n 4 is the vec-
torial observation for user m at time n. When considering a 
single user, we will omit the subscript for simplicity. Moreover, 
if the sequence is scalar, we use the convention y 3n 4 for the 
time sequence. The lth scalar element of a vector is denoted by 
yl 3n 4, not to be confused with the vectorial observation ym 3n 4 
for user m. 

For simplicity of notation, let the vector y ! 3y 31 4T, 
y 32 4T, c,  y 3N 4T 4T of length LN  contain all observations 
stacked in one vector. In the same way, denote the total 
stacked signal by x and the noise by w. The hypothesis test (1) 
can then be rewritten as 

 
H0 : y5w,
H1 : y5 x1w. (2)

A standard assumption in the literature, which we also 
make throughout this article, is that the additive noise w is 
zero-mean, white, and circularly symmetric complex 
Gaussian. We write this as w | N 10, s2I 2 , where s2 is the 
noise variance. 

FUNDAMENTALS OF 
SIGNAL DETECTION
In signal detection, the task of 
interest is to decide whether the 
observation y was generated 
under H0 or H1. Typically, this is 
accomplished by first forming a 

test statistic L 1y 2  from the received data y, and then comparing 
L 1y 2  with a predetermined threshold h 

 L 1y 2 _H1

H0

h. (3)

The performance of a detector is quantified in terms of its 
receiver operating characteristics (ROC) curve, which gives the 
probability of detection PD5 Pr 1L 1y 2 . h|H12  as a function of 
the probability of false alarm PFA5 Pr 1L 1y 2 . h|H0 2 . By vary-
ing the threshold h, the operating point of a detector can be cho-
sen anywhere along its ROC curve. 

Clearly, the fundamental problem of detector design is to 
choose the test statistic L 1y 2 , and to set the decision thresh-
old h to achieve good detection performance. These matters 
are treated in detail in many books on detection theory (e.g., 
[8]). Detection algorithms are either designed in the frame-
work of classical statistics, or in the framework of Bayesian 
statistics. In the classical (also known as deterministic) 
framework, either H0 or H1 is deterministically true, and the 
objective is to choose L 1y 2  and h so as to maximize PD sub-
ject to a constraint on PFA: PFA # a; this is known as the 
Neyman-Pearson (NP) criterion. In the Bayesian framework, 
by contrast, it is assumed that the source selects the true 
hypothesis at random, according to some a priori probabili-
ties Pr 1H0 2  and Pr 1H1 2 . The objective in this framework is 
to minimize the so-called Bayesian cost. Interestingly, 
although the difference in philosophy between these two 
approaches is substantial, both result in a test of the form (3) 
where the test statistic is the likelihood-ratio [8, Ch. II]  

 L 1y 2 5 p 1y|H1 2
p 1y|H0 2 . (4)

UNKNOWN PARAMETERS
To compute the likelihood ratio L 1y 2  in (4), the probability dis-
tribution of the observation y must be perfectly known under 
both hypotheses. This means that one must know all parameters, 
such as noise variance, signal variance and channel coefficients. If 
the signal to be detected, x, is perfectly known, then (recall that 
we assume circularly symmetric Gaussian noise throughout), 
y | N 1x, s2I 2  under H1, and it is easy to show that the optimal 
test statistic is the output of a matched filter [8, Sec. III. B] 

 Re 1xH y2 _H1

H0

h.

In practice, the signal and noise parameters are not known. In the 
following, we will discuss two standard techniques that are used 
to deal with unknown parameters in hypothesis testing problems. 

THE CONCEPT BEHIND COGNITIVE 
RADIO IS TO EXPLOIT THESE 

UNDERUTILIZED SPECTRAL RESOURCES 
BY REUSING UNUSED SPECTRUM 
IN AN OPPORTUNISTIC MANNER. 
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In the Bayesian framework, 
the optimal strategy is to mar-
ginalize the likelihood function 
to el iminate the unknown 
parameters. More precisely, if 
the vector u  contains the 
unknown parameters, then one computes 

 p 1y|Hi 2 5 3p 1y|Hi, u2p 1u|Hi 2du,

where p 1y|Hi, u 2  denotes the conditional PDF of y under Hi 
and conditioned on u, and p 1u|Hi 2  denotes the a priori proba-
bility density of the parameter vector given hypothesis Hi. In 
practice, the actual a priori parameter density p 1u|Hi 2  often is 
not perfectly known, but rather is chosen to provide a meaning-
ful result. How to make such a choice is far from clear in many 
cases. One alternative is to choose a noninformative distribution 
to model a lack of a priori knowledge of the parameters. One 
example of a noninformative prior is the gamma distribution, 
which was used in [9] to model an unknown noise power. 
Another option is to choose the prior distribution via the so-
called maximum entropy principle. According to this principle, 
the prior distribution of the unknown parameters that maximiz-
es the entropy given some statistical constraints (e.g., limited 
expected power or second-order moment) should be chosen. 
The maximum entropy principle was used in the context of 
spectrum sensing for cognitive radio in [10]. 

In the classical hypothesis testing framework, the unknown 
parameters must be estimated somehow. A standard technique 
is to use maximum-likelihood (ML) estimates of the unknown 
parameters, which gives rise to the well-known generalized like-
lihood-ratio test (GLRT) 

 
max

u
p 1y|H1,u 2

max
u

p 1y|H0,u 2 _
H1

H0

h.

This is a technique that usually works quite well, although it 
does not necessarily guarantee optimality. Estimates other than 
the ML estimate may also be used. 

CONSTANT FALSE-ALARM RATE DETECTORS
A detector is said to have the property of constant false-alarm rate 
(CFAR), if its false alarm probability is independent of parameters 
such as noise or signal powers. In particular, the CFAR property 
means that the decision threshold can be set to achieve a prespeci-
fied PFA without knowing the noise power. The CFAR property is 
normally revealed by the equations that define the test (3): if the 
test statistic L 1y 2  and the optimal threshold are unaffected by a 
scaling of the problem (such as multiplying the received data by a 
constant), then the detector is CFAR. CFAR is a very desirable 
property in many applications, especially when one has to deal 
with noise of unknown power, as we will see later. 

ENERGY DETECTION
As an example of a very basic detection technique, we present 
the well-known energy detector, also known as the radiometer 

[11]. The energy detector mea-
sures the energy received during 
a finite time interval and com-
pares it to a predetermined 
threshold. It should be noted that 
the energy detector works well 

also for cases other than the one we will present, although it 
might not be optimal. 

To derive this detector, assume that the signal to be detected 
does not have any known structure that could be exploited, and 
model it via a zero-mean circularly symmetric complex 
Gauss ian  x | N 10, g2I 2 .  Then,  y|H0 | N 10, s2I 2  and 
y|H1 | N 10, 1s21g2 2I 2 . After removing irrelevant constants, 
the NP optimal test can be written as 

 L 1y 2 5 0 0 y 0 0 2
s2 5

aLN

i51
|yi|

2

s2 _
H1

H0

h. (5)

The operational meaning of (5) is to compare the energy of the 
received signal against a threshold; this is why (5) is called the 
energy detector. Its performance is well known, (cf., [8, Sec. 
III. C]), and is given by 

 PD5 Pr 1L 1y2 . h|H12 5 12Fx2NL
2 a 2h

s21g2b
 5 12Fx2NL

2   ¢Fx2NL
2
21 112 PFA 2

11 g2

s2

≤ . 

Clearly, PD is a function of PFA, NL and the SNR ! g2/s2. Note 
that for a fixed PFA, PD S 1 as NL S ` at any SNR. That is, 
ideally any pair 1PD, PFA 2  can be achieved if sensing can be done 
for an arbitrarily long time. This is typically not the case in 
practice, as we will see in the following section. 

It has been argued that for several models, and if the proba-
bility density functions under both hypotheses are perfectly 
known, energy detection performs close to the optimal detector 
[7], [12]. For example, it was shown in [7] that the performance 
of the energy detector is asymptotically equivalent, at low sig-
nal-to-noise ratio (SNR), to that of the optimal detector when 
the signal is modulated with a zero-mean finite signal constella-
tion, assuming that the symbols are independent of each other 
and that all probability distributions are perfectly known. A sim-
ilar result was shown numerically in [12] for the detection of an 
orthogonal frequency-division multiplexing (OFDM) signal. 
These results hold if all probability density functions, including 
that of the noise, are perfectly known. By contrast, if for exam-
ple the noise variance is unknown, the energy detector cannot 
be used because knowledge of s2 is needed to set the threshold. 
If an incorrect (“estimated”) value of s2 is used in (5) then the 
resulting detector may perform rather poorly. We discuss this 
matter in more depth in the following section. 

FUNDAMENTAL LIMITS FOR SENSING: SNR WALL
Cognitive radios must be able to detect very weak primary user 
signals [6], [7]. This is difficult, because there are fundamental 

CFAR IS A VERY DESIRABLE PROPERTY 
IN MANY APPLICATIONS, ESPECIALLY 

WHEN ONE HAS TO DEAL WITH 
NOISE OF UNKNOWN POWER.
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limits on detection at low SNR. Specifically, due to uncertainties 
in the model assumptions, accurate detection is impossible 
below a certain SNR level, known as the SNR wall [13], [14]. 
The reason is that to compute the likelihood ratio L 1y 2 , the 
probability distribution of the observation y must be perfectly 
known under both hypotheses. In any case, the signal and noise 
in (2) must be modeled with some known distributions. Of 
course, a model is always a simplification of reality, and the true 
probability distributions are never perfectly known. Even if the 
model would be perfectly consistent with reality, there will be 
some parameters that are unknown such as the noise power, the 
signal power, and the channel coefficients, as noted above. 

To exemplify the SNR wall phenomenon, consider the ener-
gy detector. To set its decision threshold, the noise variance s2 
must be known. If the knowledge of the noise variance is 
imperfect, the threshold cannot be correctly set. Setting the 
threshold based on an incorrect noise variance will not result 
in the desired value of false-alarm probability. In fact, the per-
formance of the energy detector quickly deteriorates if the 
noise variance is imperfectly known [7], [13]. Let s2 denote 
the imperfect estimate of the noise variance, and let st

2 be the 
true noise variance. Assume that the estimated noise variance 
is known only to lie in a given interval, such that 
1
rst

2 # s2 # rst
2 for some r . 1. To guarantee that the proba-

bility of false alarm is always below a required level, the 
threshold must be set to fulfill the requirement in the worst 
case. That is, we need to make sure that 

 max
s2[ 3 1rst

2, rst
24 PFA

is below the required level. The worst case occurs when the 
noise power is at the upper end of the interval, that is when 
s25rst

2. It was shown in [14] that under this model, the num-
ber of samples LN  that are required to meet a PD requirement, 
tends to infinity as the SNR5g2/st

2 S 1r22 1/r 2 . That is, 
even with an infinite measurement duration, it would be impos-

sible to meet the PD requirement when the SNR is below the 
SNR wall 1r22 1 2 /r. This effect occurs only because of the 
uncertainty in the noise level. The effect of the SNR wall for 
energy detection is shown in Figure 1. The figure shows the 
number of samples that are needed to meet the requirements 
PFA5 0.05 and PD5 0.9 for different levels of the noise 
 uncertainty. 

It was shown in [14] that errors in the noise power assump-
tion introduce SNR walls to any moment-based detector, not 
only to the energy detector. This result was further extended in 
[14] to any model uncertainties, such as color and stationarity 
of the noise, simplified fading models, ideality of filters, and 
quantization errors introduced by finite-precision analog-to-
digital (A/D) converters. It is possible to mitigate the problem of 
SNR walls by taking the imperfections into account, in the 
sense that the SNR wall can be moved to a lower SNR level. For 
example, it was shown in [14] that noise calibration can 
improve the detector robustness. Exploiting known features of 
the signal to be detected can also improve the detector perfor-
mance and robustness. Known features can be exploited to deal 
with unknown parameters using marginalization or estimation 
as discussed before. It is also known that fast fading effects can 
somewhat alleviate the requirement of accurately knowing the 
noise variance in some cases [15]. Note also that a CFAR detec-
tor is not exposed to the SNR wall phenomenon, since the deci-
sion threshold is set independently of any potentially unknown 
signal and noise power parameters. 

Other recent work has shown that similar limits arise based 
on other parameters in cooperative spectrum sensing tech-
niques [16]. 

FEATURE DETECTION
Information theory teaches us that communication signals with 
maximal information content (entropy) are statistically white 
and Gaussian and hence, we would expect signals used in com-
munication systems to be nearly white Gaussian. If this were 
the case, then no spectrum sensing algorithm could do better 
than the energy detector. However, signals used in practical 
communication systems always contain distinctive features that 
can be exploited for detection and that enable us to achieve a 
detection performance that substantially surpasses that of the 
energy detector. Perhaps even more importantly, known signal 
features can be exploited to estimate unknown parameters such 
as the noise power. Therefore, making use of known signal fea-
tures effectively can circumvent the problem of SNR walls dis-
cussed in the previous section. The specific properties that 
originate from modern modulation and coding techniques have 
aided in the design of efficient spectrum sensing algorithms. 

The term feature detection is commonly used in the context 
of spectrum sensing and usually refers to exploitation of known 
statistical properties of the signal. The signal features referred 
to may be manifested both in time and space. Features of the 
transmitted signal are the result of redundancy added by cod-
ing, and of the modulation and burst formatting schemes used 
at the transmitter. For example, OFDM modulation adds a cyclic 

[FIG1] The number of samples required to meet PFA 5 0.05 and 
PD 5 0.9 using energy detection under noise uncertainty.
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prefix (CP), which manifests 
itself through a linear relation-
ship between the transmitted 
samples. Also, most communica-
tion systems multiplex known 
pilots into the transmitted data 
stream or superimpose pilots on 
top of the transmitted signals, 
and doing so results in very distinctive signal features. A further 
example is given by space-time coded signals, in which the 
space-time code correlates the transmitted signals. The received 
signals may also have specific features that occur due to charac-
teristics of the propagation channel. For example, in a multiple-
input/multiple-output (MIMO) system, if the receiver array has 
more antennas than the transmitter array, then samples taken 
by the receiver array at any given point in time must necessarily 
be correlated. 

In this section, we will review a number of state-of-the-art 
detectors that exploit signal features and which are suitable for 
spectrum sensing applications. Most of the presented methods 
are very recent advances in spectrum sensing, and there is still 
much ongoing research in these areas. 

DETECTORS BASED ON SECOND-ORDER STATISTICS
A very popular and useful approach to feature detection is to 
estimate the second-order statistics of the received signals and 
make decisions based on these estimates. Clearly, in this way 
we may distinguish a perfectly white signal from a colored 
one. This basic observation is important, because typically, the 
redundancy added to transmitted signals in a communication 
system results in its samples becoming correlated. The corre-
lation structure incurred this way does not necessarily have to 
be stationary; in fact, typically it is not, as we shall see. Since 
cov 1Ax 2 5 Acov 1x 2AH for any A and x, the correlation struc-
ture incurred by the addition of redundancy at the transmitter 
is usually straightforward to analyze if the transmit processing 
consists of a linear operation. Moreover, we know that the dis-
tribution of a Gaussian signal is fully determined by its first- 
and second-order moments. Therefore, provided that the 
communication signals in question are sufficiently near to 
Gaussian and that enough samples are collected, we expect 
that estimated first- and second-order moments are sufficient 
statistics to within practical accuracy. Since communication 

signals are almost always of 
zero-mean (to minimize the 
power spent at the transmitter), 
just looking at the second-order 
moment is adequate. Taken 
together, these arguments tell 
us that in many cases we can 
design near-optimal spectrum 

sensing algorithms by estimating second-order statistics from 
the data and making decisions based on these estimates. 

We explain detection based on second-order statistics using 
OFDM signals as an example. OFDM signals have a very explicit 
correlation structure imposed by the insertion of a CP at the 
transmitter. Moreover, OFDM is a popular modulation method 
in modern wireless standards. Consequently, a sequence of 
papers have proposed detectors that exploit the correlation 
structure of OFDM signals [12], [17]–[19]. We will briefly 
describe those detectors in the following. These detectors can be 
used for any signal with a CP structure, for example single-car-
rier transmission with a CP and repeated training or so-called 
known symbol padding, but in what follows we assume that we 
deal with a conventional OFDM signal. 

Consider an OFDM signal with a CP, as shown in Figure 2. 
Let Nd be the number of data symbols, that is, the block size of 
the inverse fast Fourier transform (IFFT) used at the transmit-
ter or equivalently the number of subcarriers. The CP has 
length Nc, and it is a repetition of the last Nc samples of the 
data. Assume that the transmitted data symbols are independent 
and identically distributed (i.i.d.), zero-mean and have variance 
g2, and consider the autocorrelation function (ACF) 

 rx 3n, t 4 ! E 3x 3n 4 x* 3n1t 4 4. (6)

Owing to the insertion of the CP, the OFDM signal is nonsta-
tionary and therefore the ACF rx 3n, t 4 in (6) is time-varying. In 
particular, it is nonzero at time lag t 5Nd  for some time 
instances n, and zero for others. This is illustrated in Figure 3. 
The nonzero values of the ACF occur due to the repetition of 
symbols in the CP. This nonstationary property of the ACF can 
be exploited in different ways by the detectors, as we will see in 
what follows. Of course, the more knowledge we have of the 
parameters that determine the shape of the ACF (Nc and Nd 
specifically, and s2), the better performance we can obtain. 

K1 K + 1

θ N

Data

NdNc

Data Data Data

2 3

CP CP CP CP Data CP.....

[FIG2] Model for the N samples of a received OFDM signal.

A VERY POPULAR AND USEFUL 
APPROACH TO FEATURE DETECTION IS 

TO ESTIMATE THE SECOND-ORDER 
STATISTICS OF THE RECEIVED SIGNALS 

AND MAKE DECISIONS BASED ON 
THESE ESTIMATES.
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For simplicity of notation, assume that the receiver has 
observed K  consecutive OFDM signals out of an endless stream 
of OFDM modulated data, so that the received signal y 3n 4 con-
tains N5K 1Nc1Nd 2 1Nd samples. Furthermore, for simplici-
ty we consider an additive white Gaussian noise (AWGN) 
channel. The quantitative second-order statistics will be the 
same in a multipath fading channel, but the exact ACF may be 
smeared out due to the time dispersion. However, averaging the 
second-order statistics over multiple OFDM symbols mitigates 
the impact of multipath fading, and the detection performance 
is close to the performance in an AWGN channel in many cases 
(cf., [17]). We are interested in estimating rx 3n, Nd 4, and we 
form the following estimate of it: 

 r̂ 3n 4 ! y 3n 4 y* 3n1Nd 4,   n5 1, c, K 1Nc1Nd 2 .
Note that rw 3n, t 45 0 for any t 2 0, since the noise is white 
and zero-mean. Here rw 3n, t 4 and ry 3n, t 4 are defined based on 
w 3n 4  and y 3n 4  similarly to (6). Hence, ry 3n, Nd 45 rx 3n, Nd 4  
whenever Nd 2 0. By construction E 3 r̂ 3n 4 45 ry 3n, Nd 45
rx 3n, Nd 4  is the ACF of the OFDM signal at time lag Nd for 
Nd 2 0. We know from the above discussion (see Figure 3) that 
r̂ 3n 4  and r̂ 3n1 k 1Nc1Nd 2 4  have identical statistics and that 
they are independent. Therefore, it is useful to define 

 R̂ 3n 4 ! 1
K a

K21

k50
r̂ 3n1 k 1Nc1Nd 24, n5 1, c, Nc1Nd. 

What is the best way of making decisions on signal presence 
versus absence based on r̂ 3n 4? We know that the mean of r̂ 3n 4 is 
nonzero for some n and zero for others and this is the basic 
observation that we would like to exploit. It is clear that the 
design of an optimal detector would involve an accurate analysis 
of the statistical distribution of r̂ 3n 4. This is a nontrivial matter, 
since r̂ 3n 4 is a nonlinear function of y 3n 4; moreover, this is dif-
ficult if there are unknown parameters such as the noise power. 
The recent literature has proposed several ways forward. 

 ■ One of the first papers on the topic was [18], in which the 
following statistical test was proposed: 

 max
u
` a
u1Nc

n5u11
r̂ 3n4 ` _H1

H0

h. (7)

The test in (7) exploits the nonstationarity of the OFDM sig-
nal. The variable u in (7) has the interpretation of synchro-
nization mismatch. The intuition behind this detector is 

therefore to catch the “optimal” value of u and then mea-
sure, for that u, how large is the correlation between values 
of y 3n 4  spaced Nd  samples apart. For this to work, the 
detector must know Nc and Nd. Perhaps more importantly, 
to set the threshold one also needs to know s2 and hence 
the detector in (7) is susceptible to the SNR wall phenome-
non. This is so for the same reasons as previously discussed 
for the energy detector: the test statistic in (7) is not dimen-
sionless and hence the test is not CFAR. The original test in 
[18] looks only at one received OFDM symbol but it can be 
extended in a straightforward manner to use all K  symbols. 
The resulting statistic then sums the variables R̂ 3n 4 instead 
of r̂ 3n 4 and we have 

 max
u[ 50,c, Nc1Nd216

` a
n[Su

R̂ 3n 4 ` _H1

H0

h, (8)

where Su ( 51, 2, c, Nc1Nd6  denotes the set of Nc 
(cyclic) consecutive indices for which E 3R̂ 3n 4 4 2 0, given 
the synchronization error u. 

 ■ A different path was taken in [17]. The detector proposed 
therein uses the empirical mean of the autocorrelation nor-
malized by the received power, as the test statistic. More pre-
cisely, the test is 

 
aN2Nd

n51
Re 1 r̂ 3n 4 2

aN
n51

|y 3n 4|2
_
H1

H0

h. (9)

The advantage of (9) is that to use this test, one needs to 
know only Nd, but not Nc. This is useful if Nc is unknown, or 
if there is substantial uncertainty regarding Nc; think for 
example, of a system that alternates between CPs of different 
lengths or that uses different CPs on different component 
carriers. On the other hand, a potential disadvantage of (9) is 
that it does not exploit the fact that the OFDM signal is non-
stationary. This is evident from (9) as all samples of r̂ 3n 4 are 
weighed equally when forming the test statistic; hence, the 
time-variation of the ACF is not reflected in the detection 
criterion. Not surprisingly, one can obtain better perfor-
mance if this time-variation is exploited. 
 By construction, (9) is a CFAR test. Hence, it requires no 
knowledge of the noise power s2. We note in passing that a 
detector similar to [17], but without the power normaliza-
tion, was proposed in [19]. 

 ■ A more recently proposed test is the following [12]: 

 max
u[50,c, Nc1Nd216

aNc1Nd

n51
0 R̂ 3n4 0 2

a
n[Su

` R̂ 3n42 1
Nc
a

i[Su

Re 1 R̂ 3i4 2 ` 21 a
noSu

0 R̂ 3n4 0 2
 3 _

H1

H0

h. (10)

Equation (10) is essentially an approximation of the 
GLRT, treating the synchronization mismatch between 
the transmitter and the receiver, and the signal and 

[FIG3] Example of a periodic autocorrelation function for an 
OFDM signal with a CP.
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noise variances, as unknown 
parameters.  It  needs no 
knowledge of s2 and this is 
directly also evident from 
(10) as this test statistic is 
CFAR. It differs from the 
detectors in [17] and [19] in 
that it explicitly takes the nonstationarity of x 3n 4  into 
account. This results in better performance for most 
scenarios of interest. Of course, the cost for this 
increased performance is that in contrast to (9), the test 
in (10) needs to know the CP length, Nc.
The ACF detectors described above are summarized in 

Table 1 and a numerical performance comparison between 
them is shown in Figure 4. This comparison uses an AWGN 
channel, and parameters as follows: PFA5 0.05, Nd5 32, 
Nc5 8, and K5 50. The performance of the energy detector 
is also included as a baseline, both with perfectly known 
noise variance and with a 1 dB mismatch. It is clear that 
knowing the noise variance significantly improves the detec-
tor performance. Interestingly, here, the energy detector has 
the best performance when the noise variance is known, and 
the worst performance when the noise variance is uncertain 
with as little as 1 dB. When the noise power is not known, 
more sophisticated detectors such as those of [12] and [17] 
must be used. 

DETECTORS BASED ON CYCLOSTATIONARITY
In many cases, the ACF of the signal is not only time-varying, 
but it is also periodic. Most man-made signals show periodic 
patterns related to symbol rate, chip rate, channel code, or CP. 
Such second-order periodic signals can be appropriately mod-
eled as second-order cyclostationary random processes [20]. As 
an example, consider again the OFDM signal shown in Figure 2. 
The autocorrelation function of this OFDM signal, shown in 
Figure 3, is periodic. The fundamental period is the length of 
the OFDM symbol, Nc1Nd. Knowing some of the cyclic char-
acteristics of a signal, one can construct detectors that exploit 
the cyclostationarity [21], [22] and benefit from the spectral 
correlation. 

A discrete-time zero-mean stochastic process y 3n 4 is said to 
be second-order cyclostationary if its time-varying ACF 
ry 3n, t 45 E 3y 3n 4 y* 3n1t 4 4 is periodic in n [20], [21]. Hence, 
ry 3n, t 4 can be expressed by a Fourier series 

 ry 3n, t 45 a
a

Ry 1a, t 2e jan, 

where the sum is over integer multiples of fundamental fre-
quencies and their sums and differences. The Fourier coeffi-
cients depend on the time lag t and are given by 

 Ry 1a, t 2 5 1
N a

N21

n50
ry 3n, t 4e2jan. 

The Fourier coefficients Ry 1a, t 2  are also known as the cyclic 
autocorrelation at cyclic frequency a. The process y 3n 4  is 

 second-order cyclostationary 
when there exists an a 2 0 such 
t h a t  Ry 1a, t 2 . 0,  b e c a u s e 
ry 3n, t 4  is periodic in n precisely 
in this case. The cyclic spec-
trum of the signal y 3n 4  is the 
Fourier  coefficient 

 Sy 1a, v 2 5 a
t

Ry 1a, t 2e2jvt.

The cyclic spectrum represents the density of correlation for the 
cyclic frequency a. 

Knowing some of the cyclic characteristics of a signal, one 
can construct detectors that exploit the cyclostationarity and 
thus benefit from the spectral correlation (see, e.g., [21]–[23]). 
Note that the inherent cyclostationarity property appears both 
in the cyclic ACF Ry 1a, t 2  and in the cyclic spectral density 
function Sy 1a, v 2 . Thus, detection of the cyclostationarity can 
be performed both in the time domain and in the frequency 
domain. The paper [21] proposed detectors that exploit cyclosta-
tionarity based on one cyclic frequency, either from estimates of 
the cyclic autocorrelation or of the cyclic spectrum. The detec-
tor of [21] based on cyclic autocorrelation was extended in [22] 

[FIG4] Comparison of the autocorrelation-based detection 
schemes. PFA 5 0.05, Nd 5 32, Nc 5 8, and K 5 50. 
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[TABLE1] SUMMARY OF OFDM DETECTION ALGORITHMS 
BASED ON SECOND-ORDER-STATISTICS, AND THE SIGNAL 
PARAMETERS THAT DETERMINE THEIR PERFORMANCE. FOR 
EACH PARAMETER, “2” MEANS THAT THE DETECTOR DOES 
NOT NEED TO KNOW THE PARAMETER, AND “3” MEANS 
THAT IT DOES NEED TO KNOW IT.

REF. DETECTOR TEST s2 g2 Nd Nc

[11] ENERGY (5) 3 2 2 2

[17] CHAUDHARI ET AL. (9) 2 2 3 2

[12] AXELL, LARSSON (10) 2 2 3 3

[18] HUAWEI, UESTC (8) 3 2 3 3

[19] LEI, CHIN 3 3 3 3

MOST MAN-MADE SIGNALS 
SHOW PERIODIC PATTERNS RELATED 

TO SYMBOL RATE, CHIP RATE, 
CHANNEL CODE, OR 

CYCLIC PREFIX.
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to use multiple cyclic frequencies. The cyclic autocorrelation is 
estimated in [21] and [22] by 

 R̂y 1a, t2 ! 1
N a

N21

n50
y 3n 4 y* 3n1t4e2jan.

The cyclic autocorrelation R̂y 1ai, ti, Ni
2  can be estimated for the 

cyclic frequencies of interest ai, i5 1, c, p, at time lags 
ti, 1, c, ti, Ni

. The detectors of [21] and [22] are then based on 
the limiting probability distribution of R̂y 1ai, ti, Ni

2 , 
i5 1, c, p.

In practice, only one or a few cyclic frequencies are used for 
detection, and this is usually sufficient to achieve good detec-
tion performance. Note, however, that this is an approximation. 
For example, a perfect Fourier series representation of the sig-
nal shown in Figure 3 requires infinitely many Fourier coeffi-
cients. The autocorrelation-based detector of [17] and the 
cyclostationarity detector of [22] are compared in [24] for detec-
tion of an OFDM signal in AWGN. The results show that the 
cyclostationarity detector using two cyclic frequencies outper-
forms the autocorrelation detector, but that the autocorrelation 
detector is superior when only one cyclic frequency is used. 

DETECTORS THAT RELY ON A SPECIFIC STRUCTURE OF 
THE SAMPLE COVARIANCE MATRIX
Signal structure, or correlation, is also inherent in the covari-
ance matrix of the received signal. Some communication sig-
nals impart a specific known structure to the covariance 
matrix. This is the case for example when the signal is 
received by multiple antennas as in [25]–[27] [single-input/
multiple-output (SIMO)] and [10] (MIMO), when the signal is 
encoded with an orthogonal space-time block code (OSTBC) 
[28], or if the signal is an OFDM signal [12]. In these cases, 

the covariance matrix has a known eigenvalue structure, as 
shown in [29]. 

Consider again the vectorial discrete-time representation 
(1). For better understanding we will start with the example of a 
single symbol received by multiple antennas (SIMO). This case 
was dealt with, for example, in [10] and [25]–[27]. Suppose that 
there are L . 1 receive antennas at the detector. Then, under 
H1, the received signal can be written as 

 y 3n 45 hs 3n 41w 3n 4,  n5 1, c, N, (11)

where h is the L 3 1 channel vector and s 3n 4 is the transmitted 
symbol sequence. Assume further that the signal is zero-mean 
Gaussian, i.e. s 3n 4 | N 10, g2 2 , and as before w 3n 4|N 10, s2I 2 . 
T h e n ,  t h e  c o v a r i a n c e  m a t r i x  u n d e r  H1  i s 
R ! E 3y 3n 4y 3n 4H |H1 45g2hhH1s2I. Let l1, l2, c, lL be the 
eigenvalues of R sorted in descending order. Since hhH has rank 
one, then l15g

2 7h 7 21s2 and l25 c5lL5s
2. In other 

words, R has two distinct eigenvalues with multiplicities one 
and L2 1, respectively. Denote the sample covariance matrix by 

 R̂ ! 1
N a

N

n51
y 3n 4 y 3n 4 H. 

Moreover, let n1, n2, c, nL denote the eigenvalues of R̂ sorted 
in descending order. An example of the eigenvalues 
n1, n2, c, nL in this case, with four receive antennas, 
N5 1,000 and SNR5 10 log10 1g2/s2 2 5 0 dB, is shown in 
Figure 5(a). It is clear that there is one dominant eigenvalue 
under H1 due to the rank-one channel vector. It can be shown 
(cf., [25] and [26]) that the GLRT when the channel h and the 
powers s2 and g2 are unknown is given by 

 
n1

trace 1R̂ 2 5
n1

aL

i51
ni

_
H1

H0

h. (12)

Here, we have considered independent observations y 3n 4 at 
multiple antennas. A similar covariance structure could of 
course also occur for a time series. Then, we could construct 
the sample covariance matrix by considering a scalar time series 
y 3n 4,  n5 1, 2, c, N  as in [30] and [31], and letting 
y 3n 45 3 y 3n 4, y 3n1 1 4, c, y 3n1 L2 1 4 4T  for some integer 
L . 0. This can be seen as a windowing of the sequence y 3n 4  
with a rectangular window of length L. The choice of the win-
dow length L will of course affect the performance of the detec-
tors. The reader is referred to the original papers [30] and [31] 
for discussions of this issue. 

Now, consider more generally that the received signal under 
H1 can be written as 

 y 3n 45Gs 3n 41w 3n 4,  n5 1, c, N, (13)

where G is a low-rank matrix, and s 3n 4|N 10, g2I 2  is an i.i.d. 
sequence. Then, the covariance matrix is R5g2GGH1s2I 
under H1, which is a “low-rank-plus-identity” structure. 
Suppose that R has d distinct eigenvalues with multiplicities 
q1, q2, c, qd, respectively. This can happen if the signal has 

[FIG5] Example of the sorted eigenvalues of the sample 
covariance matrix R̂ with four receive antennas, for N 5 1,000 
and SNR 5 10 log10 (g

2/s2) 5 0 dB. The Alamouti scheme codes 
two complex symbols over two time intervals and two 
antennas.
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some specific structure, for example in a multiple antenna 
(MIMO) system [10], when the signal is encoded with an 
orthogonal space-time block code [28], or if the signal is an 
OFDM signal [12], [29]. Examples of the sorted eigenvalues of R̂ 
for an orthogonal space-time block code (Alamouti) [28], and 
for a general MIMO system [10], with two transmit and four 
receive antennas, are shown in Figure 5(b) and (c), respectively. 
The reason that the number of eigenvalues for the Alamouti 
case is four times higher than for the general MIMO system is 
that the space-time code is coded over two time intervals, and 
the observation is divided into real and imaginary parts (see [28] 
for details). For the Alamouti code, the four largest eigenvalues 
are significantly larger than the others. In fact, the expected val-
ues of the four largest eigenvalues are equal, due to the orthog-
onality of the code. For the general MIMO case, we note that 
two of the eigenvalues are significantly larger than the others, 
because the channel matrix has rank two (there are two trans-
mit antennas). In this case, however, the expectations of the two 
largest eigenvalues are different in general. Define the set of 
indices Si ! UQa i21

j51
qjR 1 1, c, a i

j51
qjV,  i5 1, 2, c, d. 

For example, if there are two distinct eigenvalues with mul-
t i pl icit ies  q1  and q2 15 L2 q1 2 ,  respectively,  then 
S15 51, c, q16  and S25 5q11 1, c, L6. It was shown in 
[29] that the GLRT when the eigenvalues are unknown, but 
have known multiplicities and order, is 

 
a1

L
trace 1R̂ 2bL

qd

i51
a1
qia j[Si

njb
qi
_
H1

H0

h. (14)

It can be shown that in the special case when q15 1 and 
q25 L2 1, this test is equivalent to the test (12). 

Properties of the covariance matrix are also exploited for 
detection in [30] and [31], without knowing the structure. 
Detection without any knowledge of the transmitted signal is 
usually referred to as blind detection and will be discussed fur-
ther in the following section. 

BLIND DETECTION
Even though a primary user’s signal is correlated or has some 
other structure, this structure might not be perfectly known. 
An example of this is shown in Figure 5(c). This eigenvalue 
structure occurs in a general MIMO system, when the number 
of receive antennas is larger than the number of transmit 
antennas. In general, the number of antennas and the coding 
scheme used at the transmitter might not be known. The trans-
mit antennas could of course also belong to an (unknown) 
number of users that transmit simultaneously [32], [33]. If the 
transmitted signals have a completely unknown structure, we 
must consider blind detectors. Blind detectors are blind in the 
sense that they exploit structure of the signal without any 
knowledge of signal parameters. We saw in the previous section 
that the eigenvalues of the covariance matrix behave differently 
under H0 and H1 if the signal is correlated. This is still true, 
even if the exact structure of the eigenvalues is not known. 

Blind eigenvalue-based tests, similar to those described in the 
previous section, have been proposed recently in [30] and [31]. 

We will begin by describing the blind detectors of [30] and 
[31] based on the eigenvalues of the sample covariance matrix. 
The presentation here will be slightly different from the ones in 
[30] and [31], to include complex-valued data and be consistent 
with the notation used above. The paper [30] proposes two 
detectors based on the eigenvalues of R̂, similar to the detectors 
of the previous section. The detectors proposed in [30] are 

 
n1

nL
_
H1

H0

h,  and    
trace 1R̂ 2
nL

_
H1

H0

h,

where ni, i5 1, 2, c, L are the sorted eigenvalues of R̂, as 
before. Thus, n1 is the maximum eigenvalue and nL is the mini-
mum eigenvalue. The motivation for these tests is based on 
properties similar to those discussed in the previous section. If 
the received sequence contains a (correlated) signal, the expec-
tation of the largest eigenvalues will be larger than if there is 
only noise, but the expectation of the smallest eigenvalues will 
be the same in both cases. 

Blind detectors are commonly also based on information the-
oretic criteria, such as Akaike’s information criterion (AIC) or 
the minimum description length (MDL) [32]–[35]. These infor-
mation-theoretic criteria typically result in eigenvalue tests simi-
lar to those of the previous section. The aims of [32] and [33] are 
not only to decide whether a signal has been transmitted or not, 
but rather also to estimate the number of signals transmitted. 
Assume as in the previous section that the received signal under 
H1 is y 3n 45Gs 3n 41w 3n 4. The number of uncorrelated trans-
mitters is the rank d of the matrix G. The problem of [32] and 
[33] is then to determine the rank of G by minimizing the AIC or 
MDL, which are functions of d. The result of [32] is applied in 
[34] and [35] to the problem of spectrum sensing. More specifi-
cally, the estimator of [32] is used in [34] to determine whether 
the number of signals transmitted is zero or nonzero. This idea 
is further simplified in [35] to that of using only the difference 
AIC 10 2 2 AIC 11 2  as a test statistic. Note that these detectors are 
very similar to the detectors of the previous section and to the 
detectors described in the beginning of this section. They all 
exploit properties of the eigenvalues of the sample covariance 
matrix, and use functions of the eigenvalues as test statistics. The 
detectors of this section use only the assumption that the 
received signal is correlated. They are all blind detectors, in the 
sense that they do not require any more knowledge. 

FILTERBANK-BASED DETECTORS 
AND MULTITAPER METHODS
If the spectral properties of the signal to be detected are known, 
but the signal has otherwise no usable features that can be effi-
ciently exploited, then spectrum estimation techniques like fil-
terbank-based detectors may be preferable [3], [36]–[38]. In 
addition, if the cognitive radio system exploits a filter bank mul-
ticarrier technique, the same filter bank can be used for both 
transmission and spectrum sensing [36]. Hence, the sensing 
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can be done without any additional cost. In the following, we 
briefly describe spectrum estimation based on filterbanks and 
multitaper methods. 

Suppose that we are interested in estimating the spectrum 
in the frequency band from f2 B/2 to f1 B/2. The standard 
periodogram estimates the spectrum of the random process 
y 3n 4 based on N  samples as 

 Ŝ 1 f 2 5 `a
N

n51
v 3n 4e2j2pfny 3n 4 ` 2,

where v 3n 4 is a window function. The window function v 3n 4 is a 
finite-impulse-response (FIR) low-pass filter with bandwidth B, 
usually called a prototype filter. In this case, v 3n4e2j2pfn is a 
bandpass filter centered at frequency f. The filterbank spectral 
estimator improves the estimate by using multiple prototype fil-
ters vk 3n 4 and by averaging the energy of the filter outputs. This 
leads to a kth output spectrum of the form 

 Ŝk 1 f 2 5 `a
N

n51
vk 3n4 e2j2pf ny 3n4 ` 2.

The prototype filters vk 3n 4 must be chosen properly. The multi-
taper method (cf., [37] or [38]), uses the so-called Slepian 
sequences also known as discrete prolate spheroidal wave func-
tions as prototype filter coefficients. The Slepian sequences are 
characterized by two important properties: 1) they have maxi-
mal energy in the main lobe, and 2) they are orthonormal. The 
orthogonality assures that the outputs from the prototype filters 
are uncorrelated, as long as the variation over each subband is 
negligible. After estimating the spectrum of the frequency band 
of interest, one can perform spectrum sensing using, for exam-
ple, energy detection. Moreover, [38] analyzes the space-time 
and time-frequency properties of the multitaper estimates, for 
exploitation of signal features for spectrum sensing as discussed 
in the previous sections. The cyclostationarity property is given 
particular emphasis. For more details on spectrum sensing 
using filterbanks and multitaper methods, we refer the reader to 
[36] and [38]. 

WIDEBAND SPECTRUM SENSING
In many cognitive radio applications, a wide band of spectrum 
must be sensed, which requires high sampling rates and thus 
high power consumption in the A/D converters. One solution to 
this problem is to divide the wideband channel into multiple 
parallel narrowband channels and to jointly sense transmission 

opportunities on those channels. This technique is called multi-
band sensing. Another approach argues that the interference 
from the primary users can often be interpreted as being sparse 
in some particular domain, e.g., in the spectrum or in the edge 
spectrum (the derivative of the spectrum). In that case, subsam-
pling methods or compressive sensing (see [39] and [40] and 
the references therein) can be used to lower the burden on the 
A/D converters. 

MULTIBAND SENSING
A simple, and sometimes most natural, way of dealing with a 
wideband channel is to divide it into multiple subchannels as 
shown in Figure 6. Think, for example, of a number of digi-
tal TV bands. Together, they constitute a wideband spectrum 
but are naturally divided into subchannels. In general, the 
subchannels do not even have to be contiguous. Some of the 
subchannels may be occupied and some may be available. 
The problem of multiband sensing is, of course, to decide 
upon which of the subchannels are occupied and which are 
available. 

The simplest approach to the multiband sensing problem is 
to assume that all subchannels (and unknown parameters) are 
independent. Then, the multiband sensing problem reduces to a 
binary hypothesis test of the type (2) for each subchannel. 
However, in practice the subchannels are not independent. For 
example, the primary user occupancy can be correlated [41], or 
the noise variance can be unknown but correlated between the 
bands [9]. Then, the detection problem becomes a composite 
hypothesis test, that grows exponentially with the number of 
subchannels. The huge complexity of the optimal detector, then 
leads to the need for approximations or simplifications of the 
detection algorithm (cf., [9] and [41]). 

Many papers on multiband sensing, have also considered 
joint spectrum sensing and efficient resource utilization. For 
example, we may wish to maximize the communication rate or 
allocate other resources within constraints on the detection 
probability [42], [43]. The opportunistic sum-rate over all sub-
channels is maximized in [42] and [43], with constraints on the 
detection probabilities. Multiple cooperating sensors are used in 
[42] to improve the detection performance and robustness. 
However, only one secondary transmitter is considered in [42], 
whereas multiple secondary users, and allocation of them to the 
available subchannels, are dealt with in [43]. This may lead to 
nonconvex and potentially NP-hard optimization problems. 

COMPRESSIVE SENSING
The basic idea of compressive spectrum sensing is to exploit the 
fact that the original observed analog signal y 1t 2  with double-
sided bandwidth or Nyquist rate 1/T can often be sampled below 
the Nyquist rate within an interval t [ 30, NbT 2  through a spe-
cial linear sampling process, sometimes referred to as an ana-
log-to-information (A/I) converter. The resulting Mb 3 1 vector 
of samples z5 3z 31 4, c, z 3Mb 4 4T can then be expressed as 

 z5F y, (15)

[FIG6] Example of a wideband channel divided into multiple 
subchannels. The white subchannels represent white spaces, or 
spectrum holes, and the shaded subchannels represent occupied 
channels.

Wideband Channel

Subchannels



IEEE SIGNAL PROCESSING MAGAZINE   [111]   MAY 2012

where y5 3y 31 4, c, y 3Nb 4 4T is the Nb 3 1 vector obtained by 
Nyquist rate sampling y 1t 2  within the interval t [ 30, NbT 2 , and 
F is the Mb 3 Nb measurement matrix, where Mb V Nb. We 
remark that (15) is used only for representation purposes. It rep-
resents an operation that is carried out in the analog domain, and 
not in the digital domain. So the compression ratio compared to 
Nyquist rate sampling is given by Mb/Nb. Depending on the type 
of A/I converter, the measurement matrix can take different 
forms. In wideband spectrum sensing, one often resorts to a non-
uniform sampler (F consists of Mb randomly selected rows from 
the Nb 3 Nb identity matrix) or a random demodulator (F con-
sists of random entries, uniformly, normally, or 61 distributed). 
Now since (15) has more unknowns than equations, it has infi-
nitely many solutions and to reduce the feasible set, additional 
constraint are introduced. In compressive sensing, these con-
straints are based on sparsity considerations for y. More specifi-
cally, it is assumed that y is sparse in some basis C, meaning 
that we can write y5Cs, where s has only a few nonzero ele-
ments. For instance, if primary user presence is not very likely, 
sparsity reveals itself in the spectrum, i.e., C5 F21, with F the 
Nb 3 Nb discrete Fourier transform (DFT) matrix, whereas if pri-
mary users occupy only flat frequency bands, the edge spectrum 
(the derivative of the spectrum) can be viewed as being sparse, 
i.e., C5 1GF 221 with G the Nb 3 Nb differentiation matrix [44] 
(in practice, spectral smoothing is required to obtain improved 
sparsity in the spectrum or edge spectrum, but we abstract this 
operation in this work). Under such sparsity constraints (possibly 
relaxed), we can then solve 

 z5FCs5 As, (16)

using any existing sparse reconstruction method such as 
orthogonal matching pursuit (OMP), basis pursuit (BP), or the 
least-absolute shrinkage and selection operator (LASSO) (see 
[40] and references therein). 

It is also possible to carry out the above sampling process in 
every consecutive interval of length NbT, resulting in a periodic 
sampling device, e.g., a periodic nonuniform sampler (also 
known as a multicoset sampler) or a periodic random demodu-
lator (also known as a modulated wideband converter). For the 
kth interval, we then obtain z 3k 45 As 3k 4, and stacking K  such 
vectors in a matrix, we obtain 

 Z5 AS, (17)

where the Mb 3 K  matrix Z and Nb 3 K  matrix S are respec-
tively given by Z5 3z 31 4, c, z 3K 4 4  and S5 3s 31 4, c, s 3K 4 4. 
In that case, we can resort to so-called multiple measurement 
vector (MMV) approaches to sparse reconstruction, thereby 
exploiting the fact that all the columns of S enjoy the same 
sparsity pattern [45]. However, in this MMV case, also more tra-
ditional sparse reconstruction methods can be employed, such 
as multiple signal classification (MUSIC) or the minimum vari-
ance distortionless response (MVDR) method. It is interesting to 
observe that this MMV setup is very closely related to spectrum-

blind sampling, in which the goal is to enable minimum-rate 
sampling and reconstruction given that the spectrum is sparse 
yet unknown [46]. 

Cooperative versions of compressive wideband sensing have 
also been developed [47], [48]. Here, individual radios can make a 
local decision about the presence or absence of a primary user, 
and these results can then be fused in a centralized or decentral-
ized manner. However, a greater cooperation gain can be 
achieved by fusing all the compressed measurements, again in a 
centralized or decentralized manner. In general, such measure-
ment fusion requires that each cognitive radio knows the chan-
nel state information (CSI) from all primary users to itself [47], 
which is cumbersome. But recent extensions show that measure-
ment fusion can also be carried out without CSI knowledge [49]. 

COOPERATIVE SPECTRUM SENSING
Spectrum sensing using a single cognitive radio has a number 
of limitations. First of all, the sensitivity of a single sensing 
device might be limited because of energy constraints. 
Furthermore, the cognitive radio might be located in a deep 
fade of the primary user signal, and as such might miss the 
detection of this primary user. Moreover, although the cognitive 
radio might be blocked from the primary user’s transmitter, this 
does not mean it is also blocked from the primary user’s receiv-
er, an effect that is known as the hidden terminal problem. As a 
result, the primary user is not detected but the secondary trans-
mission could still significantly interfere at the primary user’s 
receiver. To improve the sensitivity of cognitive radio spectrum 
sensing, and to make it more robust against fading and the hid-
den terminal problem, cooperative sensing can be used. The 
concept of cooperative sensing is to use multiple sensors and 
combine their measurements into one common decision. In 
this section, we will consider this approach, including both soft 
combining and hard combining, where for the latter we will 
also look at the influence of fading of the reporting channels to 
the fusion center. Throughout this and other sections on coop-
erative sensing, we will indicate the local probabilities of detec-
tion, missed detection, and false alarm as Pd, Pmd, and Pfa, 
respectively, whereas their global representatives will be denot-
ed as PD, PMD, and PFA. 

SOFT COMBINING
Assume that there are M  sensors. Then, the hypothesis test 
(2) becomes 

 
H0 : ym5wm, m5 1, c, M,
H1 : ym5 xm1wm, m5 1, c, M.

 

Suppose that the received signals at different sensors are inde-
pendent of one another, and let y5 3y1

T,  y2
T, c, yM

T 4T. Then, the 
log-likelihood ratio is 

 logap 1y|H1 2
p 1y|H0 2 b 5 logaq

M

m51

p 1ym|H1 2
p 1ym|H0 2 b 5 a

M

m51
logap 1ym|H1 2

p 1ym|H0 2 b

 5 a
M

m51
L1m2, (18)
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where L1m25 logQp 1ym|H1 2 /p 1ym|H0 2R is the log-likelihood ratio 
for the mth sensor. That is, if the received signals for all sensors 
are independent, the optimal fusion rule is to sum the local log-
likelihood ratios (LLRs). 

Consider the case in which the noise vectors wm are inde-
pendent wm | N 10, sm

2 I 2 , and the signal vectors xm are inde-
pendent xm | N 10, gm

2 I 2 . After removal of irrelevant constants, 
the log-likelihood ratio (18) can be written as 

 a
M

m51

7 ym 7 2
sm

2  
gm

2

1sm
2 1gm

2 2 . (19)

The statistic 7ym 7 2/sm
2  is the soft decision from an energy detec-

tor at the mth sensor, as shown in (5). Thus, the optimal coop-
erative detection scheme is to use energy detection for the 
individual sensors, and combine the soft decisions by the 
weighted sum (19). This result is also shown in [50], for the 
case when sm

2 5 1, and thus gm
2  is equivalent to the SNR experi-

enced by the mth sensor. The cooperative gain and the effect of 
untrusted users, under the assumption that the noise and signal 
powers are equal for all sensors, are analyzed in [51]. It is shown 
in [51] that correlation between the sensors severely decreases 
the cooperation gain and that if one out of M  sensors is 
untrustworthy, then the sensitivity of each individual sensor 
must be as good as that achieved with M trusted users. 

HARD COMBINING
So far we have considered optimal cooperative detection. That 
is, all users transmit soft decisions to a fusion center, which 
combines the soft values to one common decision. This is 
equivalent to the case in which the fusion center has access to 
the received data for all sensors, and performs optimal detection 
based on all data. This potentially requires a very large amount 
of data to be transmitted to the fusion center. The other 
extreme case of cooperative detection is that each sensor makes 
its own individual decision, and transmits only a binary value to 
the fusion center. Then, the fusion center combines the hard 
decisions into one common decision, for instance using a voting 
rule (cf., [52]). 

Suppose that the individual statistics L1m2 are quantized to 
one bit, such that L1m2 [ 50, 16 is the hard decision from the 
mth sensor. Here, 1 means that a signal is detected and 0 
means that the channel is deemed to be available. The voting 
rule then decides that a signal is present if at least C of the M  
sensors have detected a signal, for 1 # C # M. The test decides 
on H1 if 

 a
M21

m50
L1m2 $ C. 

A majority decision is a special case of the voting rule when 
C5M/2, whereas the AND-logic and OR-logic are obtained for 
C5M and C5 1, respectively. In [53], hard combining is stud-
ied for energy detection with equal SNR for all cognitive radios. 
In particular, the optimal voting rule, optimal local decision 
threshold, and minimal number of cognitive radios are derived, 

where optimality is defined in terms of the (unweighted) global 
probability of error PFA1 PMD (note that this is different from 
the true global probability of error). It turns out that when the 
local probability of false alarm Pfa and missed detection Pmd are 
of the same order, the majority rule is optimal, whereas the 
optimal voting rule leans towards the OR rule if Pfa V Pmd and 
to the AND rule if Pfa W Pmd. 

There are also some works that consider binary phase-shift 
keying (BPSK) signaling of the hard local decisions to the 
fusion center over fading reporting channels, and assuming 
phase coherent reception. Such a scenario is investigated in 
[54], in which the corresponding optimal fusion rule of the 
received signals is derived. This fusion rule requires the knowl-
edge of the reporting channel SNRs as well as the local probabil-
ities of false alarm 5Pfa

1m26m and detection 5Pd
1m26m. At high SNR, 

this fusion rule corresponds to the Chair-Varshney rule [55], in 
which knowledge of only 5Pfa

1m26m and 5Pd
1m26m is required, 

whereas at low SNR, it becomes the maximal ratio combiner (if 
Pd
1m25 Pd, Pfa

1m25 Pfa, and Pd . Pfa), for which only the reporting 
channel SNRs are needed. As a robust alternative, equal gain 
combining is also suggested, which does not require any prior 
knowledge. In [56], the above optimal fusion rule is extended to 
the case in which the channel is rapidly Rayleigh fading, such 
that only the channel statistics can be obtained, and as before 
phase coherent reception is assumed. In this case, at high SNR, 
the optimal fusion rule corresponds again to the Chair-Varshney 
rule, but at low SNR, it now becomes the equal gain combiner 
(if Pd

1m25 Pd, Pfa
1m25 Pfa, and Pd . Pfa ). When on/off signaling is 

assumed with noncoherent reception at the fusion center, the 
optimal decision rule is derived in [57], with either the knowl-
edge of the reporting channel envelopes or the knowledge of the 
channel statistics. And as before, also the local probabilities of 
false alarm 5Pfa

1m26m and detection 5Pd
1m26m are required for these 

optimal fusion rules. At low SNR, both rules lead to a weighted 
energy detector (if Pd

1m25 Pd, Pfa
1m25 Pfa, and Pd . Pfa). If the 

channel envelopes are known, the weights are given by the 
channel powers, and if the channel statistics are known, the 
weights are all the same for Rayleigh or Nakagami fading chan-
nels (the weighted energy detector then reduces to an energy 
detector), whereas they are given by the powers of the line-of-
sight components for Rician fading channels. 

ENERGY EFFICIENCY IN COOPERATIVE 
SPECTRUM SENSING
When using techniques such as those described in the preced-
ing section, as the number of cooperating users grows, the 
energy consumption of the cognitive radio network increases, 
but the performance generally saturates. Hence, techniques 
have been developed to improve the energy efficiency in cooper-
ative cognitive radio networks. In this section, we will review 
some of these briefly. 

COOPERATIVE SEQUENTIAL SENSING
In classical sequential detection, the basic idea is to minimize the 
sensing energy by minimizing the average sensing time, subject 
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to constraints on the probability of false alarm and missed detec-
tion, i.e., PFA # a and PMD # b. These two constraints are 
important in a cognitive radio system, since PFA is related to the 
throughput of the cognitive radio system, whereas PMD is related 
to the interference to the primary system. Under i.i.d. observa-
tions, this leads to the so-called sequential probability ratio test 
(SPRT) [58], in which sensing is continued as long as the likeli-
hood ratio L satisfies h1 # L , h2 and a decision is made other-
wise, with h15 b/ 112a 2  and h25 112 b 2 /a. Note that one 
can also consider minimizing the average Bayesian cost of sens-
ing and making a wrong decision, but this also leads to an SPRT. 
Sequential detection has been adopted to reduce the sensing time 
in single-radio spectrum sensing, see, e.g., [59]. However, multi-
sensor versions of sequential detection, i.e., cooperative or distrib-
uted sequential detection (see [60] and references therein), are 
encountered more frequently in the field of spectrum sensing, 
since they provide the ability to significantly reduce the energy 
consumption of the overall system. In the following, we briefly 
discuss a few of these approaches. 

In [61], all the radios send their most current local LLRs to 
the fusion center, where an SPRT will be carried out. If the test 
is positive, a decision can be made and the radios can stop sens-
ing and transmitting, thereby saving not only sensing energy 
but also transmission energy. If not, all the radios gather new 
information and send their corresponding new LLRs to the 
fusion center. Unknown modeling parameters are also taken 
into account in [61], following an approach similar to the sec-
tion “Unknown Parameters.” In [17], on the other hand, the 
radios will not send their LLRs in parallel to the fusion center, 
as done in [61], but they do it sequentially. If the SPRT per-
formed at the fusion center is negative, only one radio that did 
not yet participate in the fusion gathers new information and 
sends its LLR to the fusion center. Note that the LLRs in [17] 
are based on second-order statistics. 

CENSORING
Another popular energy-aware cooperative sensing technique 
is censoring. In such a system a cognitive radio m will send a 
sensing result only if it is deemed informative, and it will cen-
sor those sensing results that are uninformative. In [62], opti-
mal censoring has been considered in terms of the global 
probability of error PE 5 Pr(H0)PFA 1 Pr(H1)(1 2 PD) 
(Bayesian framework), the global probability of detection PD 
subject to a global probability of false alarm constraint 
PFA # a (NP framework), or any Ali-Silvey distance between 
the two hypotheses (such as the J-divergence). If we interpret 
this for a  cognitive radio system, the Bayesian approach basi-
cally minimizes the difference between the interference to the 
primary system and the throughput of the cognitive radio sys-
tem. The NP approach minimizes the interference to the pri-
mary system subject to a minimal throughput of the cognitive 
radio system. The Ali-Silvey distance provides a generalization, 
which we simply mention here for completeness. In addition, 
a global communication constraint is adopted, which is given 
by a constraint on the true global rate 

 Pr 1H02a
M21

m50
Pr 1L1m2 is sent |H02  

 1Pr 1H12a
M21

m50
Pr 1L1m2 is sent |H12#k, 

for the Bayesian case (this case generally assumes that 
Pr 1H0 2 < Pr 1H1 22 , a constraint on the global rate under H0 

 a
M21

m50
Pr 1L1m2 is sent |H0 2 # k, 

for the NP case (this case generally assumes that 
Pr 1H0 2 W Pr 1H1 22 , and either one of them for an Ali-Silvey dis-
tance. Under such a constraint, [62] shows that the optimal 
local decision rule is a censored local LLR L1m2 where the cen-
soring region consists of a single interval. More specifically, a 
radio will not send anything when h1

1m2 # L1m2 , h2
1m2 and it will 

send L1m2 otherwise. Furthermore, it is proven in [62] that if the 
communication rate constraint k is sufficiently small and either 
Pr 1H1 2  (in the Bayesian framework) or the probability of false 
alarm constraint a (in the NP framework) is small enough, then 
the optimal lower threshold h1

1m2 is given by h1
1m25 0. This result 

has also been generalized in [63] for a communication rate con-
straint per radio, in which case the upper threshold h2

1m2 can be 
directly determined from km and no joint optimization of the 
set of upper thresholds 5h2

1m26m50
M21 is required. 

In addition to communication rate constraints, other cost 
functions have been considered, such as the global cost of sens-
ing and transmission 

 C5 a
M21

m50
Cs, m1 Ct, mPr1L1m2 is sent 2 , 

where Cs,m and Ct,m are respectively the cost of sensing and 
transmission for cognitive radio m. Under a constraint on C, it 
can again be shown that the optimal local decision rule is a cen-
sored local LLR L1m2 with a censoring region consisting of a sin-
gle interval, where optimality can be in the Bayesian, NP, or 
Ali-Silvey sense [64]. Furthermore, even if a digital transmission 
is considered, the optimal local decision rule is a quantized local 
LLR L1m2, where every quantization level corresponds to a single 
interval and where one of the quantization levels is censored 
[64]. An extreme case of such a quantization is considered in [57] 
and [65] with only two quantization levels for L1m2 (on/off signal-
ing). A Bayesian approach is considered there with a communica-
tion rate constraint per radio. Under different fading reporting 
channels, the optimal noncoherent combining rule and optimal 
local threshold have been determined in those papers. 

In censored cooperative spectrum sensing, energy detection 
is often considered. In other words, the local decision is based 
on the locally collected energy L1m25 ||ym||2, and the radio will 
not send anything when h1

1m2 # L1m2 , h2
1m2. Outside this 

region, we can basically distinguish between two cases. When a 
soft decision rule is used at the fusion center, the radio will send 
L1m2 when L1m2 , h1

1m2 or L1m2 $ h2
1m2. When a hard decision 

rule is used on the other hand (such as the OR or AND rule), 
the radio will send a 0 when L1m2 , h1

1m2  and a 1 when 
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L1m2 $ h2
1m2. Such cases are investigated and analyzed in [66] for 

the hard decision OR rule and in [67] for the soft decision rule 
as well as the hard decision OR and AND rule. Note that [66] 
also takes reporting errors to the fusion center into account. 

In addition to energy detection, autocorrelation-based and 
cyclostationarity detection have also been used in combination 
with censoring [22], [24]. These works consider a soft decision 
rule, under a NP setting with a communication rate constraint 
per radio. 

To conclude this subsection on censoring, note that censor-
ing can also be combined with ordered transmissions to further 
improve the energy efficiency [68]. 

SLEEPING
Sleeping or on/off sensing is a power saving mechanism in which 
every cognitive radio randomly turns off its sensing device with a 
probability m, the sleeping rate. The advantage of sleeping over 
censoring is that the cognitive radios that are asleep do not waste 
any sensing or transmission power, whereas in censoring all the 
cognitive radios have to spend energy on sensing. Sleeping has 
generally been applied in combination with censoring [69], [70]. 
The combination of sleeping and censoring is studied in [69], 
with the goal of maximizing the mutual information between the 
state of signal occupancy and the decision state of the fusion cen-
ter. In [70], sleeping is combined with the approach of [66] where 
energy detection and a hard decision OR rule is considered. More 
specifically, in [70], the global cost of sensing and transmission 
1C from above multiplied by 12m) is optimized with respect to 
the sleeping rate m and the thresholds h1

1m2 and h2
1m2, subject to a 

global probability of false alarm constraint PFA # a and a global 
probability of detection constraint PD $ b. An interesting result 
from [70] is that the optimal lower threshold is again given by 
h1
1m25 0 if the feasible set is not empty. 

CLUSTERING
Finally, clustering has been proposed in networks to improve 
the energy efficiency [71], and it can easily be used in cognitive 
radio systems as well. Such an approach basically groups the 
cognitive radios into different clusters, where in each cluster a 
cluster head is assigned that reports to the fusion center (also 
more than two layers can be considered). For cooperative spec-
trum sensing specifically, this method reduces the average com-
munication range to pass on information to the fusion center, 
and thus diminishes the average transmission energy, but it also 
allows for taking intermediate decisions about the presence or 
absence of the primary user (soft or hard) at the cluster heads 
[72], [73]. In [72], each cluster selects the radio with the best 
link to the fusion center as its cluster head, to exploit selection 
diversity and improve the performance. In [73], confidence vot-
ing is proposed as a kind of censoring mechanism that can be 
used within every cluster to reduce the transmission energy 
even more. The idea is that a radio sends results to the cluster 
head only if it is confident, and it gains confidence when its 
result accords with the cluster consensus, and loses confidence 
otherwise. 

OTHER TOPICS AND OPEN PROBLEMS
We have reviewed some of the state-of-the-art methods and 
recent advances in spectrum sensing for cognitive radio. In 
doing so, we have necessarily had to make choices and cover 
only selected parts of existing work. There are several other top-
ics worth mentioning, which also have been subject to recent 
research efforts:  

 ■ Quickest detection is a research area that addresses situa-
tions when the conditions are more dynamic. We have only 
considered spectrum sensing when the conditions are static, 
so that a primary signal is either present or absent. The 
problem of quickest detection is to detect the beginning of a 
primary user’s transmission as quickly as possible after it 
happens. Similar issues with unknown parameters also 
occur in quickest detection problems, and tools such as the 
GLRT and marginalization that we have discussed here, can 
be used [74]. Likewise, collaboration can be applied to quick-
est detection problems [75]. A comprehensive treatment of 
quickest detection is provided in [76]. 

 ■ Adaptive sensing and learning are other related topics 
that we did not treat. These topics also focus more on dynam-
ic situations and are an important part of the overall philoso-
phy of cognitive radio. Some recent work in this area is 
described in [77]. The problem of dynamic spectrum sensing 
(and channel access) as a partially observed Markov process is 
studied in [78]. The analysis of [78] considers cooperative 
dynamic spectrum sensing of primary channels whose occu-
pancies are assumed to follow a Markovian evolution. 

 ■ Joint spectrum sensing and efficient resource utilization 
is a large field. Other examples where spectrum sensing and 
resource allocation are merged can be found in [79] and 
[80]. The optimization problems posed there are often non-
convex and potentially NP-hard. Some formulations lead to 
multiarmed bandit problems. One example of such a multi-
armed bandit problem is the allocation of M  users to L 
1.M 2  available channels where the users may get different 
rewards (e.g., rate) for different channels [79]. Another 
example is the optimal selection of the sensing order when 
one out of L channels is sensed at a time [81].
In addition, there is a substantial amount of research being 

conducted on the specific topics that we have dealt with in this 
article. A key example is in the area of feature detection in which 
there is still considerable research. Exploitation of certain fea-
tures in all dimensions (time, space, and frequency) simultane-
ously is quite challenging and leads to very complex detectors. 
Complexity is a major issue in many cases, for example when 
it comes to real-time implementations or energy saving. Taken 
together, while considerable research progress has been made 
on the problem of spectrum sensing, there are still many chal-
lenges and open problems to solve. 
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