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Abstract: Most of the available localization algorithms require pair-wise ranging between the nodes. The
more accurate the ranging, the more precise the localization. In this paper, the problem of accurate ranging
between sensor nodes in an underwater environment is considered. It is assumed that the underwater
medium is composed of layers with an isogradient depth-dependent sound speed profile (SSP). For the
range estimation, we first show how the pair-wise time of flight (ToF) measurement between the nodes is
related to the nodes’ positions. Then, based on this relation, we propose a novel ranging algorithm for an
underwater acoustic sensor network (UASN). The proposed algorithm is based on the ToF measurement of
the first arrival ray which may be reflected from the surface orthe seabed. Through several simulations we
show that the algorithm performs superb, and meets the Cramér Rao bound (CRB) for different values of
the measurement noise power.
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1. INTRODUCTION

Underwater localization is very challenging; very low bit
rate, low link quality, multi-path, and time variability are
the most challenging characteristics of underwater commu-
nications [1]. In addition, the propagating wave speed in
an underwater environment, is not constant, and depends on
the location. In such a medium, the time of flight (ToF)
between two nodes depends not only on the sound speed
profile (SSP) of that medium but also on the position of the
two nodes [2]. Therefore, the ToF is not only proportional to
the Euclidean distance between the nodes, but also to their
positions. However, it can be shown that in an underwater
medium where the SSP varies only with depth, the ToF can be
used to estimate the distance between the nodes if the nodes’
depth is known.

The sensor nodes of a UASN can be equipped with a
pressure sensor and thus are capabal to measure their depth.
It is proved that in a three dimensional (3D) environment
using depth information, only horizontal distances between
the nodes are required for localization [3]. To find a horizontal
distance between two nodes using ToF measurements we can
build a look up table (LUT) which relates the ToF to the
horizontal distance between two nodes [4]. Using this ap-
proach to estimate mutual distances between nodes from ToF
measurements, is quite fast, but to scan the whole underwater
environment, a huge LUT is required which may not be
practical. Furthermore, the SSP in an underwater medium is
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subject to changes in temperature and conductivity, and any
change in SSP degrades the LUT accuracy and upsets the
localization performance.

In this work, we analyze the acoustic signal propagation
between two sensor nodes in an underwater environment. We
use a ray-tracing approach to model the propagation which is
a valid approximation for high-frequency signal transmission
[4]. We assume that the underwater medium is composed of
different layers with an iso-gradient SSP, which is a practical
model for the actual SSP of the entire environment [5], [6]. We
will show that the positions of the crossing points, where the
ray trajectory and the layer boundaries meet each other, canbe
obtained through a set of polynomial root finding equations.
Based on these equations we are able to distinguish among
different possible transmission paths between the nodes, and
determine the fastest one even if it is reflected from the sea
surface or the seabed. Another contribution of this paper is
a novel method for accurate ranging between the nodes. The
proposed algorithm computes the horizontal distance between
two nodes based on the ToF and depth measurements. The
algorithm estimates the range of a target by minimizing the
difference between the measured ToF and the constructed ToF
estimated from the known map in an iterative manner.

The rest of the paper is organized as follows. The ToF
versus node positions is computed in Section 2. In Section
3, we propose our ranging algorithm, and through several
simulations we evaluate its performance in Section 4. Finally,
we conclude the paper in Section 5.



2. TOF VERSUS NODES’ POSITIONS

In order to relate the ToF to the unknown node’s position,
we first require to find which ray departing the source reaches
a specific destination. In this section, we analytically findthe
rays that can travel between two nodes with known positions,
and we compute their corresponding ToFs based on their
trajectories. It is worth mentioning that in an underwater
medium with fixed SSP, each ray departing a source can be
uniquely characterized by its departing angle.

Here the SSP is considered as a piece-wise linear function
of the depth:

c(j)(z) = a(j)z + b(j), z(j−1) < z < z(j), j ∈ 1, . . . , N, (1)

wherez represents the depth,a(j) and b(j) are related to the
chemical and physical characteristics of thej-th isogradient
sound speed profile layer, andN is the number of layers. In
our previous work [7], we show how a ray can travel between
two nodes located inside an iso-gradient SSP underwater
environment. We review this work first for completeness.

A. Single-Layer Medium

In a single layer, each truncated ray (indexed byp) between
two points, i.e., Sp and Ep in Fig. 1, can be uniquely char-
acterized if the position of the starting point, position ofthe
end point, and SSP are known. The function between the layer
index and truncated ray index is given byj(p), and for ease
of notation, we define

cp(z) = apz + bp = c(j(p))(z) = a(j(p))z + b(j(p)). (2)

The relation between ToF and the node positions can then be
extracted from a set of differential equations characterized by
Snell’s law [4],
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where θS
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p are the ray angles at the starting and end
points, respectively,zS

p andzE
p represent the depth of the

starting and end node, respectively, andk0 is constant along
a ray traveling between the nodes (see Fig. 1). Moreover, the
parametersθ and z represent the angle and depth of a given
point along the ray. Now, we can write
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wheres is the arc length of a ray traveling between the two
nodes, andt is its corresponding travel time. From (2) and
(3), by taking derivatives w.r.t.z andθ, we can write

∂z = −
1

apk0
sin θ ∂θ. (5)

Using the above differential equations, for the two points
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Fig. 1. Samples of ray trajectories as they travel through different layers

we have [7]
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of the starting and end points, respectively, andtp is the
traveling time of a truncated ray between these two nodes.
Note thatβp represents the angle of the straight line connecting
the nodes w.r.t. the horizontal axis, andαp is the angle between
the actual ray and this straight line. From (6g) and (6h), it can
be seen that the ray deviations from the straight line at the
starting and end point are the same but have opposite signs.

B. ToF Versus Node Positions for Two Adjacent Layers

We start our analysis by considering a ray traveling between
two points in adjacent layers, i.e., the ray from A to B in Fig.1.
In this scenario, when ther coordinate of the crossing point,
M, is computed, we are able to relate the positions of the two
nodes to the ToF. The ray has two parts; the ending point of
the first part is the starting point of the second part. Thus, the
two parts of the ray can be related to each other according to
a boundary equationθS

2 = θE
1 . Another representation for this

boundary equation can be obtained by taking the tangent from
both sides. Using (6e) to (6h), the boundary equation can then
be modified to

X2 + Y2

1−K2
=

X1 − Y1

1 +K1
. (7)

For a two-part ray, the combination of sub-equations (6b), (6c),
and (6d) for each part, together with boundary equation (7)



forms a third-order polynomial root finding problem where
the roots represent the possibler coordinates of the crossing
point M. Notice that the node positions and the depth of M
are known and as a result, the parametersK1 and K2 can
be computed easily,X1 (X2) is inversely related toY1 (Y2),
and the only unknown parameter isrM which determinesX1

andX2. Since there are at most three roots for a third order
polynomial, there are at most three ways for a ray departing
at A to reach B. In the next subsections we show how the ToF
can be computed for a multi-part ray. Note that, as illustrated
in Fig. 1, there are many other ways that a ray may travel
between two points in adjacent layers, i.e., U to V in Fig. 1.
An analysis of all possible rays is feasible, and we will later
on discuss this.

C. Definition of Ray Pattern

To simplify the multi-layer analysis, we define the concept
of ray pattern. A ray pattern is a set, consisting of all possible
rays that can travel between two points according to a specific
pattern. For example, a ray pattern of 2.1.1.2 means that, the
ray departs the starting point from the second layer, goes tothe
first layer, hits the surface, and arrives to the second node in the
second layer. Therefore, aray patternhas several properties.
First, the number of digits used in theray pattern indicates
the number of single-layer parts a ray consists of. Second, it
shows in which layer each part of a ray is located. Third, the
reflection from the sea surface and the seabed can easily be
modeled by this concept. Using theray patternconcept, we
are able to show how a ray can travel in a given medium, and
which pattern may host the fastest ray.

D. Ray Tracing in a Multilayer Medium

To predict how a ray may travel inside a multi-layer
underwater area we introduce several lemmas bellow.
Lemma 1: In a layer with constant SSP the ToF is related to
the nodes’ positions astp = 1
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2.
Lemma 2: Rays are bent toward the region where the sound
speed is lower.
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In this way, it can be understood that if∆z for a one-part
ray in a single layer is so large that a ray part crosses another
layer, the assumption of a one-part ray propagation has to be
changed into a three-part ray propagation, and the equations
have to be reorganized accordingly.
Lemma 4: A ray can travel multiple times between two layers
if the SSP has a local minimum between them.
Lemma 5: Reflections from the seabed and sea surface can
be formulated as a boundary equation. For instance, if we
consider a perfect reflection from the seabed or the sea surface,

the boundary equations can be obtained as

βp+1 + αp+1 = −(βp − αp),
βp+1 = −βp.

(9)

E. Multilayer-Layer Medium

Thanks to the piece-wise linear behavior of the SSP, we are
now able to predict how a ray which starts from a given point,
S, can travel through different layers to arrive at a specific
point, E. Having builtray patternsusing the above lemmas
we can then for everyP -part ray relate the ToF to the node’s
position using (6) for each single-layer part and the following
boundary equations

Xp+1 + Yp+1

1−Kp+1
=

Xp − Yp

1 +Kp

, for p = 1 to P − 1. (10)

Note that, for eachP -part ray between the points S and E,
we have E= EP , and S= S1. The combination of the above
equations forms a set of polynomial equations, and all the
valid roots of this set of equations represent validP -part paths
between the two points. The ToF for any possibleP -part ray
can then be computed as

t =

P
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p=1
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[

ln
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− ln
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p
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. (11)

3. UNDERWATER RANGING TECHNIQUES

To our best knowledge, the algorithm in [8] is the only
available mathematical approach for inhomogeneous SSP un-
derwater range estimation. In order to better understand this
algorithm we shortly review it here. The horizontal range
between two nodes at different depths in an underwater
medium can be obtained by

t =

∫ zE

zS

1

c(z)

1
√

1− [k0c(z)]
2
dz , 0 < k0 < min

z

1

c(z)
, (12)

rE − rS =

∫ zE

zS

k0c(z)
√

1− [k0c(z)]
2
dz , (13)

wherek0 is a constant defined by Snell’s law,t is the ToF
between two nodes, andrE − rS represents the horizontal
distance between them. The estimation of the horizontal dis-
tance has two phases; first, by measuring the depth and ToF
information, the value ofk0 can be computed numerically
from (12), and second, by substitution ofk0 into (13), and
taking the integral, the value ofrE − rS can be obtained.
This method is really comprehensive since with any given
SSP, the horizontal distance is computable. However, in an
inhomogeneous medium, a ray trajectory is not always a
monotonic function of the depth, and as a result, whenever a
path between two nodes crosses a depth more than once, which
is quite common, the above formulas are not valid anymore.
In this case, either (12) has no answer fork0 in the specified
range, or the obtained answer is not valid.



A. Proposed Algorithm

Assume, at a specific depth, the ToF of the fastest ray is a
monotonic function of the horizontal range. In other words,a
propagating wave at a specific depth reaches the destination
with a smaller horizontal distance faster. Then, using the ToF
and depth measurements, we can find the horizontal distance
through a root finding algorithm such as Newton’s method or
bisection. The Newton’s method is very fast, but it requires
the derivative of the ToF w.r.t. the horizontal distance which
is hard to compute. The bisection method is robust, and it
eventually finds the solution. However, it requires an upperand
a lower bound on the horizontal distance. The lower bound can
be set to zero, and the upper bound can be computed through
multiplying the measured ToF by the maximum sound speed of
the entire environment. In spite of the fact that other efficient
numerical root-finding algorithms can also be used, we utilize
the simple bisection algorithm for the results in the numerical
section.

Algorithm 1 shows the steps of the proposed algorithm.
In this algorithm,K and E are the user-defined limits on
the conditional criteria that determine when the algorithm
exits from the loop,rlow and rup are the lower and the
upper bound, respectively, and the hats indicate measured or
estimated quantities. The algorithm starts by initializing the
upper and the lower bound, and then it computes the fastest
ToF for the midpoint of the bounds. In order to calculate the
fastest ToF, given the depth of the two points, different ray-
patterns that may host the fastest ray, are formed, and all the
rays between the points are found and their corresponding
ToFs are computed, i.e, in Algorithm 1,tl represents the
ToF of the l-th found ray between the points. Then, among
all these ToFs, the smallest one is selected. Next, based on
the computed ToF, the lower, the upper, or both bounds are
modified accordingly, and the procedure continues until one
of the conditional criteria of the loop fails.

B. Craḿer Rao Bound

The Craḿer-Rao bound (CRB) expresses a lower bound
on the variance of any unbiased estimator of a deterministic
parameter. In this section we only derive the CRB for the
horizontal distance estimation between two nodes. For the
computation of the horizontal distance, three measurements
are required; two depth measurements which are not directly
related to the horizontal distance, and one ToF measurement. It
is assumed that all the measurements are affected by Gaussian
distributed noise as

t̂ = t + nt,

ẑS = zS + nS
z,

ẑE = zE + nE
z ,

(14)

wherent, nS
z andnE

z are independent Gaussian distributed with
varianceσ2

t , σ2
z andσ2

z , respectively. The Fisher information
matrix for estimating the horizontal distance (rE−rS), zS, and

Algorithm 1 Proposed Algorithm
Compute horizontal distance upper and lower bounds,

rlow = 0,
rup = t̂cmax, wherecmax = maxz c(j)(z), j ∈ 1, ..., N .

Initialize loop criteria,
e= rup − rlow,
k = 1.

while e≤ E andk ≤ K do
Compute the average value of the upper and the lower bound,

r =
rlow+rup

2
.

Find the smallest ToF for this horizontal distance, form all possible ray
patterns hosting the fastest ray (see lemmas).
Compute ToF for each possible raytl

(

r, ẑS
1, ẑ

E
P

)

, (see (11)).
Select the ray with the smallest ToF.

t = minl tl
(

r, ẑS, ẑE
)

.

Update the lower or the upper bound,
if t < t̂ then

rlow = r.
else if t > t̂ then

rup = r.
else

rlow = r,
rup = r.

end if
Update loop criteria,

er = rup − rlow,
k = k + 1.

end while
Compute the estimated horizontal distance between the nodes.r̂E − r̂S =
rlow+rup

2
.
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In order to compute the partial derivative ∂t
∂(rE

−rS)
, we modify

the environment in such a way that we can compute the
horizontal distance as an integral w.r.t. depth. In order to
achieve this, we have to convert the horizontal distance andthe
ToF to monotonic functions of the depth. Therefore, a ray can
not have maximum or minimum points on its trajectory w.r.t.
the depth. Let’s illustrate the proposed idea with an example.
Assume that a ray has a maximum point on its trajectory.
The ray angle is zero at this maximum point, and after that it
changes sign. But, this sign change does not affect Snell’s
law, as it is related to the cosine of the ray angle. As a
result, we can assume that the ray travels upward instead of
downward as depicted in Fig. 2, but in a new environment.
In this new environment the SSP of each imaginary region
must be changed accordingly. For instance, Fig. 2 shows that
the real SSP is flipped and repeated in the first and second
imaginary regions, respectively. In other words, the SSPs of
the imaginary regions follow the behavior of the modified ray
trajectory.

Note that the above conversion can only be done after we
compute the fastest ray, because only then we are able to locate
the maximum and/or minimum points on the trajectory and
build the new environment. Under this assumption, the relation
of the horizontal distance to the ToF is similar to (12), hence
we can utilize the same approach used in [8] to compute the
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CRB, which results into

var(r̂E − r̂S) ≥ σ2
t

1
k2
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+ σ2
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.

(16)

4. NUMERICAL RESULTS

We consider two kinds of SSP for our simulations which
are shown in Fig 3; the former is derived from the sound
speed measurements in the shallow water [9], and the latter is
extracted from the sound speed of the Pacific Ocean and repre-
sents a deep water environment [6]. The procedure of finding
the fastest path will be done in shallow water environment,
and the proposed ranging algorithm will be evaluated in the
deep underwater medium.

A. Ray Propagation for Shallow Water

Using theray patternconcept, we are able to show how a
ray can travel in a given medium, and which pattern may host
the fastest ray. In Table. I, we show the family of patterns that
a ray may travel between two points through different layers.
These patterns are built based on the introduced lemmas.
Since the depth of each node is known, we can select the
proper patterns from the table, and form the corresponding
polynomial formulas. By finding the roots of the polynomials,
the ToF of each ray can be computed, and the fastest one will
be recognized.
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TABLE I
ALL POSSIBLE PATTERNS WHICH A FASTEST RAY IN A SHALLOW

UNDERWATER ENVIRONMENT CAN FOLLOW

In Fig. 4, we show different possible rays that can travel
between two points located in the second layer with a hor-
izontal distance of 2000m. Based on the formulation, only
threeray patternscan exist in this scenario, i.e., 2.3.2, 2.3.3.2,
and 2.1.1.2 (here we only consider one reflection from the
surface, and only one reflection from the floor in the existing
ray patterns). Since the sound speed has higher values in
the first and second layers, the fastest path belongs to the
2.1.1.2 pattern. In Table. I, we list different patterns which
may host the fastest ray. In Fig. 5, we illustrate the analytical
prediction of the fastest ray trajectory (only the crossingpoints
are important) between two given points in the second layer.
In order to find the fastest ray in the simulation part, the
path trajectories of all rays departing the starting point are
calculated, and the ones reaching the end point are selected.
Then, among the selected rays, the one which has the lowest
ToF is picked as the fastest ray. It is shown that the analytically
calculated crossing points of the first arriving (fastest) ray with
the layer boundaries matches perfectly the crossing pointsof
the fastest ray found by the simulation. It is worth mentioning
that the algorithm of [8] can not compute the correct horizontal
range for any of the drawn blue-colored rays in Fig. 5 except
for the first one, since all other ray trajectories are not
monotonic functions of the depth.
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B. Ranging for Deep Water

In Fig. 6, we compare the performance of the proposed
range algorithm with the one introduced in [8], and with the
algorithms which approximate the inhomogeneous underwater
medium as a homogeneous one with a presumably constant
sound speed, i.e., the average sound speed of the two nodes’
location. In this simulation, we consider Gaussian noise for
the ToF and depth measurements with a standard deviation
(std.) of σt = 1ms andσz = 1m, respectively. In addition,
we choose the deep water environment as a communication
medium. The communication is between two points from
different layers which are located at depth 500m and 700m,
respectively. The root mean squared error (RMSE) for the
horizontal estimation is computed by averaging over 1000
Monte Carlo simulations. As illustrated in this figure, the
proposed algorithm performs well for all ranges while the
algorithm of [8] has no definite solution from a given point as
the horizontal range exceeds a given value. Furthermore, the
straight-line algorithm degrades as the distance between the
points increases.
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In Fig. 7, we investigate the effect of the measurement
noise on the algorithms under consideration. Here the depth
of the two nodes is as before, and their horizontal range is
fixed at 6km. The horizontal axis represents how noisy the
measured data are. The depth and ToF measurement noise
powers are exponentially related to the parameterλ, i.e.,σz =
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Fig. 7. Performance of the proposed algorithm for differencevalues of noise
power

103σt = 102−λ. It can be seen that, the performance of the
proposed ranging algorithm constantly improves and attains
the CRB when we increase the measurement accuracy, while
the straight-line estimation does not show any improvement
after a given noise power.

5. CONCLUSIONS

We analyzed the problem of localizing a target node in
an underwater environment. The inhomogeneous underwater
medium upsets the linear dependency of the pair-wise dis-
tances to the time of flight. We showed that, if the depth
information of the unlocalized node is available, then the
problem of underwater localization can be converted to the
traditional range-based one. Dividing the underwater medium
into several isogradient sound speed profile layers, we com-
pletely analyzed how a ray can travel between two given
points. Then, we proposed an iterative algorithm for the
range estimation between two nodes, and we showed that the
proposed algorithm attains the CRB and performs superb in
comparison with other existing algorithms.
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