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Abstract—In this paper, a compressive sampling (CS) based
multiple symbol differential detector is proposed, using the
principle of a generalized likelihood ratio test (GLRT). The
proposed detector works on the compressed samples directly,
thereby avoiding the reconstruction step and thus resulting in
a reduced implementation complexity along with a reduced
sampling rate (much below the Nyquist rate). We also propose
the compressed sphere decoder (CSD) to resolve the detection of
multiple symbols. Our proposed detector is valid for scenarios
where the measurement matrices are the same as well as where
they are different for each received symbol.

Index Terms—compressive sampling, multiple symbol differ-
ential detection, ultra-wideband

I. INTRODUCTION

Equipped with the prospects of high data rates, fine timing
resolution and multipath immunity, the impulse radio ultra
wideband (IR-UWB) technology has potentially made its way
to the forefront of short range communications, in recent times
[1], [2]. Owing to the large bandwidth, the received signal
consists of hundreds of separable copies of the transmitted
pulse [3]. Exploiting this rich multipath environment can lead
to a better performance of the system. The optimum strategies
employ Rake receivers to collect most of the received energy
but are bottle-necked by the number of rake fingers (that grow
proportional to the number of propagation paths) and accurate
channel estimation, which result in increased computational
complexity along with high power consumption [4], [5]. New
techniques are needed to remove these impediments in order
to make UWB systems a commercial success.

A number of autocorrelation receivers (AcRs) based sub-
optimal (noncoherent) techniques have been proposed in the
literature to circumvent the constraint of channel estimation,
e.g., the transmitted reference (TR) and the differential detec-
tion (DD) schemes [6], [7], [8]. In TR, each transmitted in-
formation pulse is accompanied by an unmodulated pulse as a
reference. The receiver then correlates the reference pulse with
the modulated pulse to decipher the information symbol. In
contrast to TR, the DD scheme employs differential encoding
of the information symbols and thereby avoids transmission of
a reference pulse. The information is decoded by correlating
the successively received pulses. The performance of the DD
scheme can be improved by using multiple symbol differential
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detection (MSDD) [9], [10], [11]. In MSDD, the correlation
operation is not restricted to consecutive symbols only but
involves a block of received symbols which leads to the
detection of a block of information symbols simultaneously
and thus results in an enhanced performance. Despite the ben-
efits offered by the aforementioned techniques, the correlation
operation involved incurs additional challenges, i.e., if carried
out in the analog domain, it can cause long delays and if
carried out in the digital domain, it necessitates Nyquist rate
sampling of the received signal. It is hard to implement delay
lines in the analog domain and the Nyquist rate sampling can
heavily stress the analog-to-digital converters (ADCs) causing
high power consumption in the digital domain.

With respect to the digital implementation of the correlation
based receivers, compressive sampling (CS) has recently been
proposed in literature as a technique which reduces the sam-
pling rate much below the Nyquist rate [12], [13]. In this tech-
nique, the received signal is converted to compressed samples
by taking a limited number of snapshots or measurements in
the analog domain [14], [15]. Each measurement represents a
compressed sample. The measurement process can be thought
of as a matrix multiplication of linear functionals. The received
signal is reconstructed from its compressed samples by a
reconstruction process governed by one of the available recon-
struction algorithms, which is then followed by the detection
process. CS has been used in connection with UWB in [16]
for coherent receivers and in [17] for the joint time of arrival
estimation and data decoding. In [18] we proposed noncoher-
ent differential detectors based on CS. Apart from proposing
joint reconstruction and detection methods, we also proposed
a detector based on compressed samples, labeled as the direct
compressed differential detector (DC-DD). The DC-DD skips
the reconstruction step and thus can reduce the implementation
complexity of the compressed differential detector. This idea
was extended to decision feedback differential detection (DF-
DD) in [19]. The implementation of DC-DD is still limited
by the fact that the measurement process is the same for each
symbol.

In this paper we propose a compressive sampling based
MSDD (CMSDD) that works on the principle of a generalized
likelihood ratio test (GLRT) [20]. The performance of the
detector is increased by employing multiple symbols but at the
same time the implementation complexity is reduced by skip-
ping the reconstruction step. We also propose a compressed
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sphere decoder to reduce the decoding complexity of the block
of symbols.

Notations: Matrices are in upper case bold while column
vectors are in lower case bold, [a]i is the ith entry of the
vector a, â is the estimate of a, IN is the identity matrix of
size N×N , (·)T is transpose, (·)† is pseudo-inverse, ⊗ stands
for the Kronecker product, ⊥ depicts orthogonality, diag{·}
presents a block diagonal matrix having the arguments along
its main diagonal and

Δ

= defines an entity.

II. SIGNAL MODEL

In the present IR-UWB signal model, we assume that each
symbol is conveyed by a pulse q(t) of duration Tq much less
than the symbol interval Ts, i.e., Tq � Ts. The transmitted
signal is composed of a block of Q+ 1 symbols, i.e.,

s(t) =

Q∑
k=0

bkq(t− kTs) (1)

where bk ∈ {±1} are the differentially encoded transmitted
symbols, i.e.,

bk = b0

k∏
i=1

ai (2)

where k > 0 with ai ∈ {±1} being the information symbols.
As an initial reference transmitted symbol, we consider b0 = 1.
We assume that the multipath channel is time-invariant within
the interval of Q consecutive symbols, and its delay spread
is smaller than Ts, thus inter symbol interference (ISI) is
avoided. Let the channel impulse response (CIR) with L paths,
be represented by g(t)

Δ

=
∑L−1

l=0 αlδ(t− τl) where αl and τl
are the respective gain and delay of the lth path. The received
signal r(t) can then be written as

r(t) =

Q∑
k=0

bkh(t− kTs) + v(t)

= x(t) + v(t) (3)

where h(t)
Δ

=
∑L−1

l=0 αlq(t− τl) is the received pulse, and v(t)
is the zero-mean additive white Gaussian noise component
with variance σ2

v . Denoting with 1/T = N/Ts the Nyquist
sampling rate, the received signal in its Nyquist-rate sampled
version can be written as

r
Δ

= [rT0 , r
T
1 , · · · , r

T
Q]

T (4)

where

rk
Δ

= [r(kTs), r(kTs + T ), · · · , r(kTs +NT − T )]T

represents the vector of N Nyquist-rate samples corresponding
to the kth symbol. We can then derive from (3) that

rk = bkh+ vk

= xk + vk (5)

where xk = bkh is the Nyquist-rate version of the signal part
of rk with

h
Δ

= [h(0), h(T ), · · · , h(NT − T )]T

which is assumed to be invariant during the block of Q
symbols, and the zero-mean Gaussian distributed Nyquist-rate
sampled noise vector is given by

vk
Δ

= [v(kTs), v(kTs + T ), · · · , v(kTs +NT − T )]T

with covariance matrix

Cv
Δ

= E{vkv
T
k } = σ2

vIN .

III. MSDD WITH GLRT

GLRT is a widely used composite hypothesis testing ap-
proach where the prior probability density functions (pdfs)
of the unknown parameters are not necessarily known. The
detection is carried out for each parameter as a likelihood
ratio test. Given the absence of channel information, MSDD
was proposed in [11] using the GLRT approach. There, the
likelihood function is maximized not only over the unknown
symbols but also over the channel parameters. Now, from (4)
and (5), a joint model of the Q+1 symbols can be written as

r = (b⊗ IN )h+ v (6)

where b
Δ

= [b0, b1, · · · , bQ]
T denotes the transmitted symbols

and v
Δ

= [vT
0 ,v

T
1 , · · · ,v

T
Q]

T is the concatenated noise vector.

Defining a
Δ

= [a1, a2, · · · , aQ]
T as the vector of the actual

information symbols, the differential detection of multiple
symbols using the GLRT approach boils down to maximizing
the following log-likelihood metric over a and h

Λ[r|a,h]
Δ

= 2rT (b⊗ IN )h− [(b⊗ IN )h]
T [(b⊗ IN )h]

= 2rT (b⊗ IN )h− (Q+ 1)hTh (7)

where b is a function of a as described in (2). The detection
procedure proceeds in two steps. In step one, (7) is optimized
over h, i.e.,

Γ[r|a]
Δ

= max
h

Λ[r|a,h] (8)

and in the second step, (8) is optimized over a, i.e.,

â = argmax
a

{Γ[r|a]} . (9)

Thus the Nyquist-rate MSDD (NMSDD) using the GLRT
approach solves the following optimization problem

â(NMSDD) = argmax
a

{
max
h

Λ[r|a,h]

}
. (10)

IV. COMPRESSIVE SAMPLING BASED MSDD

For the compressive sampling based MSDD (CMSDD), we
consider each received symbol rk to be compressed by a
measurement process represented by Φk which is an M ×N
wide matrix, i.e., M � N . The ratio μ

Δ

= M
N

is called the
compression ratio. In general, we assume that ΦkΦ

T
k = IM .

Now, the compressed received signal within one symbol can
be expressed as

yk = Φkrk

= Φkxk + ξk (11)

131



where ξk
Δ

= Φkvk is the noise component with covariance
matrix

Cξ
Δ

= E{ξkξ
T
k } = σ2

vIM .

It should be noted that the measurement process in (11) is
carried out in the analog domain (see, e.g., [14], [15] for
details on the analog implementations). Now from (11), we
can express the joint model of Q+ 1 compressed symbols as

y = Φ(b⊗IN )h+ ξ (12)

where y = [yT
0 ,y

T
1 · · ·y

T
Q]

T is the (Q+1)M×1 measurement
vector and Φ = diag {Φ0,Φ0, · · · ,ΦQ} is the (Q + 1)M ×
(Q+ 1)N fat measurement matrix with ΦΦT = I(Q+1)M .

Following the GLRT approach, the MSDD for the com-
pressed symbols requires the maximization of the following
log-likelihood metric

Λ[y|a,h]
Δ

= 2yTΦ(b⊗ IN )h

− [(b⊗ IN )h]
TΦTΦ[(b⊗ IN )h]

= 2yTΦ(b⊗ IN )h− hT (b⊗ IN )
TΦTΦ(b⊗ IN )h (13)

over h and a. The CMSDD, basically solves the following
optimization problem

â(CMSDD) = argmax
a

{
max
h

Λ[y|a,h]

}
. (14)

As a first step, we maximize (13) over h. Differentiating (13)
with respect to h and setting the gradient equal to zero yields

0 = 2yT − 2hT (b⊗ IN )
TΦT

which leads to the following estimate of h

ĥ = [Φ(b⊗ IN )]
†
y. (15)

Now plugging the estimate of h in (13), we obtain the
following cost function

Γ[y|a]
Δ

= 2yTΦ(b⊗ IN ) [Φ(b⊗ IN )]
†
y

−
[
[Φ(b⊗ IN )]

†
y
]T

(b⊗ IN )
TΦT

×Φ(b⊗ IN ) [Φ(b⊗ IN )]
†
y. (16)

The second part of (16) can be defined and simplified as

Γ2
Δ

=
[
[Φ(b⊗ IN )]

†
y
]T

(b⊗ IN )
TΦT

×Φ(b⊗ IN ) [Φ(b⊗ IN )]
†
y

= yT
[[
(b⊗ IN )

TΦTΦ(b⊗ IN )
]−1

[Φ(b⊗ IN )]
T
]T

× (b⊗ IN )
TΦTΦ(b⊗ IN ) [Φ(b⊗ IN )]

†
y

= yTΦ(b⊗ IN )
[
(b⊗ IN )

TΦTΦ(b⊗ IN )
]−1

×
[
(b⊗ IN )

TΦTΦ(b⊗ IN )
]
[Φ(b⊗ IN )]

†
y

= yTΦ(b⊗ IN ) [Φ(b⊗ IN )]
†
y. (17)

Thus (16) can be written as

Γ[y|a] = 2yTΦ(b⊗ IN ) [Φ(b⊗ IN )]
†
y − Γ2

= yTΦ(b⊗ IN )
[
(b⊗ IN )

TΦTΦ(b⊗ IN )
]−1

× (b⊗ IN )
TΦTy

= yTΦ(b⊗ IN )Σ
−1(b⊗ IN )

TΦTy (18)

where

Σ
Δ

=
[
(b⊗ IN )

TΦTΦ(b⊗ IN )
]

=
[
b20Φ

T
0 Φ0 + b21Φ

T
1 Φ1 + · · ·+ b2QΦ

T
QΦQ

]
=

[
ΦT

0 Φ0 +ΦT
1 Φ1 + · · ·+ΦT

QΦQ

]
(19)

We can see that Σ is a positive (semi-)definite matrix. As
has been explained at length in [18] for (18)-like scenarios,
assuming that Σ−1 does not affect the differential estimate
of the vectors on its sides, the maximum of (18) will be the
maximum of

Γ̃[y|a]
Δ

= yTΦ(b⊗ IN )(b⊗ IN )
TΦTy

= yTΦ(bbT⊗IN )Φ
Ty (20)

and the CMSDD then boils down to

â = argmax
a

{
Γ̃[y|a]

}
. (21)

The structure of the cost function (20) contains the different
possible differential combinations of Q+ 1 symbols, i.e.,

Γ̃[y|a] = yTΦ(bbT⊗IN )Φ
Ty

= b0b0y
T
0 Φ0Φ

T
0 y0 + · · ·+ b0bQy

T
0 Φ0Φ

T
QyQ

+ b1b0y
T
1 Φ1Φ

T
0 y0 + · · ·+ b1bQy

T
1 Φ1Φ

T
QyQ

+ · · ·+

+ bQb0y
T
QΦQΦ

T
0 y0 + · · ·+ bQbQy

T
QΦQΦ

T
QyQ

(22)

which reveals a number of interesting points.
1) If the measurement matrices are orthogonal to each other

for all symbols, i.e.,

Φ0⊥Φ1⊥ · · · ⊥ΦQ

then the detector does not exist.
2) If the measurement matrices are the same for each

symbol, i.e.,

Φ0 = Φ1 = · · · = ΦQ

then the detector can be derived by solving the following
cost function

Γ̃[y|a] =

Q∑
k=1

k−1∑
l=0

k−l∏
i=1

[a]i+ly
T
l yk (23)

3) In case the measurement matrices are not orthogonal and
not the same, the cost function is

Γ̃[y|a] =

Q∑
k=1

k−1∑
l=0

k−l∏
i=1

[a]i+ly
T
l ΦlΦ

T
k yk (24)
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Items 1 and 2 above, provide performance limits for
our compressed differential detector. Better performance is
achieved if the measurement process is the same for each sym-
bol. If the measurement matrices are orthogonal to each other,
then the compressed detector cannot perform. In applications
where maintaining an identical measurement process for each
received symbol is not feasible, given that the orthogonality of
the process has been avoided, (24) can still offer compressed
detection.

V. COMPRESSED SPHERE DECODER

It can be seen from (23) and (24), that maximizing these
cost functions over a involves an exhaustive search over all
the possible combinations of the vector a along with first
intercorrelating all symbols in the block of symbols. Since
correlations are carried out in the digital domain and more so,
directly on the compressed symbols without reconstruction, we
have already avoided the problem of analog delay lines plus
reconstruction complexities. What remains is to reduce or limit
the search space over the different possible combinations of a
to find the block of transmitted information symbols. To this
end we turn to sphere decoding (SD), which was proposed
for the MSDD in [9] for Rayleigh fading channels. SD was
applied to the GLRT based MSDD in [11]. In our case, the
SD algorithm shall work on the compressed symbols. We shall
refer to it as the compressed sphere decoder (CSD).

In SD, the lattice points (e.g., s) are assumed to have the
finite alphabet constraint. Then in an iterative fashion, only
those points s are considered which lie inside a sphere of
radius ρ. Given that U is an upper triangular matrix, the sphere
condition can be written as ‖Us‖

2
2 ≤ ρ. During successive

iterations, the radius of the sphere keeps decreasing and thus
the search space keeps shrinking which results in reduced
computational complexity. To make our cost function SD-
compatible, we will have to reformulate (24) in a different
form. Since the maximum value of our cost function can be
written as

Γ̃max[y|a]
Δ

=

Q∑
k=1

k−1∑
l=0

|Yl,k| (25)

where Yl,k
Δ

= yT
l ΦlΦ

T
k yk, the new cost function, after

subtracting (24) from (25), can be written as

Θ[y|a]
Δ

=

Q∑
k=1

k−1∑
l=0

[
|Yl,k| − Yl,k

k−l∏
i=1

[a]i+l

]
(26)

where, depending upon
∏k−l

i=1[a]i+l, each addend of (26) will
take a value in {0, 2 |Yl,k|}. Now the compressed MSDD
detector (21) can be written as

â = argmax
a

{Θ[y|a]} . (27)

At the nth iteration, for any tentative â(n) to lie within a
sphere of radius ρ(n), the following condition must hold

θj
Δ

=

j∑
k=1

k−1∑
l=0

[
|Yl,k| − Yl,k

k−l∏
i=1

[â(n)]i+l

]
≤ ρ(n) (28)

where j = 1, · · · , Q. At the onset of the algorithm, ρ(0)
is chosen large enough so that the optimal value of a lies
within the sphere. Also, it is clear from (28) that at every
iteration, already estimated elements of â can be directly used
in estimating the next element. So within each iteration, CSD
checks Q conditions in a sequential manner. At the end of an
iteration, the estimated â is assumed to be the optimal estimate.
The next iteration then begins by decreasing the sphere radius,
i.e., ρ(n+ 1) < ρ(n). At a given iteration, if no estimate can
be found within the sphere then the CSD terminates and the
estimate of the previous iteration is retained as the resultant
optimal estimate. The search process can be further simplified
by pre-computing the correlation values between the symbols
and furthermore by substituting |Yl,k| = 1 and retaining only
the sign of the correlation value in (28).

VI. SIMULATION RESULTS

In this section we gage the performance of our CMSDD
with the help of Monte Carlo simulations. The transmitted
signal consists of differentially encoded symbols. The trans-
mitted pulses are unit energy pulses (second derivative of a
Gaussian function) with width Tq = 1nsec. The receive filter
bandwidth is taken to be 2GHz. Assuming a frame length (in
our case that is also the symbol length since we consider each
symbol to consist of a single frame for the sake of simplicity)
of Ts = 50nsec, each symbol consists of N = 200 Nyquist-
rate samples. The signal travels through a slow fading channel,
modeled by the IEEE 802.15.3a CM1 channel model. The
maximum channel delay spread is restricted to 25nsec which
means that the received symbol frame without noise has an
order of sparsity equal to half of the symbol length. The
transmitted signal is detected in a block of Q = 1, 10, 19
symbols for which the channel is assumed to be invariant.

For the compressed symbols, we assume a compression
ratio of μ = 0.5, i.e., M = 100 compressed samples. So we
are sampling at half the Nyquist rate. We consider a random
Gaussian measurement matrix whose rows have been orthonor-
malized. We consider two scenarios for these measurement
matrices. In scenario one, each symbol is compressed using
the same measurement matrix, as expressed under item 2. In
scenario two, each received symbol is compressed using a
different measurement matrix, as pointed out in item 3.

Figures 1 and 2 show the bit error rate (BER) performance
of the CMSDD detector against the Eb/N0 ratio defined as

Eb

N0

Δ

=
‖h‖

2
2

σ2
v

for the two aforementioned scenarios regarding the measure-
ment matrices. From Figure 1 we can see that the gap between
the performance results of the Nyquist-rate MSDD and the
compressed-rate MSDD is at most around 2dB at a BER of
10−3 for all block sizes. When Q = 1, the MSDD reduces
to the classical DD which results in the worst performance
but with increasing block sizes, the performance gets better
for both the Nyquist-rate and the compressed-rate detectors.
However, the CMSDD has an edge over the Nyquist rate in
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Fig. 1. BER comparison between NMSDD and CMSDD for different block
sizes with Φk = Φk+1 and compression ratio μ = 0.5.

terms of reducing the sampling rate and in terms of detecting
the symbols using compressed samples. Figure 2 shows that
the performance gap for the CMSDD for different measure-
ment matrices increases to around 3dB if the measurement
matrices are not the same, which is higher than in the former
scenario. Thus, different measurement matrices for different
symbols result in a performance loss. A logical inference
of this observation would mean a worst performance of the
detector in case the measurement matrices are orthogonal to
each other. This has already been observed under item 1.

VII. CONCLUSIONS

In this paper we have presented a compressive sampling
based MSDD using the GLRT approach. The detector avoids
the explicit reconstruction step and operates on the com-
pressed samples directly. The detector performs better when
the measurement matrices are the same for each symbol within
the block but has the ability to work even when they are
different. The detector does not exist for the case of orthogonal
measurement matrices. Combined with sphere decoding, the
proposed detector offers a low complexity and power efficient
detection possibilities.
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