
Localization and Tracking of a Mobile Target for an

Isogradient Sound Speed Profile

Hamid Ramezani, Hadi Jamali-Rad, and Geert Leus

Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology (TU Delft)

e-mail:{h.mashhadiramezani, h.jamalirad, and g.j.t.leus}@tudelft.nl

Abstract—In this paper, we analyze the problem of localizing
and tracking a mobile node in an underwater environment with
an isogradient sound speed profile (SSP). We will show that
range-based localization algorithms are not so accurate in such
an environment, and they should be replaced by time-based
ones. Therefore, we relate the mobile node location to the travel
time of a propagating sound wave from (to) an anchor node
to (from) the mobile node. After obtaining sufficient time mea-
surements, positioning can be achieved through multilateration.
To accomplish this, we utilize the extended Kalman filter (EKF)
for multilateration and tracking the mobile node’s location in
a recursive manner. Through several simulations, we will show
that the proposed EKF algorithm performs superb in comparison
with algorithms which assume a straight-line wave propagation
in an underwater environment.

I. INTRODUCTION

Exploring underwater environments has a variety of ap-

plications; early warning systems for natural disasters (e.g.

tsunamis), ecosystem monitoring, oil drilling and military

surveillance are a few examples of such applications [1].

Recently, advances in wireless sensor networks (WSNs) mo-

tivated system designers to think about using underwater

acoustic sensor networks (UASNs) for data gathering and

ocean explorations. To obtain a meaningful interpretation of

the sensed data, we need the sensor positions either remotely

or locally as in terrestrial WSNs. However, underwater acous-

tic communications is very challenging, and it is different

from terrestrial wireless communications. Very low bit rate,

low link quality, multi-path, time variability, and a depth-

dependent sound speed profile (SSP) are the most challeng-

ing characteristics of underwater communications [2]. These

characteristics also affect localization and tracking algorithms

using UASNs. This necessitates the design and development

of new localization and tracking algorithms.

In [3], the authors propose a centralized algorithm to

overcome the severe multi-path property of the underwater

environment caused by scattering from the seabed and ocean

surface. In [4], a time difference of arrival based localization

scheme for stationary UASNs is proposed which does not

need time synchronization among network nodes. In [5], depth
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information as well as range measurements are used to localize

a mobile node inside a three-dimensional (3D) area.

As stated before, one of the underwater localization chal-

lenges is the non-uniform SSP which varies with temperature,

pressure, and salinity. Due to this property, an acoustic ray

does not propagate along a straight line, but it bends. Even

if the nodes are located at the same depth the distance

between the two nodes in an underwater environment is not

proportional to the wave travel time. However, in all the

above mentioned underwater localization schemes, not only

the propagation sound speed is assumed constant, but also

the path of the sound ray is assumed to be a straight line,

and these assumptions degrade the performance of underwater

localization algorithms.

In contrast to the aforementioned algorithms, [6] considers

a non-straight line propagation for range measurement. The

depth information and SSP are used to compute the true

horizontal distance between two nodes. Similar to [6], the

authors of [7] consider a real wave propagation model for

UASNs localization. They eliminate the underwater range

computation by using a look up table (LUT), which relates the

travel time information to the horizontal distance between two

nodes. Recently, [8] evaluates the localization performance

degradation of the straight-line propagation model compared

to real propagation model. The main drawback of this work is

the computational complexity, since the introduced algorithm

is based on a numerical approach and uses exhaustive search.

In this work, we propose a UASN localization and tracking

approach for an underwater medium with an isogradient SSP.

Such an isogradient SSP can be found in a deep underwater

environment [9][10]. To find a node’s location, we analytically

relate the position of a mobile node to the time of flight (ToF),

and then, using at least four time measurements from four

anchors we find the position of a node through multilateration.

Since tracking is also important, we perform multilateration

recursively by using the extended Kalman filter (EKF). The

rest of the paper is organized as follows. In Section II, we

explain how the position of two nodes is related to the

ToF. We describe the localization/tracking network system

in Section III. Next, in Section IV, we propose to use a

EKF for underwater localization/tracking, and we evaluate its

performance through several simulations in Section V. Finally,

conclusions are drawn in Section VI.



II. EXACT TIME OF FLIGHT COMPUTATION

We consider the problem of tracing a ray between a mobile

and an anchor node in a 3D environment with an isogradient

sound speed where the SSP is only dependent on depth, and

has the following form

C(z) = b+ az, (1)

where z denotes the depth, b indicates the sound speed at the

surface, and a is a constant depending on the environment.

Without loss of generality for the ToF computation between

the two nodes, we assume that the z axis crosses the anchor

node. Therefore, due to the cylindrical symmetry around the

z axis we can transfer the ToF computation problem into the

plane which includes both nodes and the z axis as is shown in

Fig. 1. In this figure, rM−rA represents the horizontal distance

between the anchor and the mobile node, and it can be written

as

r
M
− r

A =
√

(xM − xA)2 + (yM − yA)2, (2)

where xM, yM, xA, and yA indicate the x-coordinate and y-

coordinate of respectively the mobile node and anchor node

in a 3D environment. Since the z-axis is assumed to cross the

anchor node we have rA = 0, but we keep it in our formulation

for representation purposes.

Acoustic propagation is usually modeled using a ray-tracing

approach which is a valid approximation for the aforemen-

tioned isogradient SSP underwater environment. Ray-tracing

is guided by Snell’s law which is given by [7]

cos θ

C(z)
=

cos θA

C(zA)
=

cos θM

C(zM)
= l; θ ∈

[−π

2
,
π

2

]

, (3)

where θM and θA are the ray angles at the mobile node and

anchor node locations, respectively, as illustrated in Fig. 1.

zA and zM represent the depth of the anchor node and the

mobile node, respectively, and l is constant along a ray

traveling between the nodes. Moreover, the parameters θ and

z represent the angle and depth of a given point along the ray.

From Fig. 1, we can write

dr =
dz

tan θ
, (4a)

dt =
ds

C(z)
=

dz

C(z) sin θ
, (4b)
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Fig. 1. Ray path between a mobile node and an anchor node.

where s is the arc length of a ray traveling between the mobile

node and the anchor node, and t is the wave travel time

between these two nodes. Moreover, using (1) and (3), and

by taking derivatives with respect to (w.r.t) z and θ, we can

write

dz = −
1

la
sin θ dθ. (5)

Now, by substituting (5) into (4a), and integrating w.r.t θ we

have

r
M
− r

A = −
1

al

(

sin θM
− sin θA

)

, (6)

for the horizontal distance, and for the vertical distance be-

tween the two nodes we can write

z
M
− z

A =
1

al

(

cos θM
− cos θA

)

. (7)

Dividing (7) by (6), considering rM 6= rA we end up with

zM − zA

rM − rA
= −

cos θM − cos θA

sin θM − sin θA
, for r

M
6= r

A
. (8)

Furthermore, by substituting (1) into (3) we can write

b+ azM

b+ azA
=

cos θM

cos θA
. (9)

Now, by applying the change of variables θA = β0 + α0, and

θM = β0 − α0, (8) and (9) can be modified to

zM − zA

rM − rA
= tanβ0, for r

M
6= r

A
, (10)

b+ azM

b+ azA
=

1− tanβ0 tanα0

1 + tanβ0 tanα0

. (11)

For the exceptional condition where zA = zM, (11) is not valid

and should be modified into

tanα0 =
1

2

a(rM − rA)

b+ azM
, for z

M = z
A
, (12)

which is extracted from (6). Now, by integrating (4b) w.r.t θ,

the ToF can be calculated as

t = −
1

a

(

ln
1 + sin θM

cos θM
− ln

1 + sin θA

cos θA

)

. (13)

Up to now, the ToF for an isogradient SSP can be computed

using (13) by first calculating β0 from (10), substituting it

in (11) and computing α0, and consequently θA and θM .

Since we will adopt the EKF for localization and tracking

of a mobile node, in addition to the ToF as a function of the

node locations, we also need the derivatives of the ToF w.r.t

the mobile location. To derive ∂t
∂rM and ∂t

∂zM using (13) we take

the following partial derivatives

∂t

∂rM
= −

1

a

(

1

cos θM

∂θM

∂rM
−

1

cos θA

∂θA

∂rM

)

, (14)

∂t

∂zM
= −

1

a

(

1

cos θM

∂θM

∂zM
−

1

cos θA

∂θA

∂zM

)

. (15)

The above equations depend on the partial derivatives of the

ray angles at the mobile and the anchor location. These partial



derivatives can be computed from (8) and (9) as

∂θM

∂rM
+

∂θA

∂rM
= −

zM − zA

(

rM − rA
)2

(

sin θM − sin θA
)2

1− cos
(

θM − θA
) , (16a)

∂θM

∂rM
−

b+ azM

b+ azA

sin θA

sin θM

∂θA

∂rM
= 0, (16b)

∂θM

∂zM
+

∂θA

∂zM
=

1

rM − rA

(

sin θM − sin θA
)2

1− cos
(

θM − θA
) , (17a)

∂θM

∂zM
−

b+ azM

b+ azA

sin θA

sin θM

∂θA

∂zM
= −

a

b+ azA

cos θA

sin θM
, (17b)

where (16a) and (17a) are calculated from (8), and (16b) and
(17b) are derived from (9). Observe that (16) and (17) are

linear in ∂θM

∂zM , ∂θA

∂zM , ∂θM

∂rM ,
∂θA

∂rM , and can thus simply be solved
in closed form. By computing these values for each anchor and
substituting them into (14) and (15), we are able to compute
all measured ToFs’ derivatives w.r.t the mobile node position,
in which ∂t

∂xM and ∂t
∂yM can be derived as

∂t

∂xM
=

∂t

∂rM

xM − xA

rM − rA
, (18a)

∂t

∂yM
=

∂t

∂rM

yM − yA

rM − rA
. (18b)

III. LOCALIZATION/TRACKING NETWORK

We consider a synchronized underwater network consisting

of N anchor nodes with known locations and one mobile node,

where the extension to multiple mobile nodes is straightfor-

ward. To be able to localize the mobile node in a recursive

manner (sometimes referred to as tracking), we exploit an EKF

to estimate and track the position. Let us denote the location

of the mobile node at time instant k as xk = [xk, yk, zk]
T , and

the corresponding state vector for the EKF as sk = [xT
k , ẋ

T
k ]

T ,

which contains both the location and velocity of the mobile

node at time instant k.

In general, a discrete-time linear movement process model

can be considered as

sk = Φsk−1 +wk, (19)

where the matrix Φ relates the state of the previous time

instant to the current one, and wk represents i.i.d Gaussian

process noise with covariance matrix Qk.

The idea behind the proposed scheme can be explained as

follows. Classical approaches in the literature simply try to

calculate the distances corresponding to the ToF measurements

by assuming a near-constant wave velocity for the whole

environment, while this assumption does not really hold for

an underwater environment. Therefore, we directly work with

the ToF measurements.

It is noteworthy that we can further improve the accuracy

of our estimates by the help of a depth measurement in cases

where this information can be acquired. However, for the

network to be able to extract the depth of the mobile node,

the node will have to transmit a signal containing the depth

information to the anchors which itself is resource-demanding

due to the bandwidth limitations of the underwater channel.

In order to make this process more bandwidth efficient, we

suppose that the mobile node transmits the depth information

in every ρ’th transmission frame. On the other hand, scenarios

can be considered where the mobile node itself requires to

know its location information. Then, we can consider that

depth information is always available. Since mobile node

velocity measurements are avoided here, the measurement

model under consideration can be described as

tk = h (sk) + vk, (20)

z̃k = zk + vk if mod(k, ρ) = 0, (21)

where h(.) = [h1(.), h2(.), . . . , hN (.)]T is the function relat-

ing the state of the mobile node, sk (actually only the location

xk is required) to the wave travel times between the mobile

node and the N anchors, tk = [tk,1, . . . , tk,N ]T . vk and vk
represent the i.i.d. Gaussian noise of the measurements with

covariance matrix σ2

t IN×N and variance σ2

z , respectively . In

the following, we explain how we can utilize the EKF for

localization and tracking of a mobile node in an underwater

environment.

IV. EKF-ESSP: EKF EXPLOITING EXACT SSP

The EKF algorithm for underwater tracking considering

the exact SSP (EKF-ESSP) is shown in Algorithm 1. In the

algorithm, Pk, R = σ2

t IN×N , and Qk are the covariance

matrix of the error in the state estimate, the measurement

noise, and the process noise, respectively. To linearize the

measurement equations, we compute the Jacobian matrix of

h(.) as

H =









∂t1
∂x

∂t1
∂y

∂t1
∂z

0 0 0
...

...
... 0 0 0

∂tN
∂x

∂tN
∂y

∂tN
∂z

0 0 0









, (22)

where tn is the ToF between the mobile node and the n’th

anchor node. The Jacobian matrix must be evaluated for

time instant k as Hk = H|x=x̂
−

k
,y=ŷ

−

k
,z=ẑ

−

k

. Following the

derivation of the EKF if depth measurements are available,

Hk and R should be modified to H̆k and R̆ as

H̆k =

[

Hk

[0, 0, 1, 0, 0, 0]

]

,

R̆ =

[

R 0N×1

0T
N×1 σ2

z

]

.

The lower bound of the mean squared error (MSE) of

estimation for any discrete time filtering problem, like the

proposed EKF, can be computed via the posterior Cramér-

Rao bound (PCRB) [11]. The recursive PCRB derived in

[12] provides a formula for updating the posterior Fisher

information matrix (FIM) from one time instant to the next.

The posterior FIM sequence Jk for a linear process and a

non-linear measurement model can be computed as

Jk = (Qk +ΦJ
−1

k−1
Φ

T )−1 + H̄
T
k R

−1

k H̄k (23)

where all the parameters have been defined earlier except H̄k



Algorithm 1 EKF

Start with an initial location guess
for k = 1 to K do

Next state:
ŝ
−

k
= Φŝk−1

Next error covariance:
P

−

k
= ΦPk−1Φ

T +Qk

if z info. is not available: then

Compute the Kalman gain:

Kk = P
−

k
HT

k
(HkP

−

k
HT

k
+R)−1

Update the state:

ŝk = ŝ
−

k
+Kk

(

tk − h(ŝ−
k
)
)

Update the error covariance:

Pk = (I−KkHk)P
−

k
else

Compute the Kalman gain:

K̆k = P
−

k
H̆T

k
(H̆kP

−

k
H̆T

k
+ R̆)−1

Update the state:

ŝk = ŝ
−

k
+ K̆k

(

[tT
k
, z̃m]T − [h(ŝ−

k
)T , ẑ−]T

)

Update the error covariance:

Pk = (I− K̆kH̆k)P
−

k
end if

end for

which is the measurement Jacobian matrix evaluated at the

true location of the mobile node. It is noteworthy that since we

basically estimate the location of the mobile node and not its

velocity, the PCRB of our location estimates will correspond

to sum of the first three diagonal elements of J−1

k

PCRBk =

3
∑

i=1

[

J
−1

k

]

ii
. (24)

V. NUMERICAL RESULTS

In this section, we will conduct several simulations to

evaluate the performance of our proposed algorithm in an

isogradient environment. We assume that the sound speed at

the surface is b = 1480 and it increases as a linear function

of depth with a steepness of a = 0.1. Further, we consider

that four anchors are located on the vertices of a cube with

edge length 100m, in which one vertex is located at the origin

of the Cartesian coordinate system as depicted in Fig. 2.

The movement model is chosen to be a random walk with

a sampling time step of Ts = 10s. The matrix Φ as defined

earlier is then given by

Φ =

[

I3×3 TsI3×3

03×3 I3×3

]

,
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Fig. 2. Anchors’ positions

and the process noise covariance matrix, which is assumed to

be time-independent and only affecting the velocity, is given

by

Q =

[

03×3 03×3

03×3 diag(σ2

ẋ, σ
2

ẏ, σ
2

ż)

]

,

where we assume that σẋ = σẏ = 10−2, and σż = 10−3.

For all simulations, we set the initial location guess of the

Kalman filter to a point where it is [30m, 30m, 30m]T apart

from the actual location of the mobile node. For each run,

we consider K = 500 movement steps, and we compute

the positioning root mean squared error (RMSE) between the

actual and estimated trajectories according to the following

formula

RMSE =

√

√

√

√

1

K −K1 + 1

k=K
∑

k=K1

E
[

∥

∥x̂k − xreal
k

∥

∥

2
]

, (25)

where we try to avoid transient effects by setting K1 to a large

number, e.g. K1 = 300.

In addition, for the sake of further comparison, we also

consider an ordinary EKF which considers a constant sound

speed defined as the average sound speed between two given

nodes (EKF-ASSP). In the EKF-ASSP, it is assumed that the

sound waves propagate with the same speed everywhere inside

the environment. Furthermore, in the EKF-ASSP, the distance

between two nodes is estimated via the measured ToFs,

t = d/v̄, where v̄ is a given constant wave velocity. In our

simulations, we simply take v̄ as the average speed over the re-

gion where the deepest and the shallowest anchors are located.

Hence, we simply set v̄ = [C(maxn z
A
n) + C(minn z

A
n)]/2.

In Fig. 3, we depict a sample tracking result of the proposed

and the EKF-ASSP algorithms. In this simulation, we set σt =
1ms, and we consider that depth information is available once

every 10 time instants with a noise std of σz = 1m. It is

shown that the proposed algorithm converges well to the real

trajectory. However, the EKF-ASSP algorithm always has an

offset from the real trajectory, and this offset increases as the

mobile node gets further away from the center of gravity of

the anchors.

To quantitatively evaluate the performance of the proposed

algorithm compared to the EKF-ASSP, we run a number

of simulations where in all of the simulations we average

over 5000 independent Monte Carlo trials. All simulation

parameters are the same as before. In Fig. 4, the horizontal

axis indicates the distance between the initial location of the

mobile node and the center of gravity of the anchors. The

initial depth and the x-coordinate of the mobile node are

exactly equal to the depth and x-coordinate of the center of

gravity of the anchors, which are both 50m for all simulations.

As can be seen, for larger distances the performance of the

EKF-ASSP significantly degrades while the EKF-ESSP is not

so much affected by the distance and attains the PCRB. In

Fig. 5, we investigate the effect of the measurement noise

on the algorithms under consideration. Here, the horizontal

axis represents the noise std on the ToF measurements. As

is clear from the figure, the performance of the EKF-ESSP
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constantly improves when increasing the ToF measurement

accuracy (decreasing the noise std). While the EKF-ASSP does

not show any improvement after a given noise std. Further,

the performance of the EKF-ASSP gets even worse when the

distance of the mobile node (in its initial location) from the

center of gravity of the anchors increases. For large noise stds

both algorithms have approximately the same performance,

i.e., there is no advantage of the EKF-ESSP over the EKF-

ASSP, and hence, in that case using the EKF-ASSP is preferred

due to its lower complexity.

VI. CONCLUSIONS

In this paper, we have considered the problem of mobile

node localization/tracking in an underwater environment with

an isogradient SSP. We have shown that traditional terrestrial

approaches for localization which are based on range measure-

ments and a straight-line wave propagation model are not so

accurate for such an environment. It is also shown that as the

distance between two underwater nodes increases, the straight-

line wave propagation model performs even worse since it does

not follow the real propagation model. To solve this issue, we

relate the ToF between two underwater nodes to their locations

for an isogradient SSP, and formulate the localization problem
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Fig. 5. Effect of the time measurement error on the proposed algorithm.

as a time-based problem instead of a range-based one. Then,

we use the extended Kalman filter with the proper formulation

to solve the localization/tracking problem. It is shown that

with this modification, our algorithm performs better than the

algorithms based on a straight-line wave propagation model,

especially for large distances. Although an isogradient SSP is

not valid for all practical situations, the result can be used as

an initial step towards more elaborate SSPs, since any given

SSP can be modeled by several isogradient layers. This is the

topic of further research.
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