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ABSTRACT
We extend one of our recently proposed anchorless mobile network
localization algorithms (called PEST) to operate in a partially con-
nected network. To this aim, we propose a geometric missing link
reconstruction algorithm for noisy scenarios and repeat the proposed
algorithm in a local-to-global fashion to reconstruct a complete dis-
tance matrix. This reconstructed matrix is then used in the PEST to
localize the mobile network. We compare the computational com-
plexity of the new link reconstruction algorithm with existing re-
lated algorithms and show that our proposed algorithm has the low-
est complexity, and hence, is the best extension of the low complex-
ity PEST. Simulation results further illustrate that the proposed link
reconstruction algorithm leads to the lowest reconstruction error as
well as the most accurate network localization performance.

Index Terms— Cooperative mobile network localization, par-
tial connectivity, distance matrix reconstruction.

1. INTRODUCTION

Numerous applications of wireless sensor networks (WSNs) cannot
rely on a pre-existing and fixed infrastructure. In such scenarios,
there are typically no anchor nodes (with known locations) and de-
termining the relative location of the sensor nodes is the ultimate
goal. The problem of localization in anchorless networks becomes
more challenging when the nodes of the network are mobile. In [1]
an anchorless localization scheme for mobile networks is proposed
wherein each node requires knowledge about its own movement
model as a probability distribution in order to do predictions, which
is not so simple to acquire and additionally increases the computa-
tional complexity significantly. In [2], a method based on extended
Kalman filtering is developed which incorporates the locations of the
nodes as well as their velocities in a state-space model. But, this al-
gorithm also has a high complexity. In [3], we proposed two anchor-
less network localization algorithms using novel subspace tracking
ideas to adapt the classical multidimensional scaling (MDS) [4] for
mobile WSNs. The proposed model-independent algorithms (PEST
and PIST) have a considerably lower complexity than existing algo-
rithms as well as an acceptable accuracy. Surprisingly, the problem
of partial connectivity in not well investigated in a mobile WSN.

In this paper, we propose to use a local-to-global missing link
reconstruction to end up with a reconstructed network distance mea-
surement matrix which can be fed to the PEST algorithm for lo-
calization. To this aim, we modify an existing link reconstruction
algorithm [5], modify the Nyström algorithm [4] for link reconstruc-
tion, and also propose a novel geometric missing link reconstruction
algorithm and modify it by proposing a selection criterion for noisy
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measurements. The rest of the paper is organized as follows. In Sec-
tion 2, we present the network model and state the problem under
consideration. Section 3 tackles the problem of partial connectiv-
ity. Section 4 compares the computational complexity of the missing
link reconstruction algorithms under consideration. Section 5 pro-
vides simulation results for evaluation of missing link reconstruction
as well as mobile localization in a partially connected WSN. Finally,
concluding remarks are presented in Section 6.

2. NETWORK MODEL AND PROBLEM STATEMENT

We consider a network of N mobile wireless sensor nodes, living in-
side a bounded 2-dimensional space. Our network model is based on
pairwise distance measurements and these distance measurements
themselves can be calculated by means of time of flight (ToF) mea-
surements. Hence, we assume that the ToF information is already
converted into noisy distance measurements as

ri,j,k = di,j,k + vi,j,k, (1)

where di,j,k = ‖xi,k − xj,k‖ is the noise-free Euclidean distance,
vi,j,k ∼ N (0, σ2

v,i,j,k) is the uncorrelated additive noise and xi,k is
the actual coordinate vector of the i-th sensor node, all for the k-th
snapshot of a mobile scenario. For a free space propagation model,
we consider a constant

γ = d2i,j,k/σ
2
v,i,j,k, (2)

which punishes the longer distances with larger measurement er-
rors. Meanwhile, we consider a simple finite-range model where
the distances can be measured only if they are below a certain
communication range r0, otherwise they cannot be measured and
we call them missing links. A wide variety of movement mod-
els can be considered for the mobile nodes since in [3] we ex-
plain that the proposed algorithms, one of which is also considered
here, are blind to the movement model. The problem considered
herein can be stated as follows. Having a fully connected network,
the squared noisy distance measurements r2i,j,k between the nodes
can be collected in a distance matrix Dk, i.e., [Dk]i,j = r2i,j,k,
after which the double-centered distance matrix can be calculated
as Bk = −1/2HNDkHN using the centering operator HN =
IN − 1N1

T
N/N , where IN denotes an N × N identity matrix and

1N represents an N × 1 vector of all ones. Then, Bk can be used in
the PEST to track the locations of the nodes in an iterative manner
[3]. However, unlike [3], we here consider a partially connected net-
work. To be able to modify our previously proposed PEST algorithm
to operate in partially connected networks, we propose to recover the
missing links in a local-to-global fashion and then use the PEST. As
we use the PEST, the network localization will be anchorless.

3. TACKLING PARTIAL CONNECTIVITY

We first consider the problem of missing link reconstruction, which
is then used in a local-to-global fashion to reconstruct Dk.
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Fig. 1. Geometric link reconstruction (GLR)

3.1. Missing Link Reconstruction

In [6], a distributed algorithm for anchorless localization based on
building a relative coordinate system is explained. For every node
of the network a relative coordinate system is considered which is
used to localize the neighboring nodes. We will here exploit this
idea to reconstruct missing links in our mobile network. We propose
to build a local coordinate system only around 5 nodes including 3
interconnected nodes (N1 to N3) and 2 other nodes (N4 and N5)
which are both connected to the first three and the link between the
last two nodes is missing as shown in Fig. 1. Let us start with the
noiseless case. We choose one of the first three nodes as N1 and
place it on the origin of the local coordinate system [0, 0]T . Since
we know d1,2, we can set the coordinates of N2 to [d1,2, 0]

T . Now,
by calculating cos(α3) using

cos(α3) =
d21,2 + d21,3 − d22,3

2d1,2d1,3
, (3)

the location of N3 will then be [d1,3cos(α3), d1,3
√

1− cos(α3)2]
T

or [d1,3cos(α3), − d1,3
√

1− cos(α3)2]
T but we set it to the for-

mer. In order to acquire a rigid configuration (up to a translation and
orthogonal transformation) we calculate the two possible locations
for N4 (also N5) similar to N3 and decide between the two possi-
ble locations by comparing the distances d(N4, N3) and d(N ′

4, N3)
with the available measured d3,4 and choose the one which is equal
to it. For a noisy scenario, however, we will have to choose the
location which yields a closer distance compared to the noisy mea-
sured r3,4. The same explanations hold for N5. Now, having the
relative location of N4 and N5 in the considered coordinate system
we can calculate their missing distance. We call this algorithm ge-
ometric link reconstruction (GLR). Note that considering the above
explanations, this 5-node setup is the simplest configuration of nodes
with unknown locations (fits in anchorless network localization) by
means of which we can recover one missing link.

For the case of noisy measurements, however, we expect that the
accuracy of our relative location estimates for N4 and N5 will de-
pend on the choice of the base-line nodes N1 and N2. For the sake
of simplicity, let us assume that N2 is already perfectly located us-
ing the available information. Further, the location estimation error
in both N4 and N ′

4 is similar with respect to the base-line since N3

is only used to choose N4 or N ′

4. Therefore, the Cramér-Rao bound
(CRB) of our location estimate will depend on the measurement vec-
tor r = [r1,4, r2,4]

T , where ri,4 =
√

(x4 − xi)2 + (y4 − yi)2.
Under the above assumptions, the CRB of the N4 location estimate
for general Gaussian noise can be derived using the Fisher informa-

tion matrix (FIM) as explained in [7]

I(N4) =

[
( ∂r
∂x4

)TC−1( ∂r
∂x4

) ( ∂r
∂x4

)TC−1( ∂r
∂y4

)
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∂y4

)TC−1( ∂r
∂x4

) ( ∂r
∂y4

)TC−1( ∂r
∂y4

)

]
+

1

2

[
tr[C−1 ∂C

∂x4
C

−1 ∂C
∂x4

] tr[C−1 ∂C
∂x4

C
−1 ∂C

∂y4
]

tr[C−1 ∂C
∂y4

C
−1 ∂C

∂x4
] tr[C−1 ∂C

∂y4
C

−1 ∂C
∂y4

]

]
. (4)

For distance-dependent measurement noise (as defined by (1) and
(2)), the covariance matrix of the measurements C will be

C = E{(r− E{r})(r− E{r})T } =
⎡
⎣ d2

1,4

γ
0

0
d2
2,4

γ

⎤
⎦ . (5)

Our derivations show that the second term of (4) is independent of
γ and is negligible compared to the first term for large values of γ.
Thus, the FIM can be approximated by the first term of (4) as

I(N4) ≈ γ

⎡
⎣( x2

4

d4
1,4

) +
(x4−d1,2)

2

d4
2,4

y4(
x4

d4
1,4

+
x4−d1,2

d4
2,4

)

y4(
x4

d4
1,4

+
x4−d1,2

d4
2,4

) y2
4(

1
d4
1,4

+ 1
d4
2,4

)

⎤
⎦ . (6)

Now, by considering the configuration shown in Fig.1, the CRB after
elaborate simplifications can be given by

CRBN4
≈ (d21,4 + d22,4)(d

2
1,4d

2
2,4)

4γA2
(N1,N2,N4)

, (7)

where A(N1,N2,N4) indicates the area of the triangle with vertices
N1, N2 and N4. The same calculations can be carried out for
the case of distance-independent measurement noise with vi,j ∼
N (0, σ2

v). For that case, C = σ2
vI2 and the second term of (4)

will be zero, and therefore, the CRB expression boils down to

CRBN4
=

σ2
vd

2
1,4d

2
2,4

2A2
(N1,N2,N4)

. (8)

These CRB expressions provide a selection criterion (SC) for choos-
ing the base-line nodes N1 and N2. Considering the aforementioned
assumption that N2 is perfectly located, the location estimates of N4

and N5 can be considered statistically independent which results in

SC = CRBtotal = CRBN4
+ CRBN5

. (9)

The pair of nodes that provides the minimum SC in (9) will be cho-
sen as N1 and N2. We call this modified algorithm for noisy scenar-
ios, the modified GLR (MGLR).

One interesting solution proposed in [5] called linear algebraic
reconstruction (LAR) proves that if we have a similar 5-node setup
as explained for the GLR, the missing distance can be recovered by
considering the singularity of the Schur complement of D(5) (noisy
distance matrix for N1 to N5 with missing link set to zero) with
respect to D

(3) (noisy distance matrix for N1 to N3) as defined by

D
(5) =

[
D

(3)
E

E
T

02×2

]
. (10)

This will give us a second-order polynomial with two roots corre-
sponding to the missing distance. The root which constructs a rank-2
B

(5) matrix corresponding to the reconstructed complete D̂
(5), will

be chosen. Although the algorithm is exact for noiseless scenarios,
in a noisy scenario, none of the two roots will construct a B

(5) ma-
trix with rank two. A simple modification that comes to mind is to
construct both B

(5) matrices and choose the one which is closer to
a rank-2 matrix. To this aim, we can define a rank selection metric
ρ =

∑2
i=1 |λi|/∑5

i=3 |λi| (where {λi} denote the eigenvalues of
B

(5)) and choose the root which yields a larger ρ. We call this algo-
rithm the modified LAR (MLAR). The other possible solution is to
simplify the Nyström algorithm (on behalf of all Nyström-based al-
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gorithms explained in [4]) for the case of the explained 5-node setup
with one missing link. To do this, we first calculate the relative co-
ordinates of N1 to N3, denoted by a 2 × 3 matrix Y, by doing a
double-centering on D

(3) and then computing an EVD on B
(3) as

B
(3) =− 1

2
H3D

(3)
H3, B

(3) =UΣU
T , Y =Σ

1

2
s U

T
s ,

where Hn stands for an n×n centering operator and subscript s in-
dicates the submatrices corresponding to the eigenvectors with the 2
largest positive eigenvalues. Next, we also bring the center of grav-
ity of the group containing N4 and N5 to the origin and exploit the
known distances between N4 and N5 and the other nodes to recover
the coordinates of N4 and N5, denoted by a 2×2 matrix Z, as in [4]

F=− 1
2
H3EH2, Z=Y

−T
F.

Finally, the missing distance can be recovered from the dummy lo-
cations we calculated in Z for the nodes 4 and 5.

3.2. Distance Matrix Reconstruction and Network Localization
To be able to reconstruct the network distance matrix completely,
and subsequently use it in the PEST, we propose to repeat the miss-
ing link reconstruction for all the missing links in a local-to-global
fashion. Therefore, in every snapshot of the mobile network, we first
discover the missing links, then for every pair of nodes with a miss-
ing link we try to find three other nodes meeting the requirements
explained in Subsection 3.1. Obviously, in sparsely connected net-
works, there may be two nodes for which we cannot find the three
neighboring nodes as explained earlier (irrecoverable missing links).
To alleviate this problem, we should always recover the missing links
which are recoverable in a first round and in the next round there is
a good chance that some of the irrecoverable missing links can be
recovered due to previously recovered missing links. We repeat this
procedure as long as we can recover some missing links. Notably, as
we recover the missing links the probability that we can find more
than one group of three nodes meeting the required conditions in-
creases. In those cases, we choose one of these groups which meets
the following criterion

arg min
g,l

SCg,l g = 1, 2, · · · , G; l = 1, 2, 3, (11)

where G denotes the number of possible 3-node neighboring groups
and l indicates the index of the chosen edge determined by N1 and
N2. At the end, if there are still a few missing links not recovered,
for mobile networks with slow dynamics, we can always exploit the
previously recorded distance measurements (or recovered distance
estimates) and use them instead of the shortest path estimate, which
hopefully can give us better estimates. This can be further refined
by filling the missing distances with r0 if the previously recorded
distance measurement (or recovered distance estimate) for that link
is less than r0 as

[D̂k]i,j =

{
[D̂k−1]i,j if (i, j) is irrecoverable & [D̂k−1]i,j > r20,

r20 if (i, j) is irrecoverable & [D̂k−1]i,j ≤ r20.
(12)

By exploiting this property of mobile networks, we depart from the
existing literature that may leave some nodes not localized [6]. The
reconstructed distance matrix at the k-th snapshot (D̂k) will be fed
to the PEST to recover the locations of the mobile nodes. The whole
process of localization in a partially connected mobile network is
shown in Algorithm 1.

4. RECONSTRUCTION COMPUTATIONAL COMPLEXITY

We define the reconstruction computational complexity as the num-
ber of operations required to reconstruct one missing link. For the
sake of simplicity, we do not count the number of additions and sub-

Algorithm 1 Localization in partially connected networks
1: Start with an initial location guess
2: for k = 1 to K (movement steps) do
3: Step I: {Reconstruction}
4: D̂k ←Dk

5: while no. of recoverable missing links > 0 do
6: Look for groups of three appropriate nodes in D̂k

7: Choose one appropriate group and N1 and N2 using (11)
8: Recover the missing using MGLR and fill D̂k

9: end while
10: Complete irrecoverable missing links using (12)
11: Step II: {Localization}
12: Use D̂k in PEST to recover the locations
13: end for

Table 1. Reconstruction computational complexity
Algorithm Mult. SQRT Matrix inverse EVD Tot. FLOPS

MLAR 37 3 1 (3× 3) 2 (5× 5) 404
Nyström 122 2 - 1 (3× 3) 173

GLR 37 5 - - 97
MGLR 67 5 - - 127

tractions due to the negligible complexity in comparison with the
other operations. Also, we consider the same complexity for multi-
plications and divisions, and hence, we present the sum of them as
the number of floating point operations (FLOPS). The results of the
computational complexity for the MLAR, the Nyström, the GLR and
the MGLR algorithms are summarized in Table 1. To calculate the
total number of FLOPS required, we assume the same methods and
complexities as explained in [3] for matrix inverse, scalar square root
(SQRT) and EVD computation. As can be seen from the last column
of the table, the GLR and the MGLR algorithms have the lowest
complexities among all the algorithms under consideration and this
makes them preferable for practical implementations, especially for
sparsely connected networks with a lot of missing links. Note that
this amount of complexity times the number of missing links in a
given network yields the total complexity overload imposed by the
network distance matrix reconstruction process. It is noteworthy that
in the GLR (and MGLR), after fixing the locations of N1 to N3 in the
relative coordinate system, we could also use them to find the loca-
tions of N4 and N5 using classical trilateration; however, it requires
much higher complexity and thus we prefer the proposed MGLR.

5. SIMULATION RESULTS

We start by illustrating the effect of the proposed MGLR algorithm
on a 5-node link reconstruction setup. The nodes are randomly de-
ployed in an area of 100 × 100 square meters and the link between
N4 and N5 is always missing. The result is shown in Fig. 2 where
we plot the root mean squared error (RMSE) of missing link recon-
struction versus γ. The results are averaged over 50000 Monte Carlo
(MC) trials for 50 random configurations of nodes and 1000 realiza-
tions of the noise. The results reveal that GLR performs better than
the MLAR and the Nystöm. Moreover, the MGLR which exploits
the proposed SC outperforms all the other algorithms. Remem-
ber that the MGLR has a much lower complexity compared to the
MLAR and the Nystöm, as well. In the next simulations, we present
the results of exploiting the MLAR, the Nyström and the MGLR in
distance matrix reconstruction for anchorless localization of a mo-
bile network as explained in Subsection 3.2 and briefly illustrated in
Algorithm 1. To this aim, we consider a network of N = 10 mobile
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Fig. 2. Missing link reconstruction error
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Fig. 3. Results for a partially connected network with r0 = 110m

sensors living inside a 2-dimensional bounded area of 100 × 100
square meters. Further, to be able to evaluate and plot the results
based on the absolute locations, we resolve the unknown translation
and orthogonal transformation of our obtained location estimates for
all the algorithms by considering 3 anchor nodes. As explained ear-
lier, the distance measurements are impaired by additive distance de-
pendent noise. Note that, for instance, according to (2) at γ = 30dB
we can have a maximum σv,i,j,k = 100

√
2/
√
1000 ≈ 4.5m of er-

ror on distance measurements. The detail of the movement model is
perfectly similar to the explanations in [2, 3] with process noise stan-
dard deviation σw = 0.1 and measurement time interval Ts = 0.1s.
For a quantitative comparison, we define the positioning root mean
squared error (PRMSE) of the algorithms at the k-th snapshot as

PRMSE =

√∑M

m=1

∑N

n=1 e
2
n,m,k

M
, (13)

where en,m,k represents the distance between the real location of
the n-th node and its estimated location at the m-th MC trial of the
k-th snapshot. All simulations are averaged over M = 100 inde-
pendent MC runs where in each run the nodes move toward random
directions starting from random initial locations. Fig. 3 depicts the
performance of Algorithm 1 using the MLAR, the Nyström and the
MGLR for a partially connected WSN with r0 = 110m (approx-
imately up to 10 missing links). We plot the performance of the
classical MDS over the same fully connected network as the lower
bound of PRMSE and the PEST over the fully connected network
as a base-line algorithm for the sake of comparison [3, 4]. Besides,
we also plot the results of using the shortest path algorithm to es-
timate the missing links in combination with the PEST. The results
illustrate that the PEST attains the achievable bound determined by
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Fig. 4. Results for a partially connected network with r0 = 100m

the classical MDS for the fully connected network. The proposed
MGLR algorithm performs the best and is very close to the perfor-
mance of a fully connected network, which means it is capable of
reconstructing up to 10 missing links. Note that the shortest path
fails to recover the missing links as it does not show any improve-
ment by increasing γ and also the MLAR performs much worse than
the MGLR and the Nyström. Remember that considering the lowest
complexity of the MGLR as well as its best accuracy, it is the prefer-
able choice for a partially connected network. Fig. 4 shows the same
scenario as in Fig. 3 except for r0 = 100m (approximately up to 14
missing links). It is interesting that while the Nyström shows signs
of instability and the MLAR still does not perform well, the MGLR
gives the best performance even for a network with 14/

(
10
2

)
> 30%

missconnectivity.

6. CONCLUSIONS

We have proposed a geometric link reconstruction algorithm for
noisy scenarios. The proposed algorithm is then used in a local-
to-global fashion to reconstruct the complete network distance ma-
trix and localize the mobile network. It has been shown that the
proposed algorithm has a low computational complexity and outper-
forms comparable existing approaches in terms of link reconstruc-
tion and network localization accuracy in noisy scenarios.
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