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ABSTRACT

This paper deals with the distributed implementation of a recently
proposed algorithm for the estimation of static fields. The algorithm
combines wireless sensor network (WSN) field measurements with
a physical field model in the form of a partial differential equation
(PDE), such that the field can be estimated at locations different from
the WSN sensor node locations. By discretizing the PDE using the
finite element method (FEM), the physical field model reduces to
a highly sparse linear system of equations. It is shown how this
FEM-induced sparsity pattern can be exploited in the design of a
distributed implementation such as to minimize the communication
effort and data storage required in the WSN. Simulation results illus-
trate that a significant improvement in field estimation accuracy can
be obtained, compared to the case when only WSN measurements
(without a physical model) are used.

Index Terms— distributed estimation, wireless sensor net-
works, finite element method, convex optimization, sparsity

1. INTRODUCTION

Many physical phenomena are understood to be governed by a par-
tial differential equation (PDE) that relates the spatiotemporal vari-
ation of a field to the underlying driving source function. The prob-
lem of field estimation is hence equivalent to the problem of solving
a PDE subject to certain initial and/or boundary conditions. A par-
ticularly popular numerical method for solving such initial/boundary
value problems is the finite element method (FEM), which has been
extensively covered in literature, see, e.g., [1]. There are, however,
two drawbacks when considering the FEM for field estimation: (1)
the FEM is unsuitable for problems with limited or no knowledge
about the driving source, and (2) the FEM approximation accuracy
is linearly related to the resolution of the mesh (that is, the spatiotem-
poral domain discretization) [1, Th. 1.10], which implies that a high
accuracy can only be attained at the cost of a high dimensionality.
The recent advent of wireless sensor networks (WSNs) offers
a significantly different yet attractive approach to field estimation.
Indeed, the dense deployment of sensor nodes inside a spatially dis-
tributed field makes it possible to collect a large number of local field
estimates which can then be gathered in a fusion center for global
field reconstruction. However, a fundamental issue with this ap-
proach is how to estimate field values at locations different from the
WSN sensor node locations. A naive approach would be to interpo-
late the field values estimated at the sensor node locations to obtain
field values at arbitrary locations, yet the choice of the interpolant
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will then carry an implicit assumption on the spatiotemporal varia-
tion of the field. A more rigorous approach is to combine the WSN
field measurements with a PDE-based field model. In [2] and [3],
the field estimation problem is recast in a dynamic state estimation
problem, in which the state equation is derived from a discretiza-
tion of the PDE (using the FEM [2] or the finite difference method
(FDM) [3]) while only a subset of the states (i.e., the field values at
the sensor node locations) is propagated to the measurement equa-
tion. However, these methods still require significant knowledge
about the driving source: in [2] it is assumed that a noisy observa-
tion of the (continuous) source function is available, while in [3] the
source function is assumed to be composed solely of point source
contributions at locations where sensor nodes have been deployed.
A different yet related problem that has recently been considered
concerns the estimation of the (initial) driving source function from
WSN field measurements. This inverse problem has been tackled in
[4],[5] for the case of a source function composed of one or more
point sources, by fitting the field measurements to a spatiotemporal
discretization of the analytical PDE solution.

We have recently proposed a new framework for field estimation
based on the combination of WSN field measurements with a physi-
cal model in the form of a PDE [6]. The field estimation problem is
formulated as a constrained optimization problem, in which the con-
straints originate from a FEM discretization of the PDE and its initial
and/or boundary conditions, and the objective minimizes the misfit
between the estimated and measured field values at the sensor node
locations. In contrast to the approaches in [2], [3], we do not assume
the source function or the possible locations of point sources to be
known, however, some prior knowledge on the nature of the field
and/or source functions (such as sparsity or nonnegativity) needs to
be included to avoid ending up with an underdetermined problem. In
[6], a cooperative FEM-constrained field estimation (FCE) algorithm
was proposed for static 2-D fields governed by a Poisson PDE, with
applications in gravitation, electrostatics, fluid mechanics, and ther-
mostatics, to name just a few. The cooperative FCE algorithm relies
on the availability of a fusion center (FC) that collects the WSN field
measurements and solves the optimization problem in a centralized
manner. In this paper, we propose a distributed implementation of
the FCE algorithm, in which each of the WSN nodes solves a sub-
problem of the original optimization problem. The main contribution
consists in the exploitation of the sparsity pattern that is introduced
by the FEM discretization, such as to minimize the communication
cost and data storage required in the WSN. Simulation results are
included to illustrate that the distributed FEM-constrained field es-
timation (D-FCE) algorithm performs only slightly worse than the
FC-based cooperative FCE algorithm, yet still outperforms an esti-
mation algorithm based on WSN measurements only.
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2. FEM-CONSTRAINED FIELD ESTIMATION

2.1. Problem Statement
Consider the 2-D Poisson PDE (with V = [0/dz, 9/0y])

—V2u(z,y) = s(z,y) (1)

where the source function s(x,y) and the field function u(x,y) are
infinite-dimensional functions of the spatial variables (z,y) defined
on a 2-D domain Q C R?. The field u(x,y) is measured using
a WSN with sensor nodes at .J discrete locations (xj,y;), j =
1,...,J. Each of the J sensor nodes provides N field measure-
ments (with 1yx1 = [1...1]7),

U;l) w](l)

which are obtained by sensing the field at successive time instants
and/or equipping the WSN nodes with multiple sensors. The mea-
J(.n) at the jth sensor node is assumed to be i.i.d.
with variance 032-, and independent of the measurement noise at other
sensor nodes. Additionally, the field may be subject to boundary
conditions of the Dirichlet or Neumann type. Since the boundary
conditions appear as additional (and known) terms on the right-hand
side of the FEM system of equations [1, Ch. 1], we can assume zero
boundary conditions without loss of generality to simplify notation.
Our aim is to estimate the field u(x,y) at J + P distinct loca-
tions, without assuming knowledge of the source function s(z, y).
These locations include the J sensor node locations (xj,y;), j =
1,...,J as well as the locations (zj4p,YJj+p), p=1,...,Pof P
points of interest (POIs) at which no sensors have been deployed.

surement noise w

2.2. Finite Element Method

In a nutshell, the FEM reduces a boundary value problem to a square
system of linear equations in a four-step procedure [1]: (1) convert-
ing the boundary value problem to its weak formulation, (2) perform-
ing integration by parts to relax the differentiability requirements, (3)
approximating the infinite-dimensional field and source functions in
a finite-dimensional subspace, and (4) enforcing the field approxi-
mation error to be orthogonal to this subspace.

The subspace approximation of the field and source functions
u(zx,y) and s(z,y) is defined as

Kq Ko
i(e,y) =D udr(z,y), 8xy) = skd(z,y). ()
=1 k=1

where K¢ denotes the subspace order, ¢ (z,y),k =1,...,Kqoisa
subspace basis, and {ug, sk}, k = 1, ..., Kq represent the basis ex-
pansion coefficients. The square system of linear equations obtained
in the FEM, also known as the Galerkin equations, is then given by

Au=Bs 4

where the so-called stiffness and mass matrices are defined by

(], = /Q Vs (,y) - Véi(x, y)dudy )
(BJ,; :/Q%(w,y)cbi(x,y)dxdy (6)

and the field and source vectors contain the corresponding basis ex-
pansion coefficients, i.e.,

skgl . (D)

The FEM basis functions are often chosen to be piecewise linear
functions possessing two particular properties. First of all, by ensur-
ing that ¢; (zr,yx) = 6(: — k), i = 1,..., Kq atexactly Kq loca-
tions (zk,yk), kK = 1,..., Kq, the basis expansion coefficients in
the FEM subspace approximation are equal to the field/source values
at these locations, i.e., ux = w(Tk, yx), Sk = s(xk,yr). The FEM
thus provides a spatial sampling of the field and source functions.
Second, the basis functions are chosen to have small spatial support,
in the sense that the kth basis function is non-zero only in a limited
area around the location (x,yx). Consequently, the stiffness and
mass matrices defined in (5) and (6) have a highly sparse structure,
which will be exploited when deriving a distributed implementation
in Section 3. The choice of the points (xx, yx), k = 1,..., Kq, re-
ferred to as the FEM nodes, is of particular importance, since these
should include (1) the sensor node and POI locations and (2) a suf-
ficiently large number of “free” points such that a high-quality mesh
(and consequently a well-conditioned system of Galerkin equations)
can be obtained. An example scenario (discussed in detail in Section
4) with J = 20 sensor nodes, P = 20 POIs, and K = 166 FEM
nodes is shown in Fig. 1(a). Finally, we should note that the dimen-
sion of the Galerkin system of equations can be reduced from Kgq to
K (which corresponds to the number of interior nodes in the mesh)
by eliminating the boundary conditions.

We refer to [1] for a more profound treatment of the FEM, and
to [7] for an introduction to mesh generation.

u= [u1 uKQ}T, s = [81

2.3. FEM-Constrained Cooperative Field Estimation

The WSN measurement model in (2) and the FEM system of equa-
tions in (4) can be combined into a single estimation problem by
minimizing the sum of squared WSN measurement errors subject to
the Galerkin equations [6],

J
min E |lv;i —ujlnxills s.t. Au=Bs (8)
u,s —

i=

However, this optimization problem is heavily underdetermined,
which requires the inclusion of additional objective functions or
constraints. In many signal processing applications, it makes sense
to assume that the source function s(x,y) is composed solely of
point source contributions (which is indeed an assumption that is
also exploited in [3]-[S]). This assumption naturally leads to the
inclusion of a sparsity-inducing regularization term on the source
vector s, since the dimension K of the Galerkin system of equations
will typically be much larger than the number of point sources.
Moreover, a static point source is inherently positive-valued (oth-
erwise it would be a sink), and consequently the Poisson PDE
generates a nonnegative field if the boundary conditions are also
nonnegative. Appending a sparsity-inducing regularization term and
appropriate nonnegativity constraints to the optimization problem
(8), results in the following constrained optimization problem,

J

min D llvi = usnsalls + Alls| ©)
j=1

s.t. Au=Bs, u>0xx1, s>0xx1 (10)

This is a convex problem, which can be readily solved using convex
optimization software such as CVX [8].
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Fig. 1. Example scenario: (a) field contour plot with FEM mesh generated for 20 randomly deployed WSN nodes (o) and POIs (x), (b) cluster
boundaries (—) and required WSN communication links (--), (c) partitioning and sparsity pattern of stiffness and mass matrices.

3. DISTIBUTED FCE IMPLEMENTATION

3.1. Clustering of FEM Nodes

In the distributed case, we envisage that every WSN node estimates
part of the field and source vectors. A first step towards a distributed
implementation is thus to decide which WSN node will estimate
which coefficients of u and s. This requires a clustering of the K
FEM nodes into J clusters. We employ a simple clustering approach
in which each FEM node is assigned to the cluster of the closest
WSN node. In this way, the clusters are defined by a 2-D Voronoi
tessellation of the WSN nodes. Fig. 1(b) shows the resulting cluster
boundaries for the example scenario depicted in Fig. 1(a).

The clustering naturally leads to a partitioning of the unknown
field and source vectors,

u:{ulT u?]T, s:[slT sﬂT (1)

where we have assumed that the field and source coefficients in u
and s are ordered clusterwise by an appropriate row permutation.
We use K; to denote the number of FEM nodes in the jth cluster.

3.2. Separability of FCE Problem

Given the partitioning of the unknown field and source vectors in
(11), we can divide the constrained optimization problem (9)-(10)
into J subproblems, each of which is solved in one WSN node. The
sum of squared WSN measurement errors and the sparsity-inducing
regularization term in (9), as well as the nonnegativity constraints in
(10) are fully separable. On the other hand, the Galerkin equality
constraints in (10) are only partially separable, and hence the main
challenge is to separate these constraints in a way that requires a
minimal communication effort and data storage in the WSN.
Assuming that the equations and variables in the Galerkin sys-
tem have been ordered clusterwise by appropriate row and column
permutations, the stiffness and mass matrices can be partitioned into
blocks A j;, Bj; of size K; x K;. The sparsity pattern of these
partitioned matrices is shown in Fig. 1(c) for the example WSN sce-
nario depicted in Fig. 1(a), and can be formalized as follows. First,
let us define No(5) C {1,...,J} as the set of indices of clusters
that are neighboring the jth cluster. Then all blocks A j;, B;j; with
i ¢ Nc(j) are K; x K; zero matrices. Second, let Ny (k) C
{1,..., K} denote the set of indices of nodes that are directly con-
nected to the kth node in the FEM mesh. Then the coefficients
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ari, b with [ ¢ N (k) are equal to zero. It can be observed from
Fig. 1(c) that Ny (k) primarily consists of indices of nodes that are
in the same cluster as the kth node, i.e., the off-diagonal blocks in A
and B are much more sparse than the diagonal blocks.

In each of the J subproblems, we will therefore only consider
a subset of the Galerkin equality constraints, corresponding to the
jth block row of A and B. By exploiting the above sparsity pattern,
these equality constraints can be written as

Ajjll]' — Bjij = Z Cji with Cji £ B]'Z'Si — Ajiui (12)
iE€ENC(5)

Three important remarks are in place here. First, the calculation of
the vectors c;; is performed in WSN node ¢, and so the jth WSN
node only needs to store the blocks A;;,B;; for i = j and i €
Ne¢(j) in its memory, instead of the full matrices A, B. Second, it
can be seen that the jth WSN node only needs to communicate the
vectors c;; to the WSN nodes of neighboring clusters, while the ac-
tual field and source blocks u; and s; need not be shared. This is
advantageous in terms of communication cost, since c;; is sparse and
only its non-zero entries need to be shared (the positions of which are
known in node ¢ from the structure of A j;). The required communi-
cation links are shown for the example scenario in Fig. 1(b). Third,
by only considering the constraints (12) in the jth subproblem, some
equality constraints from the original problem (9)-(10) are ignored
when estimating u;, s;, which may decrease the field estimation ac-
curacy. While the inclusion of these ignored constraints would be
feasible by using the same approach as in (12), i.e., moving terms
involving u;,s;, ¢ # j to the right hand side, the communication
requirements would be significantly increased.

3.3. Distributed FCE Algorithm

Given the separability of the FCE problem discussed above, a dis-
tributed FCE algorithm can be derived by applying a block coor-
dinate descent method [9] to the estimation of the partitioned field
and source vectors. The resulting iterative algorithm is summarized
in Algorithm 1, and typically requires about L = 5 iterations to
converge. The vectors v,;, containing the non-zero entries of ¢;s,
can either be initialized to zero (cold start) or by performing a pre-
iteration in which each WSN node shares its measurement average
with nodes in neighboring clusters (warm start).
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Fig. 2. Comparison of field estimation MSE at sensor node locations (- -) and POI locations (-) for different estimation algorithms, plotted
vs. (a) SNR of WSN measurements, (b) number of WSN nodes .J, (¢) number of iterations L in the distributed D-FCE implementation.

Algorithm 1 Distributed FEM-Constrained Field Estimation

Input Initial v;,, j € {1,...,J}, i € No(j)
Output Field and source vector estimates u;,s;, j € {1,...,J}

4. SIMULATION RESULTS

We simulate a static 2-D field governed by the Poisson PDE on a
square domain of 200 x 200 m, with zero boundary conditions. The
field is driven by a single point source with coordinates (13,25) m
and unit amplitude. A WSN with J = 20 sensor nodes is randomly
deployed in a square area of 180 x 180 m, maintaining a margin of
20 m to the domain boundary with the aim of avoiding ill-shaped
boundary elements. Similarly, P = 20 POIs are randomly chosen
in the area where the WSN sensor nodes are located. Each WSN
sensor node provides N = 10 field measurements, corrupted by
ii.d. measurement noise with a variance that yields a local 0 dB
signal-to-noise ratio (SNR). The mesh generation algorithm [7] is
initialized by appending a set of equally spaced nodes at a mutual
distance of ho = 20 m to the fixed subset of FEM nodes consisting
of the sensor nodes, POIs, and domain corners.

Two benchmark algorithms are evaluated for comparison with
the proposed algorithm: a FEM with known source vector that does
not employ WSN measurements, and a measurement averaging and
interpolation (MAI) method that produces local field estimates by
measurement averaging at the WSN sensor nodes and linear interpo-
lation at the POIs. The algorithms are compared in terms of the mean
squared relative field estimation error (MSE) at the sensor nodes and
at the POIs, which is calculated by averaging the squared relative
error over Nyic = 100 Monte Carlo trials [6].

Fig. 2 diplays the MSE behavior when one of the simulation
parameters is varied while the other parameters are kept fixed at the
values given earlier. A first observation is that there is a small but
consistent performance decrease when replacing the FC-based co-
operative FCE algorithm proposed in [6] with its distributed imple-
mentation presented here. This can be explained by the fact that
only a subset of the Galerkin equality constraints is imposed to each
of the J subproblems. The number of equality constraints that are
thus ignored increases as the cluster dimensions K; decrease, which
is indeed observed in Fig. 2(b) for large values of J. A second
observation is that the proposed D-FCE algorithm significantly out-
performs the MAI algorithm at the POI locations, which confirms
our intuition that the use of a physical model indeed offers a decent
alternative to “naive” field interpolation at POIs. A third and final
observation is that the “warm start” procedure explained in Section
3.3 may effectively reduce the number of iterations required for con-
vergence of the D-FCE algorithm.
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o ® W

forl=1,...,Ldo
forj=1,...,Jdo
Vi € Nc(j) : Reconstruct cj; = Byisi — Ajiu; from ~y;;
Solve miny, s; [[v; — u;lnx1l3 + Alls;[l1 subject to
Aju;—Bys;= Y ¢, w85 > 0k
iENC ()
Vi € Ne(j) : Caleulate ¢;; = Byjs; — Ajju;
Vi € Nc () : Collect the non-zero entries of ¢;; in -y,
Vi € Ne(j) : Transmit ~,; to WSN node 4
end for
end for
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