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ABSTRACT

We propose maximum a posteriori (MAP) based noncoherent differ-
ential detector for ultra-wideband (UWB) impulse radio (IR) signals,
received at a sub-Nyquist sampling rate. We build our detector for
a Laplacian distributed multipath channel, which models sparsity.
Our MAP based detector outperforms differential detectors based on
other state-of-the-art approaches from a practical point of view. Our
work highlights the critical role of different measurement matrices
for the compressed differential detectors in general and the MAP
based compressed differential detectors in particular.

Index Terms— Ultra-wideband impulse radio, differential de-
tection, compressive sampling, LASSO, MAP, Laplacian distribu-
tion

1. INTRODUCTION

Ultra-wideband (UWB) impulse radio (IR) is a signaling scheme that
is potentially suitable for low-power short-range communications
due to a number of salient features such as a high user capacity, fine
timing resolution, low probability of interception and detection etc.
[1]. Rich multipath propagation, however, makes each transmitted
pulse appear at the receiver as hundreds of echoes. Although Rake
receivers allow to collect most of the energy conveyed by the mul-
tipath components, they require a large number of fingers together
with an intensive computational load and high sampling rate to per-
form channel estimation, which belies the major requirement of sim-
ple transceiver devices. Noncoherent receivers have been proposed,
as suboptimal yet effective alternatives, in order to avoid the diffi-
cult channel estimation task, in the form of autocorrelation based re-
ceivers (AcRs) [2], such as transmitted reference (TR), where a refer-
ence pulse is transmitted together with the data pulse, and differential
detection (DD), which employs differential encoding. The detection
performance of DD schemes can be further improved by adopting
the multi-symbol DD approach (MSDD) [3]. But even then, for an
all-digital implementation, they are all affected by the basic issue of
requiring high-rate analog-to-digital converters (ADCs).

The compressive sampling (CS) concept is a powerful way to
reduce the sampling rate of sparse signals much below the Nyquist-
rate without incurring large performance degradations [4]-[5]. The
sampling rate is reduced by means of a few random projections
in the analog domain, and then, the signal is recovered from this
low-dimensional representation. Now, exploiting the fact that the
received UWB signal can be considered to be sparse in the time
domain, the CS-based approach can be useful for data detection as
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proposed in [6] for alternating direction method of multipliers (AD-
MoM) based compressed noncoherent receivers for differentially en-
coded UWB signals.

Focusing on noncoherent receivers, we propose in this paper a
maximum a posteriori (MAP) based DD for the compressed received
symbols. We present a joint model for two consecutive received
symbols. We do not require channel estimation, nor the transmis-
sion of pilot symbols as in [7] and [8], respectively. We develop a
compressed-rate MAP DD assuming a Laplacian distributed chan-
nel.

Notations: Matrices are in upper case bold while column vectors
are in lower case bold, IN is the identity matrix of size N ×N , |A|
is the determinant of the matrix A, (·)T is transpose, (·)+ is pseudo-
inverse, ⊗ stands for the Kronecker product, diag{·} presents a block
diagonal matrix having the arguments along its main diagonal, x̂ is
the estimate of x, E{·} denotes expectation, P (·) and p(·) repre-
sent probability distribution and probability density function (pdf),
respectively,

Δ
= defines an entity, ‖a‖p = (

∑N−1
i=0

∣∣[a]i∣∣p)1/p is the
�p norm of a and sign(x) is the sign function which takes values −1
and 1 depending on the polarity of the element x.

2. SIGNAL MODEL

In the adopted IR-UWB signal model, each symbol is conveyed by
a pulse q(t) of duration Tq much less than the symbol interval Ts,
i.e., Tq � Ts

1. The transmitted signal composed of a block of Q
symbols takes the form

s(t) =

Q−1∑
k=0

bkq(t− kTs) (1)

where bk ∈ {±1} are the differentially encoded transmitted sym-
bols, i.e., bk = bk−1ak, ak ∈ {±1} being the information sym-
bols. As a reference transmitted symbol, we take b−1 = 1 without
loss of generality. The signal travels through a slow-fading multi-
path channel which is assumed to be time-invariant within the inter-
val of Q consecutive symbols, and with a delay spread smaller than
Ts, so that inter symbol interference (ISI) is avoided. Let g(t)

Δ
=∑L−1

l=0 αlδ(t− τl) represent the channel impulse response (CIR)
with L paths, where αl and τl are the gain and path delay of the
lth path, respectively. The received signal r(t) can then be written

1Generalizations of the proposed framework to signaling based on mul-
tiple frames to comply with the FCC power spectral density requirements
can be easily performed. For the sake of simplicity, this model will not be
addressed.
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as

r(t) =

Q−1∑
k=0

bkh(t− kTs)

︸ ︷︷ ︸
Δ
= x(t)

+v(t) (2)

where h(t)
Δ
=

∑L−1
l=0 αlq(t− τl) is the received pulse, and v(t)

is the zero-mean additive white Gaussian noise component with
variance σ2

v . Denoting with 1/T = N/Ts the Nyquist sampling
rate, the received signal in its sampled version can be written
as r

Δ
= [rT0 , r

T
1 , · · · , r

T
Q−1]

T where rk
Δ
= [r(kTs), r(kTs +

T ), · · · , r(kTs +NT − T )]T collects the N Nyquist-rate samples
corresponding to the kth symbol. In view of (2), it can be obtained,
rk = xk + vk, where xk = bkh, h

Δ
= [h(0), h(T ), · · · , h(NT −

T )]T is the sampled CIR whose entries are modeled as independent
and identically distributed (i.i.d.) Laplacian random variables, and
vk

Δ
= [v(kTs), v(kTs+T ), · · · , v(kTs+NT−T )]T is a zero-mean

Gaussian random vector with covariance matrix E{vkv
T
k } = σ2

vIN .
Given the sparse nature of xk (due to the sparse channel), most of
its components are zero or negligible and thus, according to the CS
framework theory [4, 5], it can be represented by M linear mea-
surements, with M � N . This process takes place in the analog
domain but for the sake of convenience, we represent these oper-
ations performed on the Nyquist rate samples of r(t). Hence, the
compressed received signal within one symbol can be expressed as,
yk = Φkrk = Φkxk + ξk, where the M × N matrix Φk is the
measurement matrix (which satisfies the restricted isometry property
(RIP) [5]) at time instant k, ξk

Δ
= Φkvk is the noise component and

M � N . The signal model for two consecutive received symbol
waveforms sampled at compressed rate can be formulated as

y = Φ(b⊗ IN )h+ ξ (3)

where y
Δ
= [yT

k ,y
T
k+1]

T , b
Δ
= [bk, bk+1]

T and ξ
Δ
= [ξT

k , ξ
T
k+1]

T ,

whereas Φ
Δ
= diag{Φk,Φk+1}, with Φk+l, being the M ×N mea-

surement matrix satisfying Φk+lΦ
T
k+l = IM , l = 0, 1.

3. �1-NORM BASED RECONSTRUCTION AND
DETECTION

The conventional Nyquist-rate DD (NDD) can be written as

â
(NDD)
k+1 = sign

(
argmin

a

{
‖rk − ark+1‖

2
2

})
(4)

whereas the detector for the compressed symbols directly, i.e., the
direct compressed differential detector (DC-DD) can be written as

â
(DC−DD)
k+1 = sign

(
argmin

a

{
‖yk − ayk+1‖

2
2

})
. (5)

Instead of directly correlating the received compressed symbols as
in (5), one may want to reconstruct the original symbols from their
compressed measurements and then detect the encoded information.
There can be two approaches to this end, either to separately recon-
struct the symbols from their compressed version and then carry out
detection, i.e., separate compressed DD (SC-DD), or to carry out the
reconstruction and detection process jointly, i.e., joint compressed
DD (JC-DD). Furthermore, given the sparse nature of the received
symbols, an �1-norm based reconstruction can be employed. For ex-
ample, the least absolute shrinkage and selection operator (LASSO)

[9] adopts a regularization term based on the �1 norm and recon-
structs the symbols as

x̂k+l = argmin
xk+l

{
‖yk+l −Φk+lxk+l‖

2
2 + λ ‖xk+l‖1

}
(6)

where λ is the Lagrangian constant and l = 0, 1. The SC-DD would
then involve correlating these reconstructed symbols. In case of JC-
DD, following cost function has to be minimized over xk, xk+1 and
ak+1

C
Δ
=

1∑
l=0

[
‖yk+l −Φk+lxk+l‖

2
2 + λ ‖xk+l‖1

]

+ α ‖xk − ak+1xk+1‖
2
2 (7)

where λ is again the Lagrangian constant and α is a weight con-
stant. The exact solutions to both the SC-DD and DC-DD (under the
rubric of differential elastic net (DEN)), based on pathwise coordi-
nate descent methods [10], are provided in [11]. We shall compare
the performance of these methods with our compressed MAP based
DD.

4. COMPRESSED-RATE MAP DETECTOR

From (3) the compressed-rate MAP differential detector (C-MAP-
DD) is given by

b̂ = argmax
b

{p(y|b)P (b)} (8)

where P (b) is the a priori distribution of the transmitted symbols
b. From (3), it can be seen that p(y|b) is the convolution of the
joint pdfs of Laplacian and normally distributed random variables.
This reflects the complication of obtaining a MAP based DD for the
compressed signals. In this paper, we circumvent this problem by
giving h a rather amenable form. A Laplacian distributed random
variable can be represented as a normal distributed random variable
but with a stochastic variance [12]. We represent h as the product
between a Rayleigh and a normal distributed random variable, i.e.,
h = ρn, where the pdf of ρ is, p(ρ) = ρe−ρ2/2, and n is a zero-
mean joint normal random vector with covariance matrix Cn = IN .
So y = Φ(b⊗ IN )ρn+ ξ, and the pdf of y given b can be written
as

p(y|b) =

∫ ∞

0

p(y|b, ρ)p(ρ)dρ (9)

where p(y|b, ρ) is the zero-mean joint normal distribution, i.e.,

p(y|b, ρ) =
1

π2M
∣∣Cy|b,ρ

∣∣e−yTC
−1

y|b,ρ
y
. (10)

Taking into account the assumption, ΦΦT = I2M , the covariance
matrix Cy|b,ρ can be written as

Cy|b,ρ = E{[Φ(b⊗ IN )ρn+ ξ] [Φ(b⊗ IN )ρn+ ξ]T }

= σ2
vI2M + ρ2Φ(bbT ⊗ IN )ΦT (11)

whereas its inverse can be computed from the binomial inverse the-
orem as

C
−1
y|b,ρ =

[
σ2
vI2M + ρ2Φ(bbT ⊗ IN )ΦT

]−1

=
1

σ2
v

[
I2M −

ρ2

σ2
v

Φ(b⊗ IN )Σ−1(b⊗ IN )TΦT

]
(12)
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where

Σ
Δ
= IN +

ρ2

σ2
v

(b⊗ IN )TΦT
Φ(b⊗ IN )

= IN +
ρ2

σ2
v

(
Φ

T
k Φk +Φ

T
k+1Φk+1

)
. (13)

Finally, using the Sylvester theorem, the determinant of Cy|b,ρ is
given by∣∣Cy|b,ρ

∣∣ = ∣∣∣σ2
vI2M + ρ2Φ(bbT ⊗ IN )ΦT

∣∣∣
= σ4M

v

∣∣∣∣IN +
ρ2

σ2
v

(b⊗ IN )TΦT
Φ(b⊗ IN )

∣∣∣∣ , (14)

or equivalently from (13),

∣∣Cy|b,ρ

∣∣ = σ4M
v

∣∣∣∣IN +
ρ2

σ2
v

(
Φ

T
k Φk +Φ

T
k+1Φk+1

)∣∣∣∣ (15)

which is independent of b. Now exploiting the assumption that b
is uniformly distributed, maximizing p(y|b)P (b) over b is same as
maximizing p(y|b). Now from (9), if the maximum of p(y|b, ρ)
over b for each value of ρ is independent of ρ then that is also the
maximum of p(y|b). Finding the maximum of p(y|b, ρ) over b

means maximizing the exponent in (10) or equivalently, the function
obtained after dropping immaterial addends independent of b:

ΨC(y|b, ρ)
Δ
= y

T
Φ(b⊗ IN )Σ−1(b⊗ IN )TΦT

y (16)

However this function is still dependent on ρ due to the presence
of Σ−1. Such a matrix inverse can be computed by exploiting the
eigenvalue decomposition (EVD) of the N × N semi-positive defi-
nite matrix ΦT

k Φk +ΦT
k+1Φk+1 given by QΩQT , with Ω having

non-negative elements along its main diagonal and QQT = IN .
Thus, replacing the EVD into (16) yields

ΨC(y|b, ρ)
Δ
= y

T
Φ(b⊗ IN )QΩΣQ

T (b⊗ IN )TΦT
y. (17)

where ΩΣ =
(
IN + ρ2

σ2
v

Ω
)−1

. Now, taking into account that the

diagonal matrix ΩΣ has entries which are strictly positive and less
than unity, (17) can be approximated by its upper bound (indepen-
dent of ρ):

ΥC(y|b)
Δ
= y

T
Φ(b⊗ IN )(b⊗ IN )TΦT

y, (18)

which can be properly rearranged as

ΥC(y|b) = bk+1bky
T
k+1Φk+1Φ

T
k yk. (19)

Thus, in view of the differential encoding rule ak+1 = bk+1bk, we
end up with the following approximate information decoding rule

â
(C−MAP−DD)
k+1 = sign

(
y
T
k+1Φk+1Φ

T
k yk

)
. (20)

Some remarks about the C-MAP-DD scheme can be of interest.

1. The ordinary least squares DD (OLS-DD) estimate of the in-
formation symbol ak+1 is obtained as

âOLS−DD
k+1 = sign

[
(Φ+

k+1yk+1)
T (Φ+

k yk)
]

(21)

where l = 0, 1. Since the measurement matrices have or-
thonormal rows, it can be shown that Φ+

k+l = ΦT
k+l, l = 0, 1.

Therefore, we get

(Φ+
k+1yk+1)

T (Φ+
k yk) = y

T
k+1Φk+1Φ

T
k yk, (22)

from which we may argue that the OLS-DD coincides with
the C-MAP-DD.

2. Assuming Φk+1 = Φk and exploiting ΦkΦ
T
k = IM , we

obtain from (20)

y
T
k+1Φk+1Φ

T
k yk = y

T
k+1yk (23)

which means that, whenever the measurement matrices are
time-invariant, the C-MAP-DD coincides with the DC-DD.

3. If the measurement matrices are orthogonal to each other, i.e.,
ΦkΦ

T
l = 0M if Φk �= Φl, then we can see from (20) that

the C-MAP-DD does not exist.

5. SIMULATION RESULTS

The transmitted signal consists of differentially-encoded symbols,
each conveyed by an ultra short pulse traveling through a Laplacian
distributed propagation channel. For the sake of simplicity, we as-
sume that the channel response includes the effect of the shaping
filters at both the transmitter and receiver sides. The received sym-
bol waveform sampled at Nyquist rate contains N = 32 samples and
it is compressed with a compression ratio μ

Δ
= M/N , resulting in

M < N samples. The measurement matrix Φk has zero-mean unit-
variance i.i.d. normal entries with orthonormalized rows, and can be
chosen within consecutive symbols to be the same (Φk = Φk+1) or
different from each other (Φk �= Φk+1).

Figs. 1-3 quantify the BER detection performance as a func-
tion of the Eb/N0 ratio, assuming that the measurement matrices
are chosen to be the same or different from each other, respec-
tively. While the reference NDD works at Nyquist-rate, all the
other schemes adopt a compression ratio of μ = 0.5 or μ = 0.75.
Furthermore, for the sake of comparisons, we plot the complete
C-MAP-DD (8), to verify its approximate in (20).

We see in Fig. 1 that for the case when the measurement matrices
are the same (i.e., Φk = Φk+1), all detectors perform reasonably
well. The DC-DD overlaps with the C-MAP-DD, according to what
we observed in remark 2 of Sect. 4, along with the JC-DD whereas
the SC-DD lags behind by 1 dB. Increasing the compression ratio
to μ = 0.75 decreases the performance gap between the NDD and
the compression based detectors, which shows the trade-off between
performance and compression ratio. The results of Fig. 2, with dif-
ferent measurement matrices (i.e., Φk �= Φk+1), show a consider-
able advantage of the C-MAP-DD and JC-DD over the DC-DD and
SC-DD, with the C-MAP-DD having an edge over the JC-DD. It
should be noted that the overall performance of compressed detec-
tors is not better than the case when the measurement matrices are
the same. Further, from both Fig. 1 and Fig. 2, it is apparent that the
performance of the OLS-DD equals that offered by the C-MAP-DD,
as expected from remark 1 of Sect. 4. Fig. 3 shows the BER perfor-
mance of compressed detectors (C-MAP-DD, SC-DD and JC-DD)
for the case when the measurement matrices are orthogonal to each
other (i.e., Φk⊥Φk+1). It can be seen that C-MAP-DD completely
misses the detection as noted in remark 3 of Sect. 4. It seems that due
to the compression by orthogonal matrices, the MAP is not able to
recover the encoded information from the joint model. The �1-norm
based methods perform slightly better because, in a sense, they treat
each symbol individually for reconstruction. But their performance
is also limited by the compression ratio μ. Since we cannot create
mutually orthogonal measurement matrices (with orthogonal rows
in each matrix individually), for μ > 0.5 i.e., M > N/2, the per-
formance of the �1-norm based methods cannot be improved further
than what is seen in Fig. 3. Thus in practice such matrices may not
be used at all. Therefore, we can say that for all practical scenarios,
C-MAP-DD is a good option.
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Fig. 1. BER comparison for different detection methods with Φk =
Φk+1 and compression ratio μ = 0.5, 0.75.

6. CONCLUSIONS

In this paper, the compressive sampling framework has been applied
to differentially encoded UWB signals which reduces the sampling
rate as well as offers the ability to carry out differential detection
in the digital domain. We have derived a compressed MAP based
differential detector. It offers an alternative to �1-norm based dif-
ferential detection. For the compressed differential detectors, we
have seen that the performance is heavily influenced by the type
of measurement matrices that are chosen. It has been shown that
for practical scenarios of the measurement matrices, the MAP based
compressed differential detector yields a good choice.
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