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a b s t r a c t

Noncoherent detectors significantly contribute to the practical realization of the ultra-
wideband (UWB) impulse-radio (IR) concept, in that they allow avoiding channel
estimation and provide highly efficient reception capabilities. Complexity can be reduced
even further by resorting to an all-digital implementation, but Nyquist-rate sampling of
the received signal is still required. The current paper addresses this issue by proposing
a novel differential detection (DD) scheme, which exploits the compressive sampling (CS)
framework to reduce the sampling rate much below the Nyquist-rate. The optimization
problem is formulated to jointly recover the sparse received signal as well as the
differentially encoded data symbols, and is compared with both the separate approach
and the scheme using the compressed received signal directly, i.e., without reconstruction.
Finally, a maximum a posteriori based detector using the compressed symbols is developed
for a Laplacian distributed channel, as a reference to compare the performance of the
proposed approaches. Simulation results show that the proposed joint CS-based DD
brings the considerable advantage of reducing the sampling rate without degrading the
performance, compared with the optimal MAP detector.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Ultra-wideband (UWB) impulse radio (IR) is a promis-
ing signaling scheme, particularly suitable for low-power
short-range communications, in virtue of many appeal-
ing features, such as high user capacity, fine timing
resolution, frequency-overlay based coexistence with ex-
isting services, low probability of interception and detec-
tion [1,2]. Rich multipath propagation, however, makes
each transmitted pulse appear at the receiver as hundreds
of echoes [3]. Although Rake receivers allow to collectmost
of the energy conveyed by the multipath components [4],
they require a large number of fingers together with an
intensive computational load and a high sampling rate
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to perform channel estimation [5], thus contradicting the
main requirement of simple transceiver devices. As a sub-
optimal yet effective alternative, noncoherent receivers
have been proposed in order to skip the difficult channel
estimation task, in the form of autocorrelation based re-
ceivers (AcRs) [6]. We can refer to transmitted reference
(TR), where a reference pulse is transmitted together with
the data pulse [7,8], and differential detection (DD), which
employs differential encoding [9]. The detection perfor-
mance of DD schemes can be further improved with the
multi-symbol DD approach (MSDD) [10,11], and its vari-
ant based on symbol-level synchronization only [12], even
though for an all-digital implementation they are all af-
fected by the basic issue of still requiring high rate analog-
to-digital converters (ADCs).
Relations with prior work. The compressive sampling (CS)
concept has been recently pursued as a powerful way to
reduce the sampling rate of sparse signals much below
the Nyquist-rate without incurring large performance
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degradations [13,14]. The key idea relies on representing
a sparse signal with a few measurements only, obtained
via random projections in the analog domain [15,16], and
then, reconstructing it through a sparse recovery method.
Now, exploiting the fact that the received UWB signal can
be considered to be sparse in the time domain [17], we
can argue that the CS-based approach can be useful for
data detection. Toward this direction, a few works have
recently appeared, such as [18] for coherent receivers, [19]
for joint time of arrival (ToA) estimation anddata decoding,
and [20] for a generalized likelihood ratio test (GLRT)
detector based on the transmission of pilot symbols.
Purpose and contributions. In this paper, we focus on CS-
based noncoherent receivers for differentially encoded
UWB signals, as preliminarily discussed in [21]. A few
important features are gained which differentiate our
contributions from previous works.
(1) The key to our method is the formulation of a cost

function, as the composition of the sparse regularized
mean squared errors for the two compressed-rate
consecutively received signal waveforms, combined
with the squared DD error, which is minimized using
an efficient iterative method derived from the elastic
net optimization framework [22]. Thus, reconstruction
from the compressed signal samples and detection of
encoded information is performed jointly.

(2) The proposed CS-based DD does not require any
channel estimation as in [19] nor the transmission of
pilot symbols as in [20].

(3) A simpler two-step approach is formulated wherein
first the sparse regularized mean squared error is
minimized, and then the recovered symbol waveforms
are used to perform conventional DD.

(4) A direct detection method working directly on the
compressed samples is considered as well, which
avoids signal reconstruction, and its limitations are
clarified.

(5) A compressed-rate MAP DD is derived as a perfor-
mance benchmark for the proposed detectors, assum-
ing a Laplacian distributed channel response which
emulates sparsity.

Organization. The rest of the paper is organized as
follows. Section 2 describes the signal model, Section 3
introduces the CS-based separate and joint reconstruction
and detection methods, while Section 4 derives the
MAP based DDs at both Nyquist- and compressed-rate.
Simulation results are discussed in Section 5, and finally
concluding remarks are drawn in Section 6.
Notations. Matrices are in upper case bold while column
vectors are in lower case bold, [A]i,j is the (i, j)th entry
of the matrix A, [a]i is the ith entry of the vector a, IN is
the identity matrix of size N × N, |A| is the determinant
of the matrix A, (·)T is transpose, (·)+ is pseudo-inverse,
⊗ stands for the Kronecker product, diag{·} gives a block
matrix having the arguments along its main diagonal, x̂ is
the estimate of x, E{·} denotes expectation, P(·) and p(·)
represent probability distribution and probability density
function (pdf), respectively, , defines an entity, ∥a∥p =

(
N−1

i=0 |[a]i|p)1/p is the ℓp norm of a, sign(x) is the sign
function which takes values −1 and 1 depending on the
polarity of the element x, whereas the function (x)+ = x if
and only if x > 0 otherwise (x)+ = 0.
2. Signal model

In the adopted IR-UWB signal model, each symbol is
conveyed by a pulse q(t) of duration Tq much less than the
symbol interval Ts, i.e., Tq ≪ Ts.1 The transmitted signal
composed of a block of Q symbols takes the form

s(t) =

Q−1
k=0

bkq(t − kTs) (1)

where bk ∈ {±1} are the differentially encoded
transmitted symbols, i.e., bk = bk−1ak, ak ∈ {±1} being the
information symbols. As a reference transmitted symbol,
without loss of generality we take b−1 = 1.

The signal travels through a slow-fading multipath
channel, assumed to be time-invariant within the interval
of Q consecutive symbols, and with delay spread smaller
than Ts, so that inter symbol interference (ISI) is avoided.
Let g(t) ,

L−1
l=0 αlδ(t − τl) represent the channel impulse

response (CIR) with L paths, where αl and τl are the gain
and path delay of the lth path, respectively.

The received signal r(t) can then be written as

r(t) =

Q−1
k=0

bkh(t − kTs)  
,x(t)

+v(t) (2)

where h(t) ,
L−1

l=0 αlq(t − τl) is the received pulse,
and v(t) is the zero mean additive white Gaussian
noise component with variance σ 2

v . Denoting the Nyquist
sampling rate with 1/T = N/Ts, the received signal in its
sampled version can be written as r , [rT0, r

T
1, . . . , r

T
Q−1]

T

where rk , [r(kTs), r(kTs + T ), . . . , r(kTs + NT − T )]T

collects the N Nyquist-rate samples corresponding to the
kth symbol. In view of (2), it can be written

rk = xk + vk = bkh + vk (3)

whereh , [h(0), h(T ), . . . , h(NT−T )]T is the sampled CIR
whose entries are modeled as independent and identically
distributed (i.i.d.) Laplacian random variables (owing to
the sparse nature of the UWB channel), and vk ,
[v(kTs), v(kTs + T ), . . . , v(kTs + NT − T )]T is a zero mean
Gaussian random vector with covariancematrix E{vkvTk } =

σ 2
v IN .
We can observe that the signal vector xk is generally

sparse due to the fact that the channel h is sparse, i.e., most
of its components are zero or negligible [3]. Thus, according
to the CS framework theory [13,14], it can be represented
by M linear measurements, with M ≪ N . This is generally
obtained through analog processing of r(t), as illustrated
in [15,16]. For the sake of convenience, however, the
model we will adopt here is based on an operation that
is performed on the Nyquist rate samples of r(t). Hence,

1 Generalizations of the proposed framework to signaling based
on multiple frames to comply with the FCC power spectral density
requirements [23] can be easily performed, and so for the sake of
simplicity, it will not be addressed.
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the compressed received signal within one symbol can be
expressed as

yk = Φkrk = Φkxk + ξk (4)

where theM × N matrix Φk is the measurement matrix at
time instant k and ξk , Φkvk is the noise component. It
is worth recalling that Φk satisfies the restricted isometry
property (RIP) [14], thus allowing the recovery of the re-
ceived signal from its CS version in the asymptotic sense
as a function of the number of measurements M , with
M ≪ N [24]. A wide range of both random (Gaussian or
Bernoulli) and structured (Fourier or identity) measure-
mentmatrices satisfy theRIP, although the latter have been
proved to be the better choice for smaller N . An important
parameter that has a direct influence on the performance
of CS-based systems is the compression ratio defined as
µ , M/N , with µ ∈ (0, 1]. A higher value of µ implies a
higher value ofM andhence a better performance,whereas
on the other side, a lower M is desirable to keep the
sampling rate at affordable levels, although this is usually
achieved at the price of a given performance degradation.

3. Compressed-sensing based detection

Several methods are available to recover differentially
encoded information from the samples of the received sig-
nal. Considering that each received symbol waveform is
obtained in compressed form, data decoding may option-
ally require prior signal reconstruction followed by differ-
ential detection, or alternatively, a joint reconstruction and
detection process, as illustrated in the sequel.

3.1. Conventional differential detection

Differential detection involves the correlation between
consecutive symbols within a received block. In the case of
Nyquist-rate differential detection (NDD), the estimate of
the information symbol can be expressed as

â(NDD)
k+1 = sign


argmin

a


∥rk − ark+1∥

2
2


. (5)

Hence from (5), it can be seen that one possible yet
coarse way of decoding information from the compressed
received signal consists of performing correlation directly
on the compressed samples. We will designate this
approach as direct compressed differential detection (DC-
DD), which can be described as

â(DC-DD)
k+1 = sign


argmin

a


∥yk − ayk+1∥

2
2


. (6)

This method does not involve sparse reconstruction
of the actual received signal, but exploits only the
compressed waveform yk given by (4). We note however
that the DC-DD works under the condition that every
compressed symbol waveform is the result of the same
linear transformation of the received signal, otherwise
it may exhibit strong limitations. We will come back to
this aspect in the following subsections. Nevertheless,
direct compressed detection can be favorably applied
when synchronization requirements may be relaxed (and
accordingly, signal reconstruction can be avoided), such as
for instance in [12].
3.2. Overview of reconstruction techniques

Focusing on the reconstruction of xk, a naive way is
to adopt the ordinary least squares (OLS) optimization
method, thus obtaining from (4)

x̂(OLS)
k = argmin

xk


∥yk − Φkxk∥2

2


. (7)

Due to the fact that theM×N measurementmatrixΦk is fat
(M ≪ N), and so not full column rank, the solution to the
OLS problem in (7) is not unique. One way to circumvent
this drawback is to use Tikhonov regularization based on
the ℓ2 norm, which penalizes the OLS cost function with
a quadratic penalty, also known as ridge regression (RR),
leading to

x̂(RR)
k = argmin

xk


∥yk − Φkxk∥2

2 + λ ∥xk∥2
2


(8)

where λ is the Lagrangian constant. Although the RR
solution is unique, it does not care about the sparsity
of xk. A specific solution to this problem is the least
absolute shrinkage and selection operator (LASSO) [25],
which adopts a regularization term based on the ℓ1 norm,
as

x̂(LASSO)
k = argmin

xk


∥yk − Φkxk∥2

2 + λ ∥xk∥1


(9)

where λ is again the Lagrangian constant. Due to the ℓ1
regularization that induces sparsity, part of the entries of
x̂(LASSO)
k will be switched off (hopefully the noisy or the non-

significant ones), under the condition that the value of λ
is properly chosen. This appealing feature explains why
the interest in the LASSO technique is growing more and
more whenever a sparse signal has to be reconstructed.
The above fully motivates the adoption of LASSO, or
its modified versions, to address the CS-based detection
problem we are dealing with, as will be illustrated in the
rest of this section.

3.3. Separate reconstruction and detection

According to the separate compressed differential
detection approach (SC-DD), the sparse received signal
is first reconstructed from the compressed samples
applying the LASSO algorithm, and is subsequently used
to decode the information symbols through correlation
of consecutive symbol waveforms. Among the various
algorithms to solve the LASSO problem, we mention the
LARS scheme [26],which has a low complexity but requires
M > N , and the one proposed in [27], which is applicable
for M < N but is computationally intensive. On the other
side, the pathwise coordinate descent (PCD) optimization
idea is proposed in [28] as a way to solve the LASSO
problem, and turns out to be particularly competitive as
far as the computational complexity aspects are concerned.
The PCD is based on optimizing one coordinate of xk at-a-
time, while all the others are kept at the values evaluated
at the previous iteration, so that each update works as a
warm start for the next step. Hence, the PCD solution to (9)
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for the (n + 1)th iteration, n ≥ 0, and the jth coordinate,
1 ≤ j ≤ N , of x̂k+l, l = 0, 1 can be proved to be [28]

[x̂k+l]j(n + 1)

= shrink


M
i=1

[Φk+l]i,j{[yk+l]i − [ŷ(j)
k+l]i(n + 1)}, λ


(10)

where the ‘‘shrink’’ operator is defined as shrink (z, λ) ,
sign(z)(|z| − λ)+, with the parameter λ optimized
through a cross-validation (CV) approach (Section 5.1), and
[ŷ(j)

k+l]i(n + 1) is evaluated as

[ŷ(j)
k+l]i(n + 1) =


m<j

[Φk+l]i,m[x̂k+l]m(n + 1)

+


m>j

[Φk+l]i,m[x̂k+l]m(n), (11)

i.e., excluding the effect of the jth coordinate [x̂k+l]j(n), and
using for the earlier (j − 1) entries the values updated
at the current (n + 1)th iteration, namely [x̂k+l]1(n +

1), . . . , [x̂k+l]j−1(n + 1), and for the remaining ones,
namely [x̂k+l]j+1(n), . . . , [x̂k+l]N(n), those values updated
at the previous iteration. The PCD iterations (10) and
(11) continue till convergence, i.e., when a predefined
tolerance level has been reached for each coordinate. Next,
from the symbol waveform estimates x̂k(P) and x̂k+1(P)
reconstructed after P iterations,we can obtain the detected
symbol as

â(SC-DD)
k+1 = sign


x̂k+1(P)T x̂k(P)


. (12)

The computational complexity required by the PCD
algorithm for each reconstruction iteration can be shown
to be O(NM) [29], while that for the detection step is
simply equal to O(N). Therefore, the overall complexity of
the SC-DD for P iterations amounts to O(PNM).

3.4. Joint reconstruction and detection

An alternative to the SC-DD approach is to perform
joint reconstruction and detection, which will be referred
to as the joint compressed differential detection (JC-DD)
approach. Formally, the corresponding cost function of the
JC-DD optimization problem to beminimized over xk, xk+1
and ak+1 can be formulated as

C
(JC-DD)
k+1 (xk, xk+1, ak+1)

,

1
l=0


∥yk+l − Φk+lxk+l∥

2
2 + λ ∥xk+l∥1


+ α ∥xk − ak+1xk+1∥

2
2 (13)

where λ is the Lagrangian constant and α is a weight
constant. The following remarks about the JC-DD are now
of interest.

(1) The parameter α has to be chosen by trading off
the performance of the reconstruction against the
detection steps. A higher value may result in a wrong
correlation estimate due to excess noise on x̂k and x̂k+1.
Conversely, a lower value may be detrimental as well
due to an accuracy loss in the estimate âk+1. Indeed, in
that case the JC-DD collapses into the SC-DD approach,
where we first reconstruct independent of detection,
and then detect optimizing only with respect to ak+1.

(2) In view of the joint optimization, the reconstruction
and detection steps reinforce each other during
iterations. Therefore, improved performance over both
the DC-DD and SC-DD is expected.

(3) Several regression methods are available to minimize
the cost function (13), even though we will show in
a while that none of them exhibits the regularization
features that properly match the JC-DD problem.
Generally speaking, denoting with u and z the
vectors with size M and N , collecting the received
compressed samples and the samples to be optimally
reconstructed, respectively, and with Λ an M × N
measurement matrix, we can basically enumerate the
following three methods.
• Standard LASSO. Taking into account (9), the standard

LASSO can be put into the form
ẑ(LASSO)

= argmin
z


∥u − Λz∥2

2


s.t. ∥z∥1 ≤ γ

(14)

where γ is a given threshold. We note that the
main effect of the constraint based on the ℓ1 norm
is to induce parsimony in the solution, in the
sense that among all the feasible solutions (14)
takes specific care of those solutions with higher
sparsity. However, no quadratic constraint on the
optimization variables is involved as required by
the JC-DD cost function (13). Therefore, it can be
concluded that the standard LASSO is of scarce utility
for our purpose and some alternatives have to be
searched for.

• Elastic net. Elastic net (EN) is a modified version of
LASSO where a quadratic constraint is considered as
well [22], according to the form

ẑ(EN)
= argmin

z


∥u − Λz∥2

2


s.t. ∥z∥1 ≤ γ1

∥z∥2
2 ≤ γ2,

(15)

with γ1 and γ2 being predefined thresholds. The
added constraint has the effect of grouping the
elements of the optimization vector z, which adds
to the action of favoring sparse solutions played
by the ℓ1-based constraint. The actual result is
that parts of z will be different from zero and
others will be negligible, thus matching the cluster-
based propagation encountered in typical UWB
environments [3], but again what is now lacking
is the differential aspect related to the JC-DD cost
function (13).

• Fused LASSO. An additional variant of LASSO is
represented by the fused LASSO (F-LASSO), which is
proposed in [30] as

ẑ(F−LASSO)
= argmin

z


∥u − Λz∥2

2


s.t. ∥z∥1 ≤ γ1

N
j=2

[z]j − [z]j−1
 ≤ γ2.

(16)
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The F-LASSO method penalizes the cost function
with not only the sum of the absolute values of
the coefficients of the optimization variable, i.e.,
∥z∥1, but also their differences. That way, sparsity
is induced while ‘‘fusing’’ successive coefficients to
each other, but again, these features are not exactly
what is required.

(4) From the regularization methods (14)–(16), it is
apparent that none of them satisfies the requirements
for the optimization of the JC-DD cost function,
including both an ℓ1-based as well as a squared
differential penalty on two sets of optimization
variables and not just one. Hence, this need fully
motivates the development of a different method that
we will focus on in the next subsection.

3.5. Differential elastic net

We propose here a novel regularization method, which
we will designate as differential elastic net (DEN), and
which can be formulated as

ẑ1, ẑ2, â

(DEN)
= argmin

z1,z2,a


2

l=1


∥ul − Λlzl∥2

2


s.t. ∥z1∥1 ≤ γ1

∥z2∥1 ≤ γ1

∥z1 − az2∥2
2 ≤ γ2

(17)

where z1 and z2 are the two sets of variables to be optimally
reconstructed, each with size N,u1 and u2 are the two
sets of compressed samples, each with sizeM , and Λ1 and
Λ2 are the corresponding M × N measurement matrices.
The rationale of the DEN method relies on searching the
sparse solutions ẑ1 and ẑ2 while imposing at the same
time fusion between their respective elements, together
with deriving the optimal estimate â of the transmitted
information symbol.

As an effective way to solve (17), we resort to the PCD
algorithm illustrated in Section 3.3. Due to its iterative
nature, convergence to a unique solution may be an
issue. Indeed, convergence of the PCD is typically not
ensured for non-differentiable cost functions. It has been
proved, however, that an exception occurs whenever the
non-differentiable part is separable in its variables [31].
Interestingly the ℓ1 part in the cost function (13) just
satisfies that condition, and accordingly, this proves the
uniqueness of the PCD solution to (17). Now, the DEN
solutions to (17) can be derived, as stated in the following
proposition.

Proposition 1. The jth entries of the solutions ẑ1 and ẑ2
to (17) at the (n + 1)th iteration, n ≥ 0, can be written as
given in Box I.

Proof. The Lagrangian of the cost function in (17) is

L(z1, z2, a) =

2
l=1


∥ul − Λlzl∥2

2

+ λ ∥zl∥1


+ α ∥z1 − az2∥2

2 (22)
where λ and α are the Lagrangian constants, depending on
the thresholds γ1 and γ2. Upon differentiating (22) with
respect to the jth element of z1 and z2 and equating them
to zero, it is easy to obtain (18) and (19), respectively. Then,
(20) follows. �

Hence, in viewof Proposition 1 and the structure of the cost
function (13), the optimal solutions to the JC-DD problem
can be readily derived by directly replacing, respectively:
ẑ1(n) and ẑ2(n) with x̂k(n) and x̂k+1(n),u1 and u2 with
yk and yk+1, û

(j)
1 (n) and û(j)

2 (n) with ŷ(j)
k (n) and ŷ(j)

k+1(n),
and finally Λ1 and Λ2 with Φk and Φk+1. To conclude, it
is worth noting that the computational complexity of the
JC-DD approach based on the PCD iterative algorithm for a
total of P iterations results in O(PNM), and therefore, it is
comparable with that of the SC-DD.

4. MAP detectors

In this section, MAP detectors will be derived as
performance benchmarks assuming that the received
signal is sampled at the Nyquist rate or at the compressed
rate. Differently from [32], the channel response is
Laplacian distributed so as to take into account its inherent
sparsity.

4.1. Nyquist-rate MAP detector

The Nyquist-rate sampled waveform corresponding to
two consecutive symbols can be written as

r = (b ⊗ IN)h + v (23)

where r , [rTk , r
T
k+1]

T , with rk being expressed by (3),
b , [bk, bk+1]

T includes two consecutive differentially-
encoded symbols, and v , [vTk , v

T
k+1]

T is the noise
component. Hence, the Nyquist-rate MAP differential
detector (N-MAP-DD) can be expressed as

b̂ = argmax
b

{p(r|b)P(b)} (24)

where P(b) is the a priori distribution of the transmitted
symbols b. Under some assumptions, it can be proved that
the N-MAP-DD (24) takes a simple form, as illustrated in
the following proposition.

Proposition 2. Assuming a uniform distribution of the
transmitted symbols b and Laplacian distribution of the
channel response h, the N-MAP-DD coincides with the
conventional Nyquist-rate DD (5)

â(N-MAP-DD)
k+1 = sign


rTk+1rk


. (25)

Proof. Upon representing the channel response as the
product h = ρn between a Rayleigh random variable
ρ and a joint normal random vector n, the expression of
p(r|b), as derived in Appendix A, is

p(r|b) =


∞

0
p(r|b, ρ)p(ρ)dρ (26)

where p(r|b, ρ) is the zero-mean joint normal distribution
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8)

9)

0)

1)
[ẑ1]j(n + 1) =

shrink


M
i=1

[Λ1]i,j{[u1]i − [û(j)
1 (n + 1)]i} + αâ(n)[ẑ2]j(n), λ


1 + α

(1

[ẑ2]j(n + 1) =

shrink


M
i=1

[Λ2]i,j{[u2]i − [û(j)
2 (n + 1)]i} + αâ(n)[ẑ1]j(n), λ


1 + αâ2(n)

(1

â(n + 1) = ẑT2(n + 1)ẑ1(n + 1) (2

where

[û(j)
l (n + 1)]i =


m<j

[Λl]i,m[ẑl]m(n + 1) +


m>j

[Λl]i,m[ẑl]m(n), l = 1, 2. (2

Box I.
p(r|b, ρ) =
1

π2Nσ 2
v (σ 2

v + 2ρ2)
exp


−

1
σ 2

v

rT

I2N

−
ρ2

σ 2
v + 2ρ2

(bbT
⊗ IN)


r


. (27)

Since b is assumed to be uniformly distributed, from (24)
it can be argued that maximizing the product p(r|b)P(b) is
equivalent to maximizing p(r|b) over b. From (26), we can
say that if the maximum of p(r|b, ρ) over b is independent
of each value of ρ, then that is also themaximum of p(r|b).
Now from (27), maximizing p(r|b, ρ) means that for a
given r and ρ, finding the value of b that maximizes

ΓN(r|b, ρ) , −
1
σ 2

v

rT

I2N −

ρ2

σ 2
v + 2ρ2

(bbT
⊗ IN)


r. (28)

Dropping immaterial addends independent of b, from (28)
it can be obtained that the MAP estimate is the value of b
maximizing the function (independent of ρ) defined as

ΨN(r|b) , rT (bbT
⊗ IN)r

= bk+1bkrTk+1rk. (29)

Thus, in view of the differential encoding rule ak+1 =

bk+1bk, (29) turns equivalently into

ΨN(r|b) = ak+1rTk+1rk (30)

which provides the desired result (25). �

4.2. Compressed-rate MAP detector

The signal model for two consecutive received symbol
waveforms sampled at compressed rate can be formulated
as
y = Φ(b ⊗ IN)h + Φv (31)
where y , [yTk , y

T
k+1]

T , with yk being expressed by (4), b
and v are defined as in (23), and Φ , diag{Φk, Φk+1}, with
Φk+l, l = 0, 1 being the M × N measurement matrices
for which we assume Φk+lΦ

T
k+l = IM , l = 0, 1. The

compressed-rate MAP differential detector (C-MAP-DD) is
given by

b̂ = argmax
b

{p(y|b)P(b)} (32)
where P(b) is the a priori distribution of the transmitted
symbols b. The structure of the C-MAP-DD scheme can be
derived as illustrated in the sequel.

Proposition 3. Assuming a uniform distribution of the
transmitted symbols b and Laplacian distribution of the
channel responseh, the C-MAP-DD rule results approximately
in

â(C-MAP-DD)
k+1 = sign


yTk+1Φk+1Φ

T
kyk

. (33)

Proof. Following the approach pursued in Proposition 2,
in Appendix B it is shown that

p(y|b) =


∞

0
p(y|b, ρ)p(ρ)dρ (34)

where ρ is a Rayleigh distributed random variable and
p(y|b, ρ) is the zero-mean joint normal distribution

p(y|b, ρ) =
1

π2Mσ 4M
v |Σ|

exp


−

1
σ 2

v

yT

I2M

−
ρ2

σ 2
v

Φ(b ⊗ IN)Σ−1(b ⊗ IN)TΦT


y


(35)

with the N ×N positive definite matrix Σ being defined as

Σ , IN +
ρ2

σ 2
v


ΦT

kΦk + ΦT
k+1Φk+1


. (36)

Exploiting the assumption that P(b) is independent of
b, from (32) the result is that maximizing the product
p(y|b)P(b) over b equals doing the same with p(y|b) over
b. Now from (34), if the maximum of p(y|b, ρ) over b for
each value of ρ is independent of ρ then that is also the
maximum of p(y|b). From (35), finding the maximum of
p(y|b, ρ) over b means maximizing

ΓC(y|b, ρ) , −
1
σ 2

v

yT

I2M

−
ρ2

σ 2
v

Φ(b ⊗ IN)Σ−1(b ⊗ IN)TΦT


y, (37)
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or equivalently, the function obtained after dropping
immaterial addends independent of b as

ΨC(y|b, ρ) , yTΦ(b ⊗ IN)Σ−1(b ⊗ IN)TΦTy (38)

which, however, is still dependent on ρ due to the
presence ofΣ−1. Such amatrix inverse can be computed by
exploiting the eigenvalue decomposition (EVD) of the N ×

N semi-positive definite matrix ΦT
kΦk + ΦT

k+1Φk+1 given
by QΩQT , with Ω having non-negative elements along its
main diagonal and QQT

= IN . Thus, plugging the EVD into
(38) yields

ΨC(y|b, ρ) , yTΦ(b ⊗ IN)Q

IN +

ρ2

σ 2
v

Ω

−1

QT

× (b ⊗ IN)TΦTy. (39)

Now, considering the fact that the diagonal matrix
IN +

ρ2

σ 2
v
Ω

−1
has entries which are strictly positive and

less than unity, (39) can be approximated by its upper
bound (independent of ρ)

ΥC(y|b) , yTΦ(b ⊗ IN)(b ⊗ IN)TΦTy, (40)

that can be properly rearranged as

ΥC(y|b) = bk+1bkyTk+1Φk+1Φ
T
kyk. (41)

Thus, in view of the differential encoding rule ak+1 =

bk+1bk, we end up with the desired result (33). �

Some remarks about the C-MAP-DD scheme can be of
interest.

(1) The OLS-DD estimate of the information symbol ak+1 is
obtained from (7) as

âOLS-DDk+1 = sign

(Φ+

k+1yk+1)
T (Φ+

k yk)


(42)

where Φ+

k+l is the pseudo-inverse of Φk+l, l = 0, 1.
Since the measurement matrices have orthonormal
rows, it can be shown that Φ+

k+l = ΦT
k+l, l = 0, 1.

Therefore, we get

(Φ+

k+1yk+1)
T (Φ+

k yk) = yTk+1Φk+1Φ
T
kyk, (43)

from which we argue that the OLS-DD coincides with
the C-MAP-DD.

(2) Assuming Φk+1 = Φk and exploiting ΦkΦ
T
k = IM , we

obtain from (33)

yTk+1Φk+1Φ
T
kyk = yTk+1yk (44)

which means that, whenever the measurement matri-
ces are invariant, the C-MAP-DD coincideswith theDC-
DD.

5. Simulation results

The detectors we discussed in the previous sections
are verified here by means of numerical simulations
taking as performance quality the bit error rate (BER)
metric as a function of both the ratio of the mean-
received bit-energy and the noise spectral density ratio
defined as Eb/N0 , ∥h∥

2
2/σ

2
v , and the compression
ratio µ. The conventional DD at Nyquist-rate (NDD) is
compared with the compressed DD schemes based on the
approaches of the direct type DC-DD in (6), the separate
type SD-DD in (10)–(12) and the joint type JD-DD solved
through the iterativemethod outlined in Proposition 1. The
performance results of the compressed MAP DD derived
in Proposition 3 and the least squares DD defined by (42),
labeled as C-MAP-DD and OLS-DD, respectively, are also
plotted as performance benchmarks.

5.1. Simulation setup

The transmitted signal consists of differentially en-
coded symbols, each conveyed by an ultra short pulse trav-
eling through a Laplacian distributed propagation channel.
For the sake of simplicity, we assume that the channel re-
sponse, identified as h in (3), includes the effects of the
shaping filters at both the transmitter and receiver sides.
The received symbol waveform sampled at Nyquist rate
contains N = 32 samples, or alternatively, is compressed
with a compression ratio µ, thus resulting in M < N
samples. ThemeasurementmatrixΦk has zero-mean unit-
variance i.i.d. normal entries with orthonormalized rows,
and can be chosen within consecutive symbols to be the
same (Φk = Φk+1) or different from each other (Φk ≠

Φk+1). Themethods PCD in (10)–(11) and DEN in (18)–(20)
are iterated for a maximum of 200 iterations or if a toler-
ance level of 10−5 is reached.

The optimal value of the parameter λ is selected for
the SC-DD case by applying a K-fold cross validation (CV)
approach [33, Chapter 17]. For a given λ, the received
samples y are subdivided into the sequence ym, 1 ≤ m ≤

K , each including M/K samples. Then, ym is predicted as
ŷm using the samples obtained by removing ym itself from
y. The optimal λ is thus evaluated as the value minimizing
the prediction error

λ(opt)
= argmin

λ


1
M

K
m=1

ym − ŷm(λ)
2
2


(45)

whereK = 8 and the trial values ofλ are 1, 0.1, 0.01, 0.001.
Conversely, for the JC-DD the optimal λ is chosen as

λ(opt)
= argmax

λ

âk+1(λ)
 (46)

where âk+1 is the DEN symbol soft estimate given by the
correlation (20) of Proposition 3.

5.2. Performance comparisons

Figs. 1 and 2 quantify the BER detection perfor-
mance as a function of the Eb/N0 ratio, assuming that
the measurement matrices are chosen to be the same
or different from each other, respectively. While the
reference NDD works at Nyquist-rate, all the other
schemes adopt a compression ratio of µ = 0.5 or µ =

0.75. Focusing on the caseµ = 0.5 of Fig. 1, it can be noted
that the JC-DD closely follows the C-MAP-DD, but if com-
pared to the NDD, it degrades approximately by 1.5 dB at
a BER level of 10−2. Further, the DC-DD overlaps with the
C-MAP-DD, according to what we observed in Remark (2)
of Section 4.2, whereas the SC-DD lags behind by 1 dB. In-
creasing the compression ratio toµ = 0.75, the JC-DD, DC-
DD and SC-DD BER degradation from the reference NDD
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Fig. 1. BER comparison for different detection methods with Φk = Φk+1
and compression ratio µ = 0.5, 0.75.

Fig. 2. BER comparison for different detection methods with Φk ≠ Φk+1
and compression ratio µ = 0.5, 0.75.

reduces to around 1 dB, 1 dB and 1.3 dB, respectively. Thus,
we show that the above compressed detectors can trade off
performance against complexity in terms of compression
ratio.

The results of Fig. 2 confirm that: (i) the scenario with
different measurement matrices is more demanding than
the one when they are the same as illustrated in Fig. 1,
and (ii) an increase of the compression ratio to µ =

0.75 alleviates the performance gap from the conventional
NDD at the price of increasing the complexity. For µ =

0.5 and a BER level of 10−2, the JC-DD has a gap of
approximately 1 dB from the C-MAP-DD and 7.5 dB from
the NDD, but shows a considerable edge over the separate
approach SC-DD. Differently from Fig. 1, the direct scheme
Fig. 3. Reconstruction results of JC-DD at 10 log10(Eb/N0) = 20 dB.

Fig. 4. Reconstruction results of SC-DD at 10 log10(Eb/N0) = 20 dB.

DC-DD completely misses detection and so turns out
to be useless. This result proves that a reconstruction
step, separate or better joint with detection, is clearly
mandatory.

Further, from both Figs. 1 and 2 it is apparent that
the performance of the OLS-DD equals that offered by the
C-MAP-DD, as expected from Remark (1) of Section 4.2.
Nevertheless, we remark that the OLS-DD is considerably
outperformed by the JC-DD and SC-DD in terms of sparse
signal reconstruction, due to the intrinsic lack of inducing
sparsity on the solutions exhibited by the least squares
method.

Figs. 3 and 4 give a quantitative picture about the
reconstruction performance of the JC-DD and SC-DD,
respectively. We assume that the received waveforms
without noise are xk = h and xk+1 = −h, Eb/N0 =

20 dB, and λ is set to 0.1. In each figure, the upper
part shows h and the reconstructed signal component x̂k,
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Fig. 5. BER comparison of JC-DD for different weight coefficients α with
Φk ≠ Φk+1 .

whereas the lower part does the same for the adjacent
symbol, namely h and x̂k+1. For a given realization of h,
we obtain that out of 2N = 64 signal samples for both
symbols, the JC-DD forces 24/64 ≈ 37% components
to zero and correctly reconstructs 31/64 ≈ 48% non-
zero components, whereas the above percentages for the
SC-DD turn into 36/64 ≈ 56% and 19/64 ≈ 30%,
respectively. These results make us argue that the SC-DD
has a higher tendency of setting signal components to zero,
whereas the JC-DD exploits its inherent fusion capabilities
between the two sets of variables, leading not only to
joint sparsity but also to a fair amount of reconstructed
non-zero components. The different behavior plays a role
in taking a correct decision based on correlation, and
justifies the detection performance superiority of the joint
approach over considering detection as a separate step
from reconstruction.

Fig. 5 shows the sensitivity of the JC-DD scheme to the
choice of the coefficient α which weighs the differential
squared error in (13). It is apparent that better results over
Eb/N0 are obtained for values in the range of around α =

100. Finally, the effect of the compression ratio µ over the
BER of the JC-DD is evaluated in Fig. 6 for an Eb/N0 of 12
and 14 dB. As expected, it can be shown that the smaller
the µ the worse the BER level, and when µ approaches 1,
the performance of the JC-DD tends to that of the NDD.

6. Conclusions

In this paper, the compressive sampling framework
has been applied to differentially encoded UWB signals.
A joint reconstruction and detection method for the
compressed symbolwaveforms has been presented, which
has been shown to outperform the simpler method
based on a separate approach. Direct detection without
reconstruction has been evaluated as well, whereas a
compressed MAP differential detector has been derived to
Fig. 6. BER comparison of JC-DD and NDD for different compression
ratios µ with Φk ≠ Φk+1 .

have a performance benchmark for the proposed detectors.
Simulation results confirm that the major advantages we
gain are (i) the reduced sampling rate, (ii) the ability to
carry out the differential detection process in the digital
domain, and (iii) the option of a competitive performance
in different scenarioswhere themeasurementmatrices are
the same as well as different.

Appendix A. PDF of the Nyquist-rate sampled received
signal

In order to evaluate the pdf of the received signal sam-
pled atNyquist rate, let us start from the result that a Lapla-
cian distributed random variable can be represented as the
product between a Rayleigh and a normal one [34]. The
extension to the multivariate case allows us to write the
channel response ash = ρn, where thepdf ofρ is Rayleigh,
i.e., p(ρ) = ρe−ρ2/2, and n is a zero-mean joint normal
random vector with covariance matrix Cn = IN . Thus, the
signal model for the Nyquist-rate sampled waveform cor-
responding to two consecutive received symbols can be
formulated as

r = (b ⊗ IN)ρn + v (47)

where v is the joint normal noise component with zero
mean and covariance matrix Cv = σ 2

v I2N , statistically in-
dependent of both ρ and n. From (47), it is apparent that
the pdf of r given b is expressed by

p(r|b) =


∞

0
p(r|b, ρ)p(ρ)dρ (48)

where p(r|b, ρ) is the zero-mean joint normal distribution

p(r|b, ρ) =
1

π2N
Cr|b,ρ

 e−rT C−1
r|b,ρ

r
, (49)
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with covariance matrix

Cr|b,ρ = E

[(b ⊗ IN)ρn + v] [(b ⊗ IN)ρn + v]T


= σ 2

v I2N + ρ2(bbT
⊗ IN). (50)

From the binomial inverse theorem, it can be obtained

C−1
r|b,ρ =


σ 2

v I2N + ρ2(bbT
⊗ IN)

−1

=

σ 2

v I2N + ρ2(b ⊗ IN)(b ⊗ IN)T
−1

=
1
σ 2

v


I2N −

ρ2

σ 2
v

(b ⊗ IN)


IN

+
ρ2

σ 2
v

(b ⊗ IN)T (b ⊗ IN)

−1

(b ⊗ IN)T


. (51)

By exploiting the result

(b ⊗ IN)T (b ⊗ IN) = 2IN , (52)

(51) can be simplified into

C−1
r|b,ρ =

1
σ 2

v


I2N −

ρ2

σ 2
v + 2ρ2

(bbT
⊗ IN)


. (53)

Concerning thedeterminant ofCr|b,ρ , applying the Sylvester
theorem yieldsCr|b,ρ

 =
σ 2

v I2N + ρ2(bbT
⊗ IN)


= σ 4N

v

IN +
ρ2

σ 2
v

(b ⊗ IN)T (b ⊗ IN)


= σ 4N

v

IN +
2ρ2

σ 2
v

IN


=

σ 4

v + 2σ 2
v ρ2N (54)

which turns out to be independent of b.

Appendix B. PDF of the compressed-rate sampled re-
ceived signal

Following the approach of Appendix A, let us consider
the signal model corresponding to two consecutive
received symbols sampled at compressed rate

y = Φ(b ⊗ IN)ρn + Φv (55)

where ρ,n and v are defined as in (47), and Φ as in (31).
According to (55), the pdf of y given b can be written
as

p(y|b) =


∞

0
p(y|b, ρ)p(ρ)dρ (56)

where p(y|b, ρ) is the zero-mean joint normal distribution

p(y|b, ρ) =
1

π2M
Cy|b,ρ

 e−yT C−1
y|b,ρ

y
. (57)
Taking into account thatΦΦT
= I2M , the covariancematrix

Cy|b,ρ results in

Cy|b,ρ = E

[Φ(b ⊗ IN)ρn + Φv] [Φ(b ⊗ IN)ρn + Φv]T


= σ 2

v I2M + ρ2Φ(bbT
⊗ IN)ΦT (58)

whereas its inverse can be computed from the binomial
inverse theorem as

C−1
y|b,ρ =


σ 2

v I2M + ρ2Φ(bbT
⊗ IN)ΦT −1

=
1
σ 2

v


I2M −

ρ2

σ 2
v

Φ(b ⊗ IN)Σ−1(b ⊗ IN)TΦT


(59)

where

Σ , IN +
ρ2

σ 2
v

(b ⊗ IN)TΦTΦ(b ⊗ IN)

= IN +
ρ2

σ 2
v


ΦT

kΦk + ΦT
k+1Φk+1


. (60)

Finally, using the Sylvester theorem, the determinant of
Cy|b,ρ is given byCy|b,ρ

 =
σ 2

v I2M + ρ2Φ(bbT
⊗ IN)ΦT


= σ 4M

v

I2M +
ρ2

σ 2
v

Φ(b ⊗ IN)(b ⊗ IN)TΦT


= σ 4M
v

IN +
ρ2

σ 2
v

(b ⊗ IN)TΦTΦ(b ⊗ IN)

 (61)

or equivalently from (60),Cy|b,ρ

 = σ 4M
v

IN +
ρ2

σ 2
v


ΦT

kΦk + ΦT
k+1Φk+1

 (62)

which is independent of b.
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