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Abstract—Optimization of hard fusion spectrum sensing using
the k-out-of-N rule is considered. Two different setups are used
to derive the optimal k. A throughput optimization setup is
defined by minimizing the probability of false alarm subject to a
probability of detection constraint representing the interference
of a cognitive radio with the primary user, and an interference
management setup is considered by maximizing the probability
of detection subject to a false alarm rate constraint. It is shown
that the underlying problems can be simplified to equality con-
strained optimization problems and an algorithm to solve them is
presented. We show the throughput optimization and interference
management setups are dual. The simulation results show the
majority rule is optimal or near optimal for the desirable range
of false alarm and detection rates for a cognitive radio network.
Furthermore, an energy efficient setup is considered where the
number of cognitive radios is to be minimized for the AND and
the OR rule and a certain probability of detection and false
alarm constraint. The simulation results show that the OR rule
outperforms the AND rule in terms of energy efficiency.

Index Terms—Cooperative sensing, Cognitive radio, Energy
detector, Hard decision fusion , Spectrum sensing.

I. INTRODUCTION

Cooperative spectrum sensing is proposed as a solution

for increasing the detection reliability of the cognitive radio

network by exploiting the spatial diversity of multiple cog-

nitive users [1]. In this paper, a cooperative sensing scheme

is considered where each cognitive radio performs a periodic

sensing, locally processes the accumulated data samples and

sends the result to a fusion center (FC). Afterwards, the FC

makes a final decision about the presence of the primary user

using the local sensing results. Several fusion schemes have

been proposed to combine the local sensing information of

the secondary users [4], [5] that can be categorized as hard

and soft fusion schemes. Due to its energy and bandwidth

efficiency as well as comparable performance with the soft

schemes, in this paper, we consider the hard decision fusion

schemes. Several hard fusion techniques have been proposed

in the literature [4], [3], [6]. Among them the OR and AND

rule attract most of the attention, since these rules are easily

implementable by simple logics. However, the OR and AND

rule can be considered as special cases of the general k-out-

of-N rule when k is 1 or N , respectively.

There have been few works on the optimization of the k-out-

of-N rule in order to find the optimal k. In [3], the detection

error probability is minimized in order to find the optimal

k when the detection threshold is considered to be constant.

However, the weighting effects of the probability of primary

user presence or absence are not considered in the error

function. Furthermore, the detection error probability as the

weighted sum of the probability of false alarm and detection

does not have a meaningful interpretation from a cognitive

radio perspective. In [6], the overall data rate of the cognitive

radio network is maximized subject to an interference with

the primary user in order to find the optimal k, sensing time

and false alarm rate. However, optimization of the false alarm

rate alone is not considered. False alarm rate optimization, not

only increases the throughput of the cognitive radio but also

decreases the overall switching time of the sensing module

between the different frequency bands.

In this paper, we find the optimal value of k under two

setups,

• A throughput maximization setup is defined by minimiz-

ing the global probability of false alarm (Qf ) subject

to a global probability of detection (Qd) constraint. The

detection rate constraint in this problem represents the

constraint on the interference of the cognitive user to the

primary user activation.

• An interference management setup is defined by max-

imizing the global probability of detection (Qd) subject

to a global probability of false alarm (Qf ) constraint. The

false alarm rate constraint in this problem, represents a

lower bound on the throughput of the cognitive radio.

Furthermore, upon a false alarm detection, a cognitive

radio has to switch to another band to find a spectrum

hole. Therefore, a false alarm rate constraint also puts

an upper bound on the overall switching time of the

cognitive radio among the different frequency bands.

We provide algorithms to find the optimal value of k for

the underlying optimization problems. It is shown that in

the desirable range of the false alarm and detection rates for

cognitive radio networks (Qd ≥ 0.9, Qf ≤ 0.1), the majority

rule is either optimal or near optimal.

Furthermore, we find the optimal number of cognitive users

N under an energy efficient setup. In [3] the number of

cognitive users is minimized for a detection error probability

constraint. Such an optimization problem has the same draw-

backs as mentioned above for finding the k that minimizes the

error probability. In this paper, the number of cognitive users

is to be minimized for a certain probability of detection and
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false alarm constraint. For this setup we only considered two

special cases: the AND and the OR rule. It is shown that the

OR rule is much more energy efficient than the AND rule.

The remainder of the paper is organized as follows. In

Section II, we present the considered cooperative spectrum

sensing scheme and derive the sensing parameters of the

system including the global probability of detection and false

alarm. In Section III, the underlying optimization problems

are presented and analyzed. Furthermore, the algorithms to

solve the problems are also presented. We show the simulation

results in Section IV and finally draw our conclusions in

Section V.

II. SYSTEM MODEL

A parallel cooperative spectrum sensing configuration is

considered. Each cognitive radio senses the spectrum in peri-

odic sensing slots and sends the result to the FC. There are

several decision fusion approaches available in the literature

including hard and soft fusion schemes. Here, a hard fusion

scheme is employed by the FC to make a final decision

by considering the attained binary results from the cognitive

radios. Note that hard schemes have a much higher energy

and bandwidth efficiency than soft schemes, while they give

a comparable performance in terms of the detection reliabil-

ity [1].

Each cognitive radio solves a binary hypothesis testing

problem by making a decision about the presence or absence

of the primary user, denoted by H0 and H1, respectively.

Denoting Y [n] to be the n-th received sample at each cognitive

radio, W [n] to be the noise and X[n] the primary user signal,

the data model that is used for such a hypothesis testing

problem is given by

H0 : Y [n] = W [n], n = 1.....M ;

H1 : Y [n] = X[n] + W [n], n = 1.....M ;
(1)

where the noise is assumed to be additive white Gaussian noise

(AWGN) with zero mean and variance σ2

w and the signal is

assumed to be an i.i.d random variable with average signal

energy of σ2

x. In this paper, an energy detector is employed by

each cognitive user. The energy detector calculates the energy

of the M accumulated signal samples by T =
∑M

n=1
(Y [n])2.

For a large number of samples, we can use the central limit

theorem to approximate the test statistic as Gaussian [2]:

H0 : T ∼ N (Mσ2

w, 2Mσ4

w)

H1 : T ∼ N (M(σ2

w + σ2

x), 2M(σ2

w + σ2

x)2)
(2)

The binary hypothesis testing problem is solved by com-

paring the resulting decision statistic with a predetermined

threshold λ. The cognitive radio selects H1 if T ≥ λ and

H0 otherwise.

Denote Pf and Pd to be the respective local probability

of false alarm and detection. The probability of false alarm

indicates the false detection of the primary user in case the

primary user is absent while the probability of detection

indicates the reliability of the primary user detection. The

analytical expressions for Pf and Pd are given by

Pf = Q

(

λ − Mσ2

w
√

2Mσ4
w

)

Pd = Q

(

λ − M(σ2

w + σ2

x)
√

2M(σ2
w + σ2

x)2

)

(3)

Denote γ =
σ2

x

σ2
w

to be the signal-to-noise ratio (SNR) of the

primary user measured at the secondary user (cognitive radio)

of interest. In this paper, a network of N identical cognitive

radios is considered that measure the same SNR. Based on the

threshold of the energy detector, each cognitive radio makes

a local sensing decision about the presence or absence of a

primary user of interest. The local sensing decision is sent to

the FC and then the FC makes a global decision about the

primary user presence or absence.

Several hard fusion schemes are presented in [4]. Due to

its implementation simplicity and frequent utilization in the

current proposed cognitive radio networks, we focus on the k-

out-of-N fusion rule for combining the local binary decisions.

In this case, the FC decides that the primary user is present

when k or more received local decisions are in support of the

presence of the primary user, else the FC announces that the

primary user is absent and the relevant spectrum band can be

employed by the cognitive radios. When k = 1, the fusion rule

becomes an OR-fusion rule and if k = N , it becomes an AND

rule.

Denote Di to be the local binary sensing decision of the

i-th cognitive radio, e.g., Di = 0 for H0 and Di = 1 for

H1. Thus the resulting k-out-of-N binary hypothesis testing

problem at the FC is given by I =
∑N

i=1
Di < k for H0 and

I =
∑N

i=1
Di ≥ k for H1. By choosing a common threshold,

λ for the energy detector at each secondary user, the global

probabilities of detection Qd and false alarm Qf at the FC

can be obtained as follows

Qd =
N
∑

i=k

(

N

i

)

P i
d(1 − Pd)

N−i

Qf =
N
∑

i=k

(

N

i

)

P i
f (1 − Pf )N−i

(4)

In the following section we are going to define the underly-

ing problems in order to find the optimal k-out-of-N rule for

different setups.

III. ANALYSIS AND PROBLEM FORMULATION

The performance of a cognitive radio network can be

enhanced either by minimizing the global probability of false

alarm or maximizing the global probability of detection de-

pending on the priorities of the cognitive radios. A high

probability of detection represents a low interference to the

primary user signal while a low probability of false alarm

represents a high throughput for the cognitive radio. With these

two degrees of freedom, we can select k in the k-out-of-N rule

to meet the requirements of throughput and interference. In

this section, we formulate two distinct optimization problems
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for two possible setups. A throughput optimization setup and

an interference management setup.

Furthermore, we consider the energy efficiency optimization

of the cognitive radio network by minimizing N subject to a

certain detection performance constraint.

A. Throughput optimization setup

1) Problem formulation: The global probability of false

alarm, Qf determines the throughput of the cognitive radio

network. Minimizing Qf improves the chances of utilizing

the spectrum. However, we have to keep the secondary user

interference to the primary users bellow a certain level that

is determined by a lower bound on the probability of detec-

tion. Hence, we can formulate an optimization problem for

minimizing Qf , subject to an allowable interference level as

follows

min
k,λ

Qf (k, λ)

s.t. Qd ≥ α, 1 ≤ k ≤ N
(5)

With the following theorem, we can reduce the optimization

problem (5) to an equality constraint problem.

Theorem 1: The optimal value of Qf is attained for Qd = α.

Proof: Assuming k to be a constant, Qf is a monotonically

decreasing function of λ. Therefore, the optimal Qf is attained

for the highest λ in the feasible set of (5).

Furthermore, Qd is a monotonically decreasing function of

λ. Therefore, the highest λ in the feasible set of (5) is attained

for Qd = α.

Now assume ∃(k∗, λ∗) : Q∗

d > α and Q∗

f is optimal in terms

of (5). According to the above statement, there is a λ∗∗ > λ∗

for which Q∗∗

d = α and Q∗∗

f < Q∗

f which is a contradiction.

Hence, the optimal Qf is attained for Qd = α. �

2) Optimization algorithm: Exploiting Theorem 1, we can

find for every k a λ = g(k) that satisfies the constraint.

Therefore, we can rewrite our problem in a single variable k

min
k

Qf (k)

s.t. 1 ≤ k ≤ N

where Qf (k)
△
= Qf (k, g(k)). This problem can be solved by

an exhaustive search in k.

For many cases we observed that Qf (k) is a convex se-

quence of k. Since a mathematical investigation of the problem

is very complicated, we can not make a general claim about

the convexity of (6) at this stage, but it is a subject of further

work. In case it really is convex, the local minimum is the

global minimum. This way any gradient descent optimization

can be used to find the minimum point.

B. Interference management setup

1) Problem formulation: The global probability of detec-

tion, Qd indicates the measure of the interference of the

system. Maximization of Qd results in a smaller interference

of the cognitive radios to the primary user. Hence, we are

interested in solving

max
k,λ

Qd(k, λ)

s.t. Qf ≤ β, 1 ≤ k ≤ N
(6)

By the following theorem, we can show that the optimiza-

tion problem (6) can be reduced to an equality constraint

problem.

Theorem 2: The optimal value of Qd is attained for Qf = β.

Proof: The proof is similar to the one for Theorem 1.

2) Optimization algorithm: Similar to the throughput opti-

mization setup, since for all k, there is a λ = h(k) that satisfies

the constraint, we can simplify (6) as

max
k

Qd(k)

s.t. 1 ≤ k ≤ N

where Qd(k)
△
= Qd(k, h(k)). This problem can again be

solved by an exhaustive search in k.

For many cases we observed that Qd(k) is a concave

sequence of k. In this case, any gradient descent algorithm

ends up in a local minimum which is also the global minimum.

C. Duality

The following theorem shows that the interference man-

agement and throughput optimization setups are dual to each

other.

Theorem 3: If (Q∗

f , k∗, λ∗) is the optimal solution of the

throughput optimization problem for a detection rate constraint

α, (Q∗

d = α, k∗, λ∗) is the optimal solution of the interference

management problem for a false alarm rate constraint β = Q∗

f .

Proof: To prove Theorem 3, we employ the counter example

technique. Assume (Q∗

d = α, k∗, λ∗) is not the optimal

solution for the following problem

max
k,λ

Qd

s.t. Qf ≤ Q∗

f , 1 ≤ k ≤ N

which by using Theorem 2 can be reduced

to an equality constraint problem. Therefore,

∃(k
′

6= k∗, λ
′

6= λ∗) : Q
′

d > α and Q
′

f = Q∗

f . Since

the probability of detection is an increasing function of the

probability of false alarm, ∃(k
′

, λ
′′

) : Q
′′

d = α and Q
′′

f < Q∗

f .

This means ∃(k
′

, λ
′′

) that satisfies the throughput optimization

problem constraint and gives a lower probability of false

alarm than Q∗

f which is a contradiction. Hence, (k
′

, λ
′

) is

not the optimal point for (7) and thus (Q∗

d = α, k∗, λ∗) is the

optimal solution.�

D. Energy efficient setup

Although the detection performance of a cognitive radio

network enhances with the number of cognitive radios so does

the energy consumption. Furthermore, having a flexible k-out-

of-N fusion rule incurs a high implementation complexity to

the system. Current standards also force the cognitive radio

to behave above a certain detection performance in terms of

a lower bound on the probability of detection and an upper
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bound on the probability of false alarm [7]. Hence, it is

necessary to consider an energy efficient mechanism to reduce

the energy consumption of the system while maintaining a

standard detection reliability. We define our energy efficient

problem so as to minimize the number of cooperative cognitive

users to attain a required probability of detection and false

alarm for a fixed k as follows

min
N

N

s.t. Qd ≥ α and Qf ≤ β.
(7)

Apparently the optimal N is attained with the minimum N

in the feasible set of (7). In this paper, we consider the solution

of the problem for two special cases: the AND and the OR

rule. The extension of the problem for all k’s is a subject of

further work.

We can show the optimal N for the AND rule is the

minimum solution of the following inequality problem

Q

(

Mσ2

x + Q−1(α1/N )
√

2M(σ2
x + σ2

w)2
√

2Mσ4
w

)

≤ β1/N (8)

while for the OR rule, the optimal N is the minimum solution

of the following inequality problem

Q

(

Mσ2

x + Q−1(α
′

)
√

2M(σ2
x + σ2

w)2
√

2Mσ4
w

)

≤ β
′

(9)

where α
′

= 1 − (1 − α)1/N and β
′

= 1 − (1 − β)1/N . The

optimal N can be found by an exhaustive search in N from

1 to the first value that satisfies these inequalities.

IV. SIMULATION RESULTS

A network of 10 cognitive users is considered for the

simulations. Each cognitive radio accumulates M = 275
samples for the local decision and the SNR of the primary

user at each cognitive radio is assumed to be γ = −7 dB.

Fig. 1 shows that Qf is a convex sequence of k when Qd

is constant for the setup that is considered for the simulations.

Fig. 2a considers the throughput optimization setup. The

probability of false alarm is minimized for different detection

rate constraints. We can see that the optimal value of k

decreases with an increasing probability of detection constraint

α and in the range above 0.9 which is the desirable region for

a cognitive radio, the majority fusion rule becomes optimal.

Furthermore, we can see that at low values of the detection

rate, the AND rule is near optimal.

Fig. 2b considers the interference management setup. The

probability of detection is maximized for different false alarm

rate constraints. We can see that the optimal value of k de-

creases with an increasing probability of false alarm constraint

β and in the range below 0.1 which is the desirable region

for a cognitive radio, the majority fusion rule becomes near

optimal. Furthermore, we can see that at high values of the

false alarm rate, the OR rule is near optimal.

In Fig. 3a, the variation of the optimal value of k is consid-

ered with the number of cognitive users for the interference

management setup. Different values of the false alarm rate
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0.1

0.12

k

Q
f

 

 

Q
d
 = 0.95

Q
d
 = 0.9

Q
d
 = 0.8

Fig. 1: Convexity of Qf in k for constant Qd.

constraint are considered for the simulations. We can see that

for different numbers of cognitive users, the majority rule is

either optimal or near optimal. Furthermore, it is shown that

decreasing the false alarm rate constraint either increases or

maintains the optimal k.

In Fig. 3b, the variation of the optimal value of k is

considered with the number of cognitive users for the through-

put optimization setup. Different values of the detection rate

constraint are considered for the simulations. Similar to the

previous scenario, we can see that for different numbers

of cognitive users, the majority rule is either optimal or

near optimal for a high probability of detection constraint.

Furthermore, it is shown that increasing the detection rate

constraint either decreases or maintains the optimal k.

Fig. 4a considers the energy efficient setup for the AND

and OR rule. Two fixed β’s (β = 0.1, 0.05) are considered for

the simulation while the probability of detection constraint

α changes from 0.9 to 0.97. We can see that for different

scenarios, the OR rule attains a lower optimal N than the

AND rule, so it has a lower energy consumption for a certain

detection performance constraint.

The energy efficient setup is also considered in Fig. 4b for

two fixed α’s (α = 0.9, 0.95), while the probability of false

alarm constraint β changes from 0.01 to 0.1. As in the previous

case, the OR rule gives a better performance in terms of energy

efficiency than the AND rule.

V. CONCLUSION

In this paper, optimization of the k-out-of-N rule is consid-

ered from three viewpoints: a throughput optimization setup,

an interference management setup and an energy efficient

setup. In the throughput optimization setup, the probability of

false alarm is minimized subject to a detection rate constraint

and in the interference management setup, maximization of the

probability of detection constrained on the false alarm rate

is considered. It is shown that in both cases the underlying
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Fig. 2: a) Optimal k for the throughput optimization

setup, b) Optimal k for the interference management setup.

inequality constrained problems can be simplified to equality

constrained problems. We have shown that for the desirable

values of the probability of false alarm and detection for the

cognitive radio networks, the majority rule is either optimal

or near optimal for different number of users. Furthermore,

we proved that the throughput optimization and interference

management setups are dual.

In the energy efficient setup, the number of cognitive users

is minimized subject to a certain probability of detection and

false alarm constraint. For this setup, we only considered the

OR and the AND rule. It is shown that the OR rule has a higher

energy efficiency than the AND rule under similar detection

performance conditions.
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Fig. 3: a) Optimal k with the number of cognitive users for the

interference management setup, b) Optimal k with the number

of cognitive users for the throughput optimization setup.
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