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Round-Robin Scheduling for
Orthogonal Beamforming with Limited Feedback

Claude Simon, Member, IEEE, and Geert Leus, Senior Member, IEEE

Abstract—We propose a round-robin scheduling algorithm for
orthogonal beamforming with a strict signal to interference-
plus-noise ratio (SINR) constraint and limited feedback. The
presented algorithm aims at scheduling the users at identical slots
over different blocks, in order to reduce the necessary scheduling
overhead, and to minimize the maximum delay between serving
the same user. Thus, the presented algorithm is especially suited
for real-time multimedia traffic. The algorithm allocates the
users using orthogonal beamforming based on the quantized
feedback provided by the users. The quantized feedback consists
of the estimated power that is necessary to fulfill a predefined
SINR constraint. Further, we propose an algorithm to design
codebooks to quantize the estimated power. Using the feedback,
the base station redistributes power from users with spare power
to users that lack power so that they fulfill their SINR constraints.
The performance of the algorithm is demonstrated through
simulations.

Index Terms—Scheduling, limited feedback, beamforming.

I. INTRODUCTION

SOME of the key drivers of wireless communication are
delay-critical services like audio and video communica-

tion. Of special interest for these services is the vector Gaus-
sian broadcast channel where the base station incorporates
multiple antennas but the individual users just have a single
antenna. The vector Gaussian broadcast channel promises
large sum rates [1] if perfect channel state information (CSI)
is available at the base station. CSI is easily acquired at the
user side through training, but feeding back the CSI to the base
station is problematic due to the inevitable data-rate limitation
on the feedback link. This motivates the research into limited
feedback systems where only partial CSI is fed back to the
base station [2], [3].

Another challenging problem of multi-user schemes in gen-
eral is scheduling. The scheduling algorithm should have a low
complexity, but the transmissions to the users must still fulfill
strict Quality-of-Service (QoS) constraints. An important QoS
constraint is the minimum signal to interference-plus-noise
ratio (SINR). The minimum SINR constraint requires that
every scheduled user in the cell has an SINR larger than a
predefined threshold. Further, especially for modern real-time
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multimedia communication systems, it is important that the
delay between two transmissions to the same user remains
constant, i.e., that the users are scheduled in a round-robin
fashion. Another advantage of round-robin scheduling is the
reduced overhead since the base station does not need to
sacrifice transmission time to inform the users in every block
about their allocated slot positions. However, due to the
stochastic nature of the wireless channel, it is not possible
to provide hard QoS guarantees, i.e., if the channel is in a
deep fade it is not possible to fulfill the SINR constraint.

The large sum rate on the vector Gaussian broadcast channel
is achievable with dirty paper coding (DPC) [1], [4], [5].
DPC has a high computational complexity, but order-optimal
performance is also possible with zero-forcing beamforming
in the high SNR regime [6]. In [7], a scheduling algorithm
for zero-forcing beamforming was proposed that takes the
individual queue lengths at the base station into account.
However, zero-forcing beamforming requires perfect CSI at
the base station. One of the first schemes to exploit the
multiuser diversity assuming a data-rate limited feedback link
is orthogonal beamforming (OB). OB was presented in [8]
using opportunistic scheduling to maximize the instantaneous
sum rate. The price of using opportunistic scheduling is the
lack of short-term fairness, i.e., fairness is only achieved in
the long run. A low-complexity scheduling algorithm for OB
was proposed in [9]. The effect of partial CSI at the base
station on zero-forcing beamforming was investigated in [10].
In [11] the authors investigate the benefits of feeding back the
SINR together with the quantized direction of the zero-forcing
beamforming vectors.

Another important aspect of beamforming is the distribution
of the available power over the different beamforming vectors.
The solution to the power allocation for maximizing the
minimum SINR of the scheduled user was presented in [12],
and a solution to fulfill individual SINR constraints on the
users was presented in [13]. The concept of using the limited
CSI feedback for beamforming is also used in the PU2RC
algorithm [14], [15], an algorithm used in recent systems, e.g.,
IEEE 802.16m.

An algorithm that takes the time-varying nature of the
channel into account, but still provides strong bounds on the
maximum delay, is the Channel Aware Round-Robin (CARR)
scheduling algorithm [16]. It schedules every user once in-
side each block, but it does not implement true round-robin
scheduling, since the positions of the users inside the block
are dynamically allocated. The CARR algorithm chooses the
positions depending on the channel state of the different users
in the different slots. Thus, the maximum delay between two
transmissions using the CARR algorithm is two block lengths.
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The main disadvantage of CARR scheduling compared to
round-robin scheduling is the additional overhead. For CARR
scheduling the base station has to inform the users for every
block in what slot they are scheduled. A similar scheduling
algorithm for space division multiple access (SDMA) is the
Best Fit algorithm [17]. The Best Fit algorithm also tries to
assign all the users in every block, but it uses SDMA to
dynamically assign multiple users to the same slot depending
on the resulting SINR. It further considers an SINR constraint.
A low-complexity variant is the Partial Best Fit (PBF) algo-
rithm [18]. It just adds new users according to the Best Fit
strategy and removes the expired users, i.e., the users that have
no more packets to transmit. An overview of other algorithms
that consider scheduling under the exploitation of the spatial
diversity can be found in [19].

Our proposed algorithm tries to schedule all the users in
the cell in a round-robin fashion as long as possible. The
application of orthogonal beamforming allows to reduce the
interference between users scheduled at the same time instant.
Further, it also reduces the feedback requirements from the
users to the base station since full CSI feedback is not
necessary. We propose a corresponding feedback metric, and
we consider the necessary quantization due to the data-rate
limited feedback link. The feedback is used by the base station
to dynamically divide the available transmit power among the
users. This allows the weakest users, i.e., the users with the
worst channel conditions, to fulfill the SINR constraint longer
than with an equal power distribution. A user is rescheduled
if he is no longer able to fulfill the SINR constraint despite
receiving additional power, i.e., the user is scheduled at a
different slot and with a different beamformer in the next
block. The performance of the algorithm is depicted through
simulations for a time-varying channel.

Notation: We use capital boldface letters to denote matrices,
e.g., A, and small boldface letters to denote vectors, e.g., a.
𝐸(⋅) denotes expectation, and 𝑃 (⋅) probability. We will denote
the probability density function (pdf) of the random variable
X as 𝑓𝑋(𝑥), and the cumulative distribution function (cdf) as
𝐹𝑋(𝑥). We write the logical conjunction between two values
𝑥 and 𝑦 as 𝑥 and 𝑦, and the logical disjunction as 𝑥 or 𝑦.

II. SYSTEM MODEL

We assume a narrowband single-cell scenario where a base
station with 𝑀 antennas transmits data to 𝑁 single-antenna
users. At a given time user 𝑖 receives the symbol

𝑦𝑖 =
∑
𝑗∈𝒮

h𝑖w𝑔(𝑗)

√
𝑃𝑗𝑠𝑗 + 𝑛𝑖 (1)

where 𝒮 contains the indices of the users scheduled at that
time instant, h𝑖 ∈ ℂ1×𝑀 is the channel of user 𝑖, and
w𝑔(𝑗) ∈ ℂ𝑀×1 is the beamforming vector assigned to user
𝑗. The mapping 𝑔(𝑗) maps a beamforming vector from the
same beamformer codebook 𝒲 to every user.

The power assigned to user 𝑗 is denoted 𝑃𝑗 , and the data
symbol 𝑠𝑗 , that is transmitted to user 𝑗, is selected from a
constellation with average unit power. The noise 𝑛𝑖 is complex
Gaussian distributed with zero mean and variance 𝑁0, i.e.,
𝑛𝑖 ∼ 𝒞𝒩 (0, 𝑁0). The total allocated transmit power is limited

to 𝑃𝑇 =
∑

𝑖∈𝒮 𝑃𝑖, and the signal-to-noise ratio (SNR) of the
system is SNR = 𝑃𝑇

𝑁0
.

The users have the possibility to feed back information to
the base station at the start of every block. The feedback
link itself is instantaneous, error-free, and data-rate limited
to 𝐵 bits. All the users have to fulfill a strict SINR con-
straint denoted SINRmin. We assume that the individual users
acquire perfect channel state information (CSI) at the start of
each block through training. The time-correlated channel is
modeled according to Jakes’ model [20].

Every block consists of 𝐾 slots. We further assume that
the channel is block-fading, i.e., the channel is constant
throughout the 𝐾 slots of a block. The block index 𝑘 starts at
𝑘 = 0, and the slot index 𝑙 restarts at the beginning of each
new block at 𝑙 = 0. Thus, the relation between the current
time instant 𝑡 and the current block/slot index is 𝑡 = 𝑘𝐾 + 𝑙.

We are using a set of orthogonal beamforming vectors from
a codebook 𝒲 to simultaneously transmit to maximally 𝑀
users [8]. The codebook 𝒲 contains 𝑀 orthogonal beam-
forming vectors w𝑚. The 𝑀 beamformers in the codebook
all have unit norm, i.e., ∥w𝑚∥2 = 1,𝑚 ∈ ℳ = {1, . . . ,𝑀}.
The codebook 𝒲 is known to the users and to the base station.
Note that a possible extension would be to consider multiple
orthogonal beamforming codebooks.

The main objective is to schedule the users in a round-
robin fashion. If a user 𝑖 has been scheduled at time instant
𝑡 = (𝑘 − 1)𝐾 + 𝑙 using the beamformer w𝑚, then we want
to schedule it also at time instant 𝑡 = 𝑘𝐾 + 𝑙 using the
beamformer w𝑚. Further, all the scheduled users have to fulfill
a strict SINR constraint, i.e., they need to have an SINR higher
than SINRmin.

Serving the users in a round-robin fashion should result in
a packet delay variation of zero. However, due to the time-
varying nature of the wireless channel, there is a non-zero
probability that the channel is in a deep fade, i.e., reliable
communication is not possible. Thus, it is not possible to guar-
antee the QoS constraints, i.e., to have hard QoS guarantees.
The problem is now to exploit the available feedback link to
schedule the users as long as possible in a round-robin fashion
while still fulfilling the SINR constraint.

III. ALGORITHM OVERVIEW

We assume that the different users are able to acquire perfect
CSI at the beginning of each block, i.e., 𝑡 = 𝑘𝐾, ∀𝑘. Due to
the block-fading nature of the channel, an individual user thus
has perfect channel knowledge for every slot in the block.
Using this channel knowledge the user then calculates how
much power the base station has to assign to it in order to
reach the SINR constraint.

Next, this minimum power is quantized and fed back to the
base station. Once the base station receives all the feedback
from the users, it checks for every time slot if the sum of the
fed back quantized minimum powers exceeds the maximally
allocatable transmit power 𝑃𝑇 at the base station. If the sum
is lower, then all the users in that slot can be scheduled using
the available transmit power. However, if the sum is higher
then it is not possible to schedule all the users. The users
with the highest power demands are dropped until the sum of
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the required power for the remaining users is lower than the
available transmit power.

In the next step, the dropped users from the previous block
and the users who just entered the cell are scheduled. Once
all the users have been assigned to a slot, their required
power is assigned to them and the remaining power is equally
distributed to all the users in that slot.

A. Feeding Back the Required Power

The SINR for user 𝑖 is calculated as

SINR𝑖 =
∣h𝑖w𝑔(𝑖)∣2𝑃𝑖∑

𝑗∈𝒮∖{𝑖} ∣h𝑖w𝑔(𝑗)∣2𝑃𝑗 +𝑁0
. (2)

We see that the SINR of user 𝑖 depends on the individual
transmit powers of the users in the set 𝒮. In order to determine
the minimum amount of power that is required by user 𝑖 to
reach SINRmin, it is necessary to know the amount of power
that is assigned to the other users scheduled in the same
slot. However, the individual power levels assigned to the
other users in the set are not known to the individual users.
A solution is to feed back the full CSI to the base station
and to balance the SINR between the different users using
the algorithm in [12]. The drawback is that it requires full
channel knowledge or at least knowledge of the composite
channel energies ∣h𝑖w𝑔(𝑗)∣2, 𝑗 ∈ 𝒮 at the base station and
thus incorporates a lot of feedback.

In this paper, we try to find an estimate of the power
assigned to user 𝑖 that fulfills the SINR constraint, and that
does not depend on the power levels assigned to the other
users in the set 𝒮. This required power will be denoted 𝑃𝑖.
We start by defining an estimate of the true SINR, denoted

ˆSINR𝑖, that does not depend on how the total transmit power
is distributed over the users in 𝒮, but that is guaranteed to be
smaller than the true SINR

ˆSINR𝑖 ≤ SINR𝑖. (3)

Due to (3), it is certain that if the estimated SINR fulfills the
SINR constraint, so does the true SINR, i.e., if SINRmin ≤
ˆSINR𝑖 then SINRmin ≤ SINR𝑖. We propose to use

ˆSINR𝑖 =
∣h𝑖w𝑔(𝑖)∣2𝑃𝑖

max𝑗∈ℳ∖{𝑔(𝑖)} ∣h𝑖w𝑗 ∣2(𝑃𝑇 − 𝑃𝑖) +𝑁0
(4)

which is lower than or equal to the real SINR since inserting
(4) and (2) into (3) results in∑

𝑗∈𝒮∖{𝑖}
∣h𝑖w𝑔(𝑗)∣2𝑃𝑗 ≤ max

𝑗∈ℳ∖{𝑔(𝑖)}
∣h𝑖w𝑗 ∣2(𝑃𝑇 − 𝑃𝑖) (5)

which is always true. The minimum power assigned to a user
𝑖 that fulfills the SINR constraint and that only depends on
the total power can thus be calculated from (4) as

𝑃𝑖 =
max𝑗∈ℳ∖{𝑔(𝑖)} ∣h𝑖w𝑗 ∣2𝑃𝑇 +𝑁0

1
ˆSINRmin

∣h𝑖w𝑔(𝑖)∣2 +max𝑗∈ℳ∖{𝑔(𝑖)} ∣h𝑖w𝑗 ∣2
. (6)

Next, the power 𝑃𝑖 is quantized and fed back to the base
station.

The probability distribution of the required power depends
on whether the user is scheduled for the first time or not.
If a user is scheduled for the first time, then it chooses the

beamforming vector that maximizes its SINR, i.e., the user
chooses the beamforming vector

𝑔(𝑖) := argmax
𝑗∈ℳ

∣h𝑖w𝑗 ∣2. (7)

For the successive blocks, the beamforming vector 𝑔(𝑖) might
no longer be the beamforming vector that results in the highest
SINR for user 𝑖. However, even with this suboptimal beam-
forming vector, the user 𝑖 might fulfill the SINR constraint.

As mentioned, if a user is scheduled for the first time, then
its beamforming vector is determined using (7). For that case
we call the required power the initial required power. The
cdf and the pdf of the initial required power are derived in
Appendix B. For every successive scheduling instant, however,
the true channel changes according to the assumed channel
model, but the selected beamforming vector remains the same.
In order to simplify the derivation of the cdf and the pdf
of the required power, we assume, just for the derivation,
that the channel is i.i.d. between the scheduling instances.
This corresponds to a scenario where the channel has a high
Doppler spread or where the user has been scheduled for a
long time in the same slot. We call the resulting required
power, the regular required power. The cdf and the pdf of
the regular required power are derived in Appendix A.

B. Quantizing the Feedback

The data rate limitation on the feedback link makes a
quantization of the minimum power necessary before it can
be fed back to the base station. The quantization 𝑄 maps the
minimum power 𝑃𝑖 to an element of a predefined codebook
𝒞 = {𝑐1, . . . , 𝑐𝑏}, i.e., 𝑄 : ℝ+ → 𝒞. We assume that the
codebook size is limited to 𝑏 = 2𝐵 entries in order to fulfill the
data-rate limitation of the feedback link. The required power
𝑃𝑖 of user 𝑖 is quantized using

𝑄(𝑃𝑖) = argmin
𝑐𝑞∈𝒞

𝑐𝑞 − 𝑃𝑖 s.t. 𝑃𝑖 ≤ 𝑐𝑞 (8)

and the index 𝑞 of the element 𝑐𝑞 = 𝑄(𝑃𝑖) of the codebook 𝒞
is fed back to the base station. The quantized minimum power
of user 𝑖 is denoted 𝑃𝑄,𝑖 = 𝑄(𝑃𝑖).

In order to prevent that a user gets too little power assigned
due to the quantization error, the condition 𝑃𝑖 ≤ 𝑄(𝑃𝑖) has
to be fulfilled, and therefore we must define 𝑐𝑏 = +∞.
We further define 𝑐𝑏−1 = 𝑃𝑇 . However, this might not be
optimal in the sense of maximizing the number of scheduled
users. This is best visualized by imagining the case of having
only 1 bit available to quantize the required power. Then,
using the previous reasoning, we would use the codebook
𝒞1 = {𝑃𝑇 ,+∞}. The disadvantage of 𝒞1 is that the users
can only be scheduled in a TDMA fashion, since every
user requests either all the available transmit power 𝑃𝑇 , or
he declares that he cannot be scheduled. If we would use
the codebook 𝒞2 = {𝑃𝑇

𝑀 ,+∞}, then only users would be
scheduled that reach the SINR constraint assuming an equal
power allocation and𝑀−1 interfering users. The disadvantage
of codebook 𝒞2 is that if user 𝑖 has a required power between
𝑃𝑇

𝑀 < 𝑃𝑖 ≤ 𝑃𝑇 he cannot be scheduled, whereas that user
could have been scheduled with codebook 𝒞1. On the other
hand, the use of 𝒞2 allows the scheduling of up to 𝑀 users
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simultaneously. We see that the number of users in the cell and
also the number of available slots inside a block must be taken
into account when a codebook is designed that maximizes the
average number of scheduled users. However, in order to keep
the problem tractable, we assume that the number of users in
the cell remains small enough so that the TDMA mode is
beneficial, i.e., we always take 𝑐𝑏−1 = 𝑃𝑇 .

C. Codebook Design

In order to simplify the notation we will substitute 𝑃𝑖 with
𝑥 throughout this section. Designing the codebook requires the
definition of a distortion metric 𝑑(𝑥,𝑄(𝑥)) which serves as a
measure for the quality of the quantization. The most popular
metric used in the quantization literature is the mean squared
error [21]. However, for quantizing the required power, the
absolute error is a better metric, since it corresponds to
minimizing the overall power loss due to the quantization.
Using this metric, the average distortion 𝐷 of a codebook 𝒞
is calculated as

𝐷(𝒞) =
∫ +∞

0

∣𝑥−𝑄(𝑥)∣𝑓𝑃 (𝑥)𝑑𝑥 (9)

where 𝑓𝑃 (𝑥) is the pdf of the required power. Inserting the
selection function (8), we can rewrite (9) as

𝐷(𝒞) =
𝑏∑

𝑞=1

∫ 𝑐𝑞

𝑐𝑞−1

(𝑐𝑞 − 𝑥)𝑓𝑃 (𝑥)𝑑𝑥 (10)

with 𝑐0 = 0 since the required power of a user is always
positive. We see that, compared to classic quantizer design,
the codebook elements and the regions are directly linked.
However, fixing 𝑐𝑏 = +∞ makes (10) ill-defined since the
occurence of an element in the region (𝑃𝑇 ,+∞) leads to an
infinite average distortion. However, since 𝑐𝑏−1 and 𝑐𝑏 are
already fixed, we can also restrict ourselves to minimizing the
simplified distortion function

𝐷𝑠(𝒞) =
𝑏−1∑
𝑖=1

∫ 𝑐𝑖

𝑐𝑖−1

(𝑐𝑖 − 𝑥)𝑓𝑃 (𝑥)𝑑𝑥 (11)

with 𝑐0 = 0 and 𝑐𝑏−1 = 𝑃𝑇 . We start by rewriting (11) as

𝐷𝑠(𝒞) =
𝑏−1∑
𝑖=1

∫ 𝑐𝑖

𝑐𝑖−1

𝑐𝑖𝑓𝑃 (𝑥)𝑑𝑥 − 𝑘 (12)

with 𝑘 =
∫ 𝑃𝑇

0 𝑥𝑓𝑃 (𝑥)𝑑𝑥. It is possible to show through
simulations that 𝐷𝑠(𝒞) is not convex and not quasiconvex.
Thus, we cannot solve the problem directly using standard
tools. We start by looking for the codebooks that are critical
points of the simplified distortion function 𝐷𝑠. The gradient
of the distortion function is zero for the critical points of the
distortion function

∇𝐷𝑠(𝒞) = 0𝑏−2 (13)

where 0𝑏−2 is a (𝑏 − 2)-dimensional column vector with all
entries being 0. Since 𝑐𝑏−1 is determined beforehand we just
have 𝑏 − 2 variables in our problem. The critical points are
found by solving

∂

∂𝑐𝑖

𝑏−1∑
𝑗=1

∫ 𝑐𝑗

𝑐𝑗−1

𝑐𝑗𝑓𝑃 (𝑥)𝑑𝑥 = 0 (14)

for 𝑖 = 1, . . . , 𝑏− 2, which can be simplified to

∂

∂𝑐𝑖

∫ 𝑐𝑖

𝑐𝑖−1

𝑐𝑖𝑓𝑃 (𝑥)𝑑𝑥 +
∂

∂𝑐𝑖

∫ 𝑐𝑖+1

𝑐𝑖

𝑐𝑖+1𝑓𝑃 (𝑥)𝑑𝑥 = 0 (15)

for 𝑖 = 1, . . . , 𝑏−2. We use the Leibniz Integral Rule to solve
(15) and obtain∫ 𝑐𝑖

𝑐𝑖−1

𝑓𝑃 (𝑥)𝑑𝑥 − (𝑐𝑖+1 − 𝑐𝑖)𝑓𝑃 (𝑐𝑖) = 0 (16)

for 𝑖 = 1, . . . , 𝑏 − 2. A codebook 𝒞 that fulfills (16) is
a critical point. It is not possible to design the codebook
based on the Lloyd’s Method 1 [22] since there are no
iterative optimality conditions to solve, i.e., nearest neighbor
condition and centroid condition. However, it is possible to
design the codebook using variational techniques, e.g., Lloyd’s
Method 2 [22]. The basic idea is to solve (16) by fixing 𝑐1 and
then to calculate the remaining elements 𝑐𝑖 for 𝑖 = 2, . . . , 𝑏−2
as

𝑐𝑖+1 =
1

𝑓𝑃 (𝑐𝑖)

∫ 𝑐𝑖

𝑐𝑖−1

𝑓𝑃 (𝑥)𝑑𝑥 + 𝑐𝑖 (17)

until finally we have 𝑐𝑏−1. We assumed initially that 𝑐𝑏−1

should be 𝑃𝑇 . However, the resulting 𝑐𝑏−1 provided by (17)
might not result in 𝑐𝑏−1 = 𝑃𝑇 . Thus, if ℎ(𝑐1) = 𝑐𝑏−1 − 𝑃𝑇

is negative (positive), then it means that 𝑐1 was chosen too
small (large). Then we choose a larger (smaller) 𝑐1 until we
finally find ℎ(𝑐1) = 0 and thus 𝑐𝑏−1 = 𝑃𝑇 . Using the results
from Appendices A and B, the problem can be easily solved
numerically.

Note that we implicitly assume that the codeword 𝑐𝑏−1 is
a strictly monotonically increasing function of 𝑐1. Numerical
simulations show that this holds for the investigated cases.
The solution is then also assumed to be the unique solution
of (11), although we can not rigorously prove this.

IV. SCHEDULING

After the base station receives the instantaneous feedback
from all users, it schedules the users for the current block 𝑘
using the following three steps.

1) Validation of the Scheduled Users: The base station
starts by assigning for every slot 𝑙 = 0, . . . ,𝐾 − 1 in the
current block 𝑘 the same users that were scheduled in the same
slot in the previous block, i.e., 𝒮[𝑘𝐾 + 𝑙] := 𝒮[(𝑘− 1)𝐾+ 𝑙],
using the same beamforming vectors as in the previous block.
Then, the base station calculates the sum of the required
powers for every slot using the fed back required energies.
If the sum is larger than the available transmit power 𝑃𝑇 then
it is not possible to schedule the users so that they all fulfill the
SINR constraint while still using the same slot and the same
beamformer as in the last block. The straightforward solution
is to remove the user from the set that has the highest power
demand, i.e., the user that feeds back the highest required
power. The dropped user is added to the set 𝒰resched[𝑘𝐾] and
will be treated in the next block. This is repeated until the
sum of the minimum powers of the remaining users is smaller
than the available transmit power 𝑃𝑇 . This first step of the
scheduling algorithm is described in Algorithm 1.
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Algorithm 1 Validation of the Scheduled Users

1: 𝒰resched[𝑘𝐾] := ∅
2: for 𝑙 = 0 to 𝐾 − 1 do
3: 𝑡 := 𝑘𝐾 + 𝑙
4: 𝒮[𝑡] := 𝒮[𝑡−𝐾]
5: while

∑
𝑖∈𝒮[𝑡] 𝑃𝑄,𝑖[𝑘𝐾] > 𝑃𝑇 do

6: 𝑖 := argmax𝑖∈𝒮[𝑡] 𝑃𝑄,𝑖[𝑘𝐾]
7: 𝒮[𝑡] := 𝒮[𝑡] ∖ {𝑖}
8: 𝒰resched[𝑘𝐾] := 𝒰resched[𝑘𝐾] ∪ {𝑖}
9: end while

10: end for

2) Scheduling the New Users and Rescheduling the
Dropped Users: We collect the dropped users from the previ-
ous block 𝒰resched[(𝑘−1)𝐾] and the new users entering the cell
𝒰new[𝑘𝐾] in the set 𝒰 [𝑘𝐾] := 𝒰resched[(𝑘 − 1)𝐾]∪ 𝒰new[𝑘𝐾].
All these users feed back their required power as well as the
index of the corresponding beamforming vector. Thus, user
𝑖 ∈ 𝒰 [𝑘𝐾] feeds back 𝑔(𝑖) from (7) and 𝑃𝑄,𝑖[𝑘𝐾]. If we
assume that the data-rate limitation on the feedback link is
strict, then we have to use a codebook with 2𝐵−⌈log2 𝑀⌉ entries
to quantize 𝑃𝑖[𝑘𝐾]. The base station then tries to successively
schedule all the users in 𝒰 [𝑘𝐾] according to their fed back
minimum power. The algorithm starts by scheduling the user
with the largest power requirement first. Once this user has
been found, the base station looks for a slot that is not yet
using the preferred beamformer of the considered user. For
every one of these free slots the base station calculates the
sum of the minimum power levels of the users in the slot,
assuming the considered user is added, and finally chooses the
slot that results in the lowest sum. If the base station does not
find a valid slot then the user is skipped for the current block
and added to 𝒰resched[𝑘𝐾]. However, if the base station finds a
slot then the user is scheduled for transmission. This second
step of the scheduling algorithm is described in Algorithm 2.

3) Power Assignment: Once all the users are scheduled,
every scheduled user is assigned its required minimum power.
The remaining transmit power is uniformly distributed over the
remaining users in the same slot. Thus, the transmit power for
user 𝑖, that is allocated to 𝑡 = 𝑘𝐾 + 𝑙, is calculated as

𝑃𝑖[𝑡] := 𝑃𝑄,𝑖[𝑘𝐾] +
𝑃𝑇 −∑𝑗∈𝒮[𝑡] 𝑃𝑄,𝑗 [𝑘𝐾]

∣𝒮[𝑡]∣ . (18)

Note that this approach tries to balance the SINRs of the dif-
ferent users in the same slot. However, due to the quantization,
and due to the unknown interference between the users in the
set 𝒮[𝑡], it is not possible to truly balance the SINRs as it
is possible with full CSI at the base station [12]. It is also
possible to save power at the base station by solely assigning
the required power to the users and not redistributing the spare
power. Then, (18) simply becomes

𝑃𝑖[𝑡] := 𝑃𝑄,𝑖[𝑘𝐾]. (19)

V. SIMULATIONS

We start by comparing the performance of the codebook
design algorithm from Section III-C to different common
codebook design strategies. We design two codebooks using

Algorithm 2 Scheduling the New Users and Rescheduling the
Dropped Users

1: 𝒰 := 𝒰resched[(𝑘 − 1)𝐾] ∪ 𝒰new[𝑘𝐾]
2: while ∣𝒰∣ > 0 do
3: 𝑖 := argmax𝑖∈𝒰 𝑃𝑄,𝑖[𝑘𝐾]
4: Temp Index := −1
5: Temp Power := 𝑃𝑇

6: for 𝑙 = 0 to 𝐾 − 1 do
7: if

∑
𝑗∈𝒮[𝑘𝐾+𝑙] 𝑃𝑄,𝑗 [𝑘𝐾] + 𝑃𝑄,𝑖[𝑘𝐾] ≤

Temp Power and 𝑔(𝑖) ∕= 𝑔(𝑗), ∀𝑗 ∈ 𝒮[𝑘𝐾+ 𝑙] then
8: Temp Index := 𝑙
9: Temp Power :=

∑
𝑗∈𝒮[𝑘𝐾+𝑙] 𝑃𝑄,𝑗 [𝑘𝐾] +

𝑃𝑄,𝑖[𝑘𝐾]
10: end if
11: end for
12: if Temp Index ∕= −1 then
13: 𝒮[𝑘𝐾+Temp Index] := 𝒮[𝑘𝐾+Temp Index]∪{𝑖}
14: else
15: 𝒰resched[𝑘𝐾] := 𝒰resched[𝑘𝐾] ∪ {𝑖}
16: end if
17: 𝒰 := 𝒰 ∖ {𝑖}
18: end while

the algorithm from Section III-C. The first codebook, denoted
the regular codebook, is designed using the statistics from
Appendix A, and the second codebook, denoted the initial
codebook, is designed using the statistics from Appendix B.
Their performance is compared with a uniform codebook and
with an equiprobable codebook. All the codebooks contain
the values 𝑃𝑇 and +∞ as their two largest elements. Thus,
we can only freely choose the remaining 𝑏− 2 elements from
the codebooks. The 𝑖th element of the uniform codebook is
calculated as 𝑖 𝑃𝑇

𝑏−1 with 𝑖 = 1, . . . , 𝑏 − 2. The equiprobable
codebook is designed such that all the elements of the code-
book are selected with the same probability. First calculating
𝑃avg = 𝑃 (0≤𝑃𝑖≤𝑃𝑇 )

𝑏−1 , the different elements are successively
calculated by solving 𝐹𝑋(𝑐𝑖)−𝐹𝑋(𝑐𝑖−1) = 𝑃avg where 𝑐0 = 0
for 𝑖 = 1, . . . , 𝑏 − 2. For the simulations presented in Fig. 1
and Fig. 2, we consider the average quantization error per user
as a function of the codebook size. The simulations consider
an average SNR of 10 dB, 𝑀 = 4, and a minimum required
SINR of 7 dB. The Rayleigh channel model was used for
both simulations. We also created some simple test cases to
investigate the optimality of the proposed codebook design
algorithm. In all these test cases, the critical point turned out
to be the optimal point.

We see in Fig. 1 that the initial codebook has a lower
quantization error 𝐸(𝑃𝑄,𝑖 − 𝑃𝑖) than the other codebooks
for quantizing the power immediately after scheduling. This
is expected since the initial codebook is designed using the
proper statistics for the first scheduling instance from Ap-
pendix A. Further, we see in Fig. 1 that the regular codebook,
which is designed using the mismatched statistics, performs as
good as the equiprobable codebook that is designed using the
correct statistics, at least for small codebook sizes. However,
with every successive block the assumption that the user uses
its optimal beamformer, i.e., the beamforming vector that
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Fig. 1. Comparison of different codebook design approaches for scheduling
a user at the first slot. (𝑀 = 4, ∣𝒮∣ = 4, SNR = 10 dB, SINRmin = 7 dB).
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Fig. 2. Comparison of different codebook design approaches for scheduling
a user at a later slot. (𝑀 = 4, 𝑆 = 4, SNR = 10 dB, SINRmin = 7 dB).

maximizes the SINR, becomes weaker.
The extreme case is depicted in Fig. 2. Here we assume that

the beamforming vector is selected randomly amongst all the
available beamforming vectors. This corresponds to the case
where the user is able to fulfill its SINR constraint successively
over a prolonged time using the same beamformer. We see
that the regular codebook performs well for both cases, and
thus, for the sake of simplicity, we use the regular codebook
for the following simulations. Note that a codebook switching
strategy, where we use the initial codebook for the first slot,
and then switch to the regular codebook should provide a
minor performance gain, but requires more storage capacity
from the users and from the base station.

The simulation depicted in Fig. 3 shows how long the
different users are successively scheduled on the average as a
function of the product of the Doppler frequency 𝑓D and the
block length 𝑇f. We assume a homogeneous cell where all the
users experience SNR = 15 dB. The SINR constraint is fixed
to SINRmin = 5 dB. The time-correlation between the blocks
is modeled according to Jakes’ model. At time instant 𝑡 the
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Fig. 3. Average number of slots that a user is successively scheduled for
a varying product of block length 𝑇f and Doppler frequency 𝑓D. (𝑀 = 2,
𝐾 = 100, 150 users, 1000 blocks, SNR = 15 dB, SINRmin = 5 dB).

𝑝th element from the channel h𝑖[𝑡] is modelled as

[h𝑖[𝑡]]𝑝 =
1√
𝑄

𝑄∑
𝑞=1

𝑎𝑝,𝑞 exp(𝑗 2𝜋𝑇f𝑓D ⌈𝑡/𝐾⌉ cos𝛼𝑝,𝑞) (20)

where 𝑄 is the number of scatterers, 𝑎𝑝,𝑞 is i.i.d. com-
plex Gaussian distributed with zero mean and variance 1,
and 𝛼𝑝,𝑞 is uniformly distributed over [0, 2𝜋]. We assume
𝑄 = 30 scatterers. The influence of quantizing the fed back
minimum power is depicted for multiple codebooks and for no
quantization. We see that for slowly changing channels, i.e.,
channels with a low product of Doppler frequency 𝑓D and
block length duration 𝑇f, the average number of consecutive
blocks increases. We simulate 1000 blocks for every channel
realization, and thus the maximum number of blocks a user
can be successively scheduled is limited to 1000. However, if
𝑓D𝑇f increases, then the channel becomes more volatile. This
increases 𝑃 (

∑
𝑖∈𝒮[𝑡−𝐾] 𝑃𝑄,𝑖[𝑡] > 𝑃𝑇 ∣ ∑𝑖∈𝒮[𝑡−𝐾] 𝑃𝑄,𝑖[𝑡 −

𝐾] ≤ 𝑃𝑇 ), i.e., the probability that the users from the set
𝒮[𝑡−𝐾] in the slot 𝑡−𝐾 cannot fulfill the SINR constraint
in the slot 𝑡 and thus have to be rescheduled.

Fig. 4 depicts the average number of users that are sched-
uled per block as a function of 𝑇f𝑓D. We see that the average
number of scheduled users decreases as the channel becomes
more volatile. This is because the probability that a user has to
be rescheduled increases with the volatility of the channel, and
every rescheduled user is not scheduled for at least one block.
We also see the effects of quantizing the required power. A
smaller codebook size leads to a larger power loss since the
user requests more power than he actually needs, due to the
quantization error. For small codebooks, the system nearly
operates exclusively in TDMA mode, i.e., every slot has just
a single user assigned to.

The next simulation, Fig. 5, compares the feedback of the
required power to having full CSI at the base station. We
assume that in both cases Algorithm 2 is used to schedule the
new and the dropped users. However, the base station with full
CSI uses the results from [12] to calculate the optimal power
assigned to every beamforming vector to balance the resulting
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Fig. 4. Average number of users that are scheduled per block for a varying
product of block length 𝑇f and Doppler frequency 𝑓D. (𝑀 = 2, 𝐾 = 100,
150 users, 1000 blocks, 𝑄 = 30, SNR = 15 dB, SINRmin = 5 dB).
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Fig. 5. Average number of users that are scheduled in the same slot as
in the previous slot for a varying product of block length 𝑇f and Doppler
frequency 𝑓D. (𝑀 = 3, 𝐾 = 100, 150 users, 1000 blocks, 𝑄 = 30,
SNR = 15 dB, SINRmin = 5 dB).

SINRs. We see that having full CSI allows to schedule more
users successively in the same slot.

Fig. 6 shows the effect of erroneous CSI on the scheduling.
We create the noisy channel estimate h𝑖,noisy by adding noise
to the true channel, i.e., h𝑖,noisy = h𝑖,true+e𝑖 with e𝑖 ∈ ℂ1×𝑀 .
The different components of the noise vector are complex
Gaussian distributed with zero mean and variance 𝑁𝐸 . The
users calculate their required power based on the noisy chan-
nel, and feed it back to the base station. Then, the base station
uses the feedback to schedule the users. Next, we check, using
the true channel, how many of the scheduled users really fulfill
the SINR constraint.

VI. CONCLUSIONS

We presented a scheme to implement round-robin schedul-
ing using orthogonal beamforming and data-rate limited feed-
back. The scheme uses scalar feedback from the users to
divide the transmit power amongst the users so that they all
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Fig. 6. The effect of erroneous CSI on the number of correctly and wrongly
scheduled users in the slot for a varying product of block length 𝑇f and
Doppler frequency 𝑓D. (𝑀 = 2, 𝐾 = 100, 150 users, 1000 blocks, 𝑄 = 30,
SNR = 15 dB, SINRmin = 5 dB).

fulfill a given SINR constraint. The simulations show that
the presented algorithm is attractive to implement round-robin
scheduling for time-varying channels. We further propose an
algorithm to design the codebooks used to quantize the feed-
back, and the codebooks outperform other popular codebooks.

APPENDIX A
CDF AND PDF OF THE REGULAR REQUIRED POWER

We assume that the channel h𝑖 of user 𝑖 is a random
variable. Thus, the resulting required power 𝑃𝑖 is also a
random variable, and we want to derive the corresponding
cdf

𝐹𝑃 (𝑧) = 𝑃 (𝑃𝑖 ≤ 𝑧)

= 𝑃

(
max𝑗∈ℳ∖𝑔(𝑖) ∣h𝑖w𝑗 ∣2𝑃𝑇 +𝑁0

1
ˆSINRmin

∣h𝑖w𝑔(𝑖)∣2 +max𝑗∈ℳ∖𝑔(𝑖) ∣h𝑖w𝑗 ∣2
≤ 𝑧
)

(21)

and pdf 𝑓𝑃 (𝑧) = 𝑑
𝑑𝑧𝐹𝑃 (𝑧). We assume in this section that

the function 𝑔 : {1, . . . ,𝐾} → ℳ randomly assigns a beam-
forming vector to a user. The set of orthogonal beamforming
vectors are unit-norm ∥w𝑚∥2 = 1, ∀𝑚 and known. The
different elements of the channel h𝑖 are assumed i.i.d. and
circular Gaussian distributed according to 𝒞𝒩 (0, 1). In order
to simplify the notation we will write (21) as

𝐹𝑃 (𝑧) = 𝑃

(
𝑋𝐴𝑃𝑇 +𝑁0

𝑋𝐵 +𝑋𝐴
≤ 𝑧
)

(22)

where 𝑋𝐴 = max𝑗∈ℳ∖𝑔(𝑖) ∣h𝑖w𝑗 ∣2, and 𝑋𝐵 =
1

ˆSINRmin
∣h𝑖w𝑔(𝑖)∣2. The real part and the imaginary part

of h𝑖w𝑗 are independently Gaussian distributed 𝒩 (0, 12 ).
We define the continuous random variable 𝑋1 = ∣h𝑖w𝑗 ∣2,
and model this variable as 𝑋1 = 1

2 (𝑋
2
11 + 𝑋2

12), with
𝑋11 ∼ 𝒩 (0, 1) and 𝑋12 ∼ 𝒩 (0, 1). The term 𝑋2

11 +𝑋
2
12 is

𝜒2(2) distributed. The pdf 𝑓𝑋1(𝑥) of 𝑋1 then is

𝑓𝑋1(𝑥) =

{
𝑒−𝑥 if 𝑥 ≥ 0

0 otherwise
(23)
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and the corresponding cdf 𝐹𝑋1(𝑥) is

𝐹𝑋1(𝑥) =

{
1− 𝑒−𝑥 if 𝑥 ≥ 0

0 otherwise
. (24)

The different realizations of ∣h𝑖w𝑗 ∣2 are identical and in-
dependently distributed for all 𝑗 ∈ ℳ. The cdf of 𝑋𝐴 =
max𝑗∈ℳ∖𝑔(𝑖) ∣h𝑖w𝑗 ∣2 then is

𝐹𝑋𝐴(𝑥) = (𝐹𝑋1(𝑥))
𝑀−1 =

{
(1− 𝑒−𝑥)𝑀−1 if 𝑥 ≥ 0

0 otherwise
.

(25)

The resulting pdf of 𝑋𝐴 = max𝑗∈ℳ∖𝑖 ∣h𝑖w𝑗 ∣2 is

𝑓𝑋𝐴(𝑥) =

{
𝑒−𝑥(1− 𝑒−𝑥)𝑀−2(𝑀 − 1) if 𝑥 ≥ 0

0 otherwise
. (26)

The pdf of 𝑋𝐵 = 1
ˆSINRmin

∣h𝑖w𝑔(𝑖)∣2 corresponds to 𝑋𝐵 =
1

ˆSINRmin
𝑋1, and is

𝑓𝑋𝐵 (𝑥) =

{
ˆSINRmin 𝑒

−𝑥 ˆSINRmin if 𝑥 ≥ 0

0 otherwise
. (27)

Since the random variables 𝑋𝐴 and 𝑋𝐵 are always positive,
we can rewrite (22) as

𝐹𝑃 (𝑧) = 𝑃 ((𝑃𝑇 − 𝑧)𝑋𝐴 − 𝑧𝑋𝐵 ≤ −𝑁0) . (28)

The random variable (𝑃𝑇 − 𝑧)𝑋𝐴− 𝑧𝑋𝐵 will be abbreviated
as 𝑋𝐶 in order to keep the notation compact. We use (26) to
find the pdf of the random variable (𝑃𝑇 − 𝑧)𝑋𝐴 which is

𝑓(𝑃𝑇−𝑧)𝑋𝐴
(𝑥) =

𝑀 − 1

∣𝑃𝑇 − 𝑧∣𝑒
− 𝑥

𝑃𝑇 −𝑧 (1− 𝑒− 𝑥
𝑃𝑇 −𝑧 )𝑀−2 (29)

if ((𝑥 ≥ 0 and 𝑃𝑇 ≥ 𝑧) or (𝑥 ≤ 0 and 𝑃𝑇 ≤ 𝑧)) and
𝑓(𝑃𝑇−𝑧)𝑋𝐴

(𝑥) = 0 otherwise. The pdf of −𝑧𝑋𝐵 is found
by using (27), and is

𝑓−𝑧𝑋𝐵 (𝑥) =
ˆSINRmin

∣𝑧∣ 𝑒
𝑥
𝑧

ˆSINRmin (30)

if ((𝑥 ≥ 0 and 𝑧 ≤ 0) or (𝑥 ≤ 0 and 𝑧 ≥ 0)) and
𝑓−𝑧𝑋𝐵 (𝑥) = 0 otherwise. Since (𝑃𝑇 − 𝑧)𝑋𝐴 and −𝑧𝑋𝐵 are
statistically independent, the pdf 𝑓𝑋𝐶 can be calculated as

𝑓𝑋𝐶 (𝑥) =

∫ +∞

−∞
𝑓(𝑃𝑇−𝑧)𝑋𝐴

(𝑥− 𝑦)𝑓−𝑧𝑋𝐵 (𝑦)𝑑𝑦. (31)

The product 𝑓(𝑃𝑇−𝑧)𝑋𝐴
(𝑥 − 𝑦)𝑓−𝑧𝑋𝐵 (𝑦) is not zero when

[(𝑥 ≥ 𝑦 and 𝑃𝑇 ≥ 𝑧) or (𝑥 ≤ 𝑦 and 𝑃𝑇 ≤ 𝑧)] and [(𝑦 ≥
0 and 𝑧 ≤ 0) or (𝑦 ≤ 0 and 𝑧 ≥ 0)]. Using Boolean algebra
this can be rewritten as (𝑃𝑇 ≤ 𝑧 and 𝑥 ≤ 𝑦 and 𝑦 ≤
0 and 𝑧 ≥ 0) or (𝑃𝑇 ≤ 𝑧 and 𝑥 ≤ 𝑦 and 𝑦 ≥ 0 and 𝑧 ≤
0) or (𝑃𝑇 ≥ 𝑧 and 𝑥 ≥ 𝑦 and 𝑦 ≤ 0 and 𝑧 ≥ 0) or (𝑃𝑇 ≥
𝑧 and 𝑥 ≥ 𝑦 and 𝑦 ≥ 0 and 𝑧 ≤ 0). We can thus distinguish
between the following four cases:

∙ Case 1: 𝑃𝑇 ≤ 𝑧 and 𝑥 ≤ 𝑦 and 𝑦 ≤ 0 and 𝑧 ≥ 0
∙ Case 2: 𝑃𝑇 ≤ 𝑧 and 𝑥 ≤ 𝑦 and 𝑦 ≥ 0 and 𝑧 ≤ 0
∙ Case 3: 𝑃𝑇 ≥ 𝑧 and 𝑥 ≥ 𝑦 and 𝑦 ≤ 0 and 𝑧 ≥ 0
∙ Case 4: 𝑃𝑇 ≥ 𝑧 and 𝑥 ≥ 𝑦 and 𝑦 ≥ 0 and 𝑧 ≤ 0

We see in (22) that 𝐹𝑃 (𝑧) = 0, ∀𝑧 < 0. Thus, we can ignore
Case 2 and Case 4. Next, we rewrite (31) as

𝑓𝑋𝐶 (𝑥) =

⎧⎨
⎩
𝑓𝑋𝐶 ,1(𝑥) 0 ≤ 𝑧 ≤ 𝑃𝑇

𝑓𝑋𝐶 ,2(𝑥) 𝑃𝑇 ≤ 𝑧
0 otherwise

(32)

with

𝑓𝑋𝐶 ,1(𝑥) =
(𝑀 − 1) ˆSINRmin

∣𝑃𝑇 − 𝑧∣𝑧 𝑒
− 𝑥

𝑃𝑇 −𝑧

∫ min(0,𝑥)

−∞
𝑒
𝑦
(

1
𝑃𝑇 −𝑧+

ˆSINRmin
𝑧

)
(1− 𝑒− 𝑥−𝑦

𝑃𝑇 −𝑧 )𝑀−2𝑑𝑦. (33)

Since we assume that 𝑀 ≤ 2 we can rewrite the previous
equation as

𝑓𝑋𝐶 ,1(𝑥) =
(𝑀 − 1) ˆSINRmin

∣𝑃𝑇 − 𝑧∣𝑧 𝑒
− 𝑥

𝑃𝑇 −𝑧

𝑀−2∑
𝑘=0

(
𝑀 − 2

𝑘

)

(−1)𝑘𝑒
− 𝑘𝑥

𝑃𝑇 −𝑧

∫ min(0,𝑥)

−∞
𝑒
𝑦
(

𝑘+1
𝑃𝑇 −𝑧+

ˆSINRmin
𝑧

)
𝑑𝑦. (34)

Similarly, the second case in (32) becomes

𝑓𝑋𝐶 ,2(𝑥) =
(𝑀 − 1) ˆSINRmin

∣𝑃𝑇 − 𝑧∣𝑧 𝑒
− 𝑥

𝑃𝑇 −𝑧

𝑀−2∑
𝑘=0

(
𝑀 − 2

𝑘

)

(−1)𝑘𝑒
− 𝑘𝑥

𝑃𝑇 −𝑧

∫ 0

𝑥

𝑒
𝑦
(

𝑘+1
𝑃𝑇 −𝑧+

ˆSINRmin
𝑧

)
𝑑𝑦. (35)

Using 𝑓𝑋𝐶 we can now calculate the cdf

𝐹𝑃 (𝑧) =

⎧⎨
⎩
𝐹𝑃,1(𝑧) =

∫ −𝑁0

−∞ 𝑓𝑋𝐶 ,1(𝑥)𝑑𝑥 0 ≤ 𝑧 ≤ 𝑃𝑇

𝐹𝑃,2(𝑧) =
∫ −𝑁0

−∞ 𝑓𝑋𝐶 ,2(𝑥)𝑑𝑥 𝑃𝑇 ≤ 𝑧
0 otherwise

.

(36)
On the region 0 ≤ 𝑧 ≤ 𝑃𝑇 the cdf is given by

𝐹𝑃,1(𝑧) =

𝑀−2∑
𝑘=0

(
𝑀 − 2

𝑘

)
(−1)𝑘

(𝑀 − 1)𝑧

𝑧𝑘 + 𝑧 + ˆSINRmin(𝑃𝑇 − 𝑧)𝑒
−𝑁0

ˆSINRmin
𝑧 . (37)

The cdf 𝐹𝑃,1(𝑧) can be written in a more compact form. We
start by rewriting (37) as

𝐹𝑃,1(𝑧) = (𝑀 − 1)!

𝑀−2∑
𝑘=0

(−1)𝑘

(𝑀 − 2− 𝑘)!𝑘!
(−1)𝑘

(𝑘 + 1 + ˆSINRmin(
𝑃𝑇

𝑧 − 1))
𝑒−𝑁0

ˆSINRmin
𝑧 (38)

Using Lemma 1 we can rewrite it as

𝐹𝑃,1(𝑧) = Γ(𝑀)
Γ(1 + ˆSINRmin(

𝑃𝑇

𝑧 − 1)

Γ(𝑀 + ˆSINRmin(
𝑃𝑇

𝑧 − 1)
𝑒−𝑁0

ˆSINRmin
𝑧 . (39)
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On the region 𝑃𝑇 < 𝑧 the cdf is given by

𝐹𝑃,2(𝑧) = −
𝑀−2∑
𝑘=0

(
𝑀 − 2

𝑘

)
(−1)𝑘

(𝑀 − 1) ˆSINRmin

𝑧𝑘 + 𝑧 + ˆSINRmin(𝑃𝑇 − 𝑧)(
𝑃𝑇 − 𝑧
−1− 𝑘𝑒

−𝑁0
−1−𝑘
𝑃𝑇 −𝑧 − 𝑧

ˆSINRmin
𝑒−𝑁0

ˆSINRmin
𝑧

)
. (40)

Using (36) the pdf of the required power can now be calculated
using simple derivation.

Lemma 1: Let 𝑎 ∈ ℝ with 𝑥 > 0, and 𝑏 ∈ ℕ. Then, the
identity

𝑏∑
𝑘=0

(−1)𝑘

𝑘!(𝑏− 𝑘)!(𝑘 + 1 + 𝑎)
=

𝑏+1∏
𝑗=1

1

𝑎+ 𝑗
(41)

is true.
Proof: We prove the lemma by induction. It is easy to see

that the equation is valid for the induction basis, i.e., 𝑏 = 0.
Next, we have to show that (41) is true for 𝑏 if it is true for
𝑏− 1. We start by rewriting (41) as

𝑏∑
𝑘=0

(−1)𝑘

𝑘!(𝑏− 𝑘)!(𝑘 + 1 + 𝑎)
=

1

𝑎+ 𝑏+ 1

𝑏∏
𝑗=1

1

𝑎+ 𝑗
. (42)

Now, we insert the induction hypothesis and obtain

𝑏∑
𝑘=0

(−1)𝑘

𝑘!(𝑏 − 𝑘)!(𝑘 + 1 + 𝑎)
=

1

𝑎+ 𝑏+ 1

𝑏−1∑
𝑘=0

(−1)𝑘

𝑘!(𝑏− 1− 𝑘)!(𝑘 + 1 + 𝑎)
(43)

⇒
𝑏∑

𝑘=0

(−1)𝑘

𝑘!(𝑏− 𝑘)! = 0. (44)

Using the identity

𝑏∑
𝑘=0

(−1)𝑘
(
𝑏

𝑘

)
= 0 (45)

from [23], we see that (44) is true. Thus, the induction step
is proved as well.

APPENDIX B
CDF AND PDF OF THE INITIAL REQUIRED POWER

As in Appendix A we want to calculate the cdf of the initial
required power

𝐹𝑃 (𝑧) = 𝑃 (𝑃min ≤ 𝑧) =

𝑃

(
max𝑗∈ℳ∖𝑔(𝑖) ∣h𝑖w𝑗 ∣2𝑃𝑇 +𝑁0

1
ˆSINRmin

∣h𝑖w𝑔(𝑖)∣2 +max𝑗∈ℳ∖𝑔(𝑖) ∣h𝑖w𝑗 ∣2
≤ 𝑧
)

(46)

and its corresponding pdf 𝑓𝑃 (𝑧) = 𝑑
𝑑𝑧𝐹𝑃 (𝑧).

However, in contrast to Appendix A we assume that
𝑔(𝑖) = argmax𝑗∈ℳ ∣h𝑖w𝑗∣2. Thus, we cannot assume
that max𝑗∈ℳ∖𝑔(𝑖) ∣h𝑖w𝑗 ∣2 and ∣h𝑖w𝑔(𝑖)∣2 are statistically
independent anymore. We define again the continuous

random variable 𝑋1 = ∣h𝑖w𝑗 ∣2, with the pdf (23), and
the cdf (24). Using ordering statistics notation, we write
𝑋(𝑀−1) = max𝑗∈ℳ∖𝑔(𝑖) ∣h𝑖w𝑗 ∣2 and 𝑋(𝑀) = ∣h𝑖w𝑔(𝑖)∣2
with 𝑋(1) ≤ 𝑋(2) ≤ . . . ≤ 𝑋(𝑀), and thus

𝐹𝑃 (𝑧) = 𝑃

(
𝑋(𝑀−1)𝑃𝑇 +𝑁0

1
ˆSINRmin

𝑋(𝑀) +𝑋(𝑀−1)

≤ 𝑧
)
. (47)

The problem can be reformulated as

𝐹𝑃 (𝑧) = 𝑃 ((𝑋(𝑀−1), 𝑋(𝑀)) ∈ 𝐷𝑧) (48)

=

∫∫
𝐷𝑧

𝑓𝑗(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 (49)

where the region 𝐷𝑧 is

𝐷𝑧 = {(𝑥, 𝑦) ∈ ℝ
2 ∣ 𝑥𝑃𝑇 +𝑁0

1
ˆSINRmin

𝑦 + 𝑥
≤ 𝑧} (50)

and the joint density 𝑓 of 𝑋(𝑀−1) and 𝑋(𝑀) is calculating
using [24, Eq. (2.1.6)] as

𝑓(𝑥, 𝑦) =

{
𝑀 !

(𝑀−2)!𝐹𝑋1 [𝑥]
𝑀−2𝑓𝑋1(𝑦)𝑓𝑋1(𝑥) if 𝑥 < 𝑦

0 otherwise
.

(51)

However, since (23), (24), and (51) are piecewise functions,
the evaluation of (49) is cumbersome. Thus, we define the
region 𝐷1 ⊂ 𝐷𝑧

𝐷1 := {(𝑥, 𝑦) ∈ 𝐷𝑧 ∣ 0 ≤ 𝑥 and 0 ≤ 𝑦 and 𝑥 ≤ 𝑦} (52)

where 𝑓 is non-zero. Next, we define the function 𝑓1 : 𝐷1 →
ℝ as

𝑓1(𝑥, 𝑦) =
𝑀 !

(𝑀 − 2)!
(1− 𝑒−𝑦)𝑀−2𝑒−𝑦𝑒−𝑥. (53)

Then, using (52) and (53), we can rewrite (49) as

𝐹𝑃 (𝑧) =

∫∫
𝐷𝑧

𝑓(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 =

∫∫
𝐷1

𝑓1(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 (54)

The domain 𝐷1 can now be calculated as

𝐷1 =

{
𝐷2 if 𝑃𝑇 − 𝑧 > 0

𝐷3 if 𝑃𝑇 − 𝑧 < 0
(55)

𝐷2 = {(𝑥, 𝑦) ∈ ℝ ∣ 0 < 𝑥 < 𝑎𝑦 − 𝑏 and 0 < 𝑥 ≤ 𝑦} (56)

𝐷3 = {(𝑥, 𝑦) ∈ ℝ ∣ 𝑎𝑦 − 𝑏 < 𝑥 and 0 < 𝑥 ≤ 𝑦
and 0 ≤ 𝑦} (57)

with 𝑎 = 𝑧
(𝑃𝑇−𝑧) ˆSINRmin

and 𝑏 = 𝑁0

𝑃𝑇−𝑧 . We start by calculating
𝐷2, i.e., we assume that 𝑃𝑇 − 𝑧 > 0. We see that 𝐷2 is
bounded by the line 𝐿1 = {(𝑥, 𝑦) ∈ ℝ2 ∣ 𝑥 = 𝑎𝑦 − 𝑏} and
𝐿2 = {(𝑥, 𝑦) ∈ ℝ2 ∣ 𝑥 = 𝑦}. We differentiate between the
following three cases:

∙ 𝑎 > 1 ⇔ 𝑧 > 𝑃𝑇
ˆSINRmin

1+ ˆSINRmin

∙ 𝑎 = 1 ⇔ 𝑧 = 𝑃𝑇
ˆSINRmin

1+ ˆSINRmin

∙ 𝑎 < 1 ⇔ 𝑧 < 𝑃𝑇
ˆSINRmin

1+ ˆSINRmin



SIMON and LEUS: ROUND-ROBIN SCHEDULING FOR ORTHOGONAL BEAMFORMING WITH LIMITED FEEDBACK 2495

Line 𝐿1 and 𝐿2 intersect at a point with the exception of the
second case, i.e., 𝑎 = 1, where 𝐿1 and 𝐿2 are parallel. The
intersection point (𝑥𝑐, 𝑦𝑐) is calculated as

𝑥𝑐 = 𝑦𝑐 = − 𝑁0
ˆSINRmin

ˆSINRmin(𝑃𝑇 − 𝑧)− 𝑧 . (58)

Another point of interest is the intersection of 𝐿1 with the
y-axis. This point, denoted (0, 𝑦0), is calculated as

𝑦0 =
𝑁0

ˆSINRmin

𝑧
. (59)

We start by investigating 𝑎 > 1. We assume that 𝐿1 and 𝐿2

intersect on the line segment {(𝑥, 𝑥) ∈ ℝ2 ∣ 𝑥 < 0}, i.e., we
assume that

− 𝑁0
ˆSINRmin

ˆSINRmin(𝑃𝑇 − 𝑧)− 𝑧 < 0 (60)

⇒ 𝑃𝑇
ˆSINRmin

ˆSINRmin + 1
> 𝑧 (61)

which contradicts that 𝑎 > 1, and thus 𝐿1 and 𝐿2 must
intersect on {(𝑥, 𝑥) ∈ ℝ2 ∣ 𝑥 ≥ 0}. We can now define the
domain 𝐷2 for 𝑃𝑇

ˆSINRmin

1+ ˆSINRmin
< 𝑧 < 𝑃𝑇 as

𝐷2 = {(𝑥, 𝑦) ∈ ℝ ∣ (0 < 𝑥 < 𝑎𝑦 − 𝑏 and 𝑦0 < 𝑦 < 𝑦𝑐)

or (0 < 𝑥 < 𝑦 and 𝑦𝑐 < 𝑦))}. (62)

Next, we investigate 𝑎 = 1, i.e., 𝐿1 and 𝐿2 are parallel. Since
𝑏 > 0, the border of 𝐷2 is defined by 𝐿1, and 𝐿1 intersects
with the y-axis at 𝑦0. We can then define the domain 𝐷2 for
𝑧 = 𝑃𝑇

ˆSINRmin

1+ ˆSINRmin
as

𝐷2 = {(𝑥, 𝑦) ∈ ℝ ∣ 0 < 𝑥 < 𝑎𝑦 − 𝑏 and 𝑦0 < 𝑦)}. (63)

Finally, we assume that 𝑎 < 1. We approach this case as
the 𝑎 > 1 case: We can prove that the intersection of 𝐿1

and 𝐿2 has negative coordinates, and next, we determine the
intersection of 𝐿1 and the y-axis. We can then define the
domain 𝐷2 for 0 < 𝑧 < 𝑃𝑇

ˆSINRmin

1+ ˆSINRmin
as

𝐷2 = {(𝑥, 𝑦) ∈ ℝ ∣ 0 < 𝑥 < 𝑎𝑦 − 𝑏 and 𝑦0 < 𝑦}. (64)

We see that we can omit to treat the 𝑎 = 1 case separately
by including it with 𝑎 > 1 or 𝑎 < 1. We choose 𝑎 > 1, and
thus 𝑎 ≥ 1 covers the region 𝑃𝑇

ˆSINRmin

1+ ˆSINRmin
≤ 𝑧 < 𝑃𝑇 . Finally, we

can express the region 𝐷2 as

𝐷2 = {(𝑥, 𝑦) ∈ ℝ ∣ (0 < 𝑥 < 𝑎𝑦 − 𝑏 and 𝑦0 < 𝑦)} (65)

if 0 < 𝑧 < 𝑃𝑇
ˆSINRmin

1+ ˆSINRmin
and

𝐷2 = {(𝑥, 𝑦) ∈ ℝ ∣ (0 < 𝑥 < 𝑎𝑦 − 𝑏 and 𝑦0 < 𝑦 < 𝑦𝑐)

or (0 < 𝑥 < 𝑦 and 𝑦𝑐 < 𝑦))} (66)

if 𝑃𝑇
ˆSINRmin

1+ ˆSINRmin
≤ 𝑧 < 𝑃𝑇 . We can now proceed to determine

the region 𝐷3. Using the fact that 𝑧 > 𝑃𝑇 and using (61)
we see that the intersection point of 𝐿1 and 𝐿2 has positive
coordinates. Since 𝑎 < 0, the region 𝐷3 is

𝐷3 = {(𝑥, 𝑦) ∈ ℝ ∣ (𝑎𝑦 − 𝑏 < 𝑥 < 𝑦 and 𝑦𝑐 < 𝑦 < 𝑦0)

or (0 < 𝑥 < 𝑦 and 𝑦0 < 𝑦)} (67)

and thus all the domaines are determined. The resulting cdf is

𝐹𝑃 (𝑧) =

⎧⎨
⎩

0 𝑧 < 0

𝐹𝑃1(𝑧) 0 < 𝑧 < 𝑃𝑇
ˆSINRmin

1+ ˆSINRmin

𝐹𝑃2(𝑧)
𝑃𝑇

ˆSINRmin

1+ ˆSINRmin
< 𝑧 < 𝑃𝑇

𝐹𝑃3(𝑧) 𝑃𝑇 < 𝑧

. (68)

The different pieces of the cdf can now be determined using
straightforward integration. On the domain (0, 𝑃𝑇

ˆSINRmin

1+ ˆSINRmin
) the

cdf 𝐹𝑃 (𝑧) is

𝐹𝑃1(𝑧) =

∫ +∞

𝑦0

∫ 𝑎𝑦−𝑏

0

𝑓1(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 (69)

𝐹𝑃1(𝑧) =

𝑀−2∑
𝑘=0

(−1)𝑘
𝑀 !

𝑘!(𝑀 − 2− 𝑘)!
𝑧

(𝑃𝑇 − 𝑧) ˆSINRmin + 𝑧(𝑘 + 1)
𝑒−

𝑁0
ˆSINRmin
𝑧 . (70)

On the domain [𝑃𝑇
ˆSINRmin

1+ ˆSINRmin
, 𝑃𝑇 ), 𝐹𝑃 (𝑧) is calculated as

𝐹𝑃2(𝑧) =

∫ 𝑦𝑐

𝑦0

∫ 𝑎𝑦−𝑏

0

𝑓1(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦+∫ +∞

𝑦𝑐

∫ 𝑦

0

𝑓1(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 (71)

and results in (72). Finally, on the domain [𝑃𝑇 ,+∞), the cdf
𝐹𝑃 is determined by evaluating

𝐹𝑃3(𝑧) =

∫ 𝑦0

𝑦𝑐

∫ 𝑦

𝑎𝑦−𝑏

𝑓1(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦+∫ +∞

𝑦0

∫ 𝑦

0

𝑓1(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦. (73)

We see that 𝐹𝑃3 = 𝐹𝑃2, and thus the cdf is now

𝐹𝑃 (𝑧) =

⎧⎨
⎩
0 𝑧 < 0

𝐹𝑃1(𝑧) 0 < 𝑧 < 𝑃𝑇
ˆSINRmin

1+ ˆSINRmin

𝐹𝑃2(𝑧)
𝑃𝑇

ˆSINRmin

1+ ˆSINRmin
< 𝑧

. (74)

The corresponding pdf can now be calculated by straightfor-
ward derivation.
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