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Emitter Localization Given Time Delay and
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Abstract

Given time and frequency differences of arrival measurements, we estimate the position and velocity

of an emitter by jointly eliminating non-linear nuisance parameters with an orthogonal projection matrix.

Although simulation results show that this estimator does not always perform as well as the two-step

estimator, the benefit is its computational simplicity. Whereas the complexity of the two-step estimator

increases cubically with respect to the number of sensors, the complexity of the proposed estimator

increases quadratically.

Index Terms

Source position estimation, time difference of arrival, frequency difference of arrival.

1. INTRODUCTION

Estimating the location of an emitter with a passive sensor array has been of considerable interest

for many years, and has found many applications in several fields including radar, sonar, wireless

communications, satellites, airborne systems, and acoustics [1]–[11]. With the common indirect estimation

approach [1], [2], one or more parameters (e.g., angle or time of arrival) are measured, and the emitter
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parameters (position and/or velocity) are then determined. A different approach is to estimate the emitter

parameters directly from the observations [10], [11]. Herein, we focus on the former approach assuming

a stationary passive sensor array and a moving emitter.

Given the measurements of time differences of arrival (TDOAs) and frequency differences of arrival

(FDOAs) between pairs of observed signals, the goal is to estimate the source position and velocity1.

Weinstein proposed an estimation technique which is applicable for a linear array only and assumes a

source in the far-field region [5]. The estimation procedure suggested by Ho and Xu [9] extended the

two-step approach of Chan and Ho [8] by taking into account the FDOA measurements. The idea of Ho

and Xu [9] is to obtain a set of linear equations by introducing two nuisance parameters (the range and

range rate associated with the reference sensor and the source). In the first step, a weighted least squares

(WLS) solution is proposed to estimate the position and velocity of the source together with these nuisance

parameters, and in the second step, the relations between the nuisance parameters and the parameters

of interest are used to solely estimate the position and velocity using another WLS minimization. The

performance of this method was shown to be close to the Cramér-Rao lower bound (CRLB) [9, Appendix

C]. Friedlander suggested to estimate the source position and velocity by extending his least squares (LS)

method which was developed to locate a stationary source given TDOAs only [7]. The LS position estimate

of a stationary source relies on an orthogonal projection matrix to eliminate the nuisance parameter (range

between the reference sensor and the source). The notion of Friedlander’s extension [7, Section V] was

to use two similar orthogonal projections in a subsequent manner as follows: first obtain the LS source

position as previously explained, and then eliminate the second nuisance parameter (range-rate between

the reference sensor and the source) using the same orthogonal projection to get the LS velocity estimate.

Our simulation results show that this subsequent projection approach has poor performance compared to

the two-step approach [9] and the CRLB.

Herein, by exploiting the idea leading to Friedlander’s TDOA-based positioning method [7], we propose

1The TDOAs and FDOAs are obtained by maximizing the ambiguity function [12]. Their statistical properties are discussed

in [13], [14], and [16], assuming a known, an unknown deterministic, and a random transmitted signal, respectively.
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a LS estimator of the source position and velocity which is obtained from using a joint elimination (a

single orthogonal projection) of the two nuisance parameters. It is noteworthy to mention that this LS

estimate is closely related to the first step WLS estimate in [9] following the results in [15]. We show that

the estimates are asymptotically unbiased, and also derive their covariance matrix. The performance of

the proposed estimator is evaluated with simulations for a source in the near-field and far-field regions as

a function of: i) the noise variance using a circular sensor array and a random sensor array, ii) the number

of sensors, and iii) the ratio between the variances of the TDOA and the FDOA measurements. We show

that there is a trade-off between performance and complexity. Although, the proposed algorithm does not

always perform as well as the two-step approach, the main advantage is its computational complexity.

Whereas the complexity of the previously suggested two-step estimator increases cubically with respect

to the number of sensors, the complexity of the proposed estimator only increases quadratically.

Notation: uppercase and lowercase bold fonts denote matrices and vectors, respectively. (·)T , (·)−1

stand for transpose, and inverse, respectively. In is the n × n identity matrix, 0n is a n × 1 vector with

all elements equal to zero. diag(z1, . . . , zN ) is a diagonal matrix with z1, . . . , zN on the main diagonal.

E[x] represents the expectation of the random vector x. ẋ is the time derivative of x(t) with respect to t,

i.e., ẋ = dx(t)/dt. ‖x‖ is the 2-norm of x. ⊗ is the Kronecker product. X⊥ is the orthogonal projection

matrix of X, i.e., X⊥ = I−X(XHX)−1XH . x̄ is the concatenation of x and ẋ, i.e., x̄ = [xT , ẋT ]T . x̂

is the estimate of x in the presence of Gaussian noise, i.e., x̂ = x + e where e is a zero mean Gaussian

vector representing the estimation error. x̃ represents the first order error of the estimate x̂, i.e., x̂ = x+x̃.

2. PROBLEM FORMULATION

Consider M stationary sensors and a moving source distributed in a q-dimensional Cartesian coordinate

system (q = 2 or q = 3). Let p̄s
Δ
= [pT

s , ṗT
s ]T be the 2q × 1 vector, where ps and ṗs are the q × 1 true

unknown position and velocity vectors of coordinates of the source. Let pm, m = 1, 2, ..., M denote the

known q × 1 vector of coordinates of the mth sensor (We note that the setup in [9] is developed for the

case of moving sensors. The extension of the current problem formulation and the proposed method to
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this case is straightforward). Let Δtm,1 and Δfm,1 be the true TDOA and FDOA between the signals

received by the mth sensor and the first (reference) sensor. Denote by c the signal propagation speed and

by fc the carrier frequency of the signal. The true range rm,1 and range-rate ṙm,1 differences are

rm,1
Δ
= cΔtm,1 = dm,s − d1,s (1)

ṙm,1
Δ
=

c

fc

Δfm,1 = ḋm,s − ḋ1,s (2)

where the range dm,s and range-rate ḋm,s between the mth sensor and the source are defined as,

dm,s
Δ
= ‖ps − pm‖ (3)

ḋm,s
Δ
=

(pm − ps)
T ṗs

dm,s

(4)

We note that the TDOA and FDOA measurements are taken over a short interval and the assumption is

that the source position and velocity to be estimated (assumed to be at some point in the interval) do not

change much during the measurements.

Define the 2(M − 1) × 1 vector r̄
Δ
= [rT , ṙT ]T where r

Δ
= [r2,1, . . . , rM,1]

T and ṙ
Δ
= [ṙ2,1, . . . , ṙM,1]

T

are (M − 1) × 1 vectors. In practice, we are given the noisy 2(M − 1) × 1 vector,

ˆ̄r = r̄ + δ (5)

where ˆ̄r
Δ
= [r̂T , ˆ̇rT ]T , and r̂

Δ
= [r̂2,1, . . . , r̂M,1]

T , ˆ̇r
Δ
= [ˆ̇r2,1, . . . , ˆ̇rM,1]

T are (M −1)×1 vectors containing

the noisy measurements of the range and range-rate differences, respectively. The 2(M − 1) × 1 vector

δ
Δ
= [εT , ξT ]T is the additive noise where ε

Δ
= [ε2,1, . . . , εM,1]

T and ξ
Δ
= [ξ2,1, . . . , ξM,1]

T are (M −1)×1

vectors. We assume that δ is a zero mean Gaussian random vector with a covariance matrix E[δδT ].

The problem we discuss is briefly expressed as follows: Given the vector of measurements ˆ̄r, determine

the vector of interest p̄s.
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3. THE PROPOSED LEAST-SQUARES ESTIMATOR

We start by developing a model which linearly depends on p̄s following the mathematical derivations

introduced in [7]. Define the (M − 1) × q matrix S and the (M − 1) × 1 vector u as,

S
Δ
= [p2 − p1, · · · ,pM − p1]

T (6)

u
Δ
=

1

2

[
‖p2‖

2 − ‖p1‖
2 − r2

2,1, . . . , ‖pM‖2 − ‖p1‖
2 − r2

M,1

]T

(7)

According to [7, Eq. (7a)] we have the following relation,

Sps = u − d1,sr (8)

Next, define the (M − 1) × 1 time derivative vector of u, denoted by u̇, and the 2 × 1 vector d̄1,s as

u̇
Δ
= [−r2,1ṙ2,1, . . . ,−rM,1ṙM,1]

T (9)

d̄1,s
Δ
= [d1,s, ḋ1,s]

T (10)

Then, according to [7, Eq. (60)] we get that,

Sṗs = u̇ − [ ṙ r ]d̄1,s (11)

In [7] the two models in (8) and (11) were considered separately. Herein, we note that these two models

contain the vectors of interest, i.e., the position and the velocity of the source. Hence, by combining (8)

and (11) we get a linear model with respect to (w.r.t.) p̄s given as,

Fp̄s + Hd̄1,s = ū (12)

where the 2(M − 1) × 1 vector ū, the 2(M − 1) × 2q matrix F, and the 2(M − 1) × 2 matrix H are

ū
Δ
= [uT , u̇T ]T (13)

F
Δ
= I2 ⊗ S (14)

H
Δ
=

⎡
⎣ r 0M−1

ṙ r

⎤
⎦ (15)
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where In is an n × n identity matrix, ⊗ is a Kronecker product, and 0n is an n × 1 vector of zeros.

The linear model in (12) contains both the unknown non-linear nuisance vector d̄1,s (range and range-

rate of the source w.r.t. the reference sensor) and the unknown vector of interest p̄s. In [9] the approach

is to first estimate d̄1,s together with p̄s, and then to use the relation between the two vectors to further

refine the previous estimate of p̄s. In [7] the estimation is based on: i) eliminating the term associated

with d1,s in (8), with an orthogonal projection matrix [7, Eq. (8)], and obtaining the LS solution for ps;

ii) eliminating the term associated with ḋ1,s in (11), using the same orthogonal projection matrix [7, Eq.

(8)], and then obtaining the LS solution for ṗs (where d1,s involved in the latter solution is calculated

using the estimate of ps obtained after the first step).

We adopt a different approach. The idea is to jointly eliminate the unknown non-linear nuisance vector

d̄1,s in (12) using an appropriate orthogonal projection matrix which leads to an equation that solely

depends on the unknown vector of interest p̄s. It is noteworthy to mention that this operation considers

the two vectors d̄1,s and p̄s as independent, and ignores the fact that they are mathematically related.

We define the 2(M − 1) × 2(M − 1) orthogonal projection matrix of H as,

P⊥ = I2(M−1) − H
(
HTH

)−1
HT (16)

Pre-multiplying (12) with P⊥ yields a linear model which only depends on the vector of interest p̄s,

P⊥Fp̄s = P⊥ū (17)

In the presence of noise we replace the true vectors and matrices in (17) by their noisy versions (i.e., we

write ˆ̄u instead of ū), since we will adopt the noisy measurements vector ˆ̄r given in (5). This results in

the error vector, denoted by η, and (17) is then given by

P̂⊥ ˆ̄u = P̂⊥Fˆ̄ps + η (18)

The LS estimate of p̄s is obtained by minimizing the square norm of η, that is,

ˆ̄ps = argmin
p̄s

∥∥∥P̂⊥(Fp̄s − ˆ̄u)
∥∥∥2

= Q̂ˆ̄u (19)
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where Q̂ is a 2q × 2(M − 1) matrix defined as,

Q̂
Δ
= (FT P̂⊥F)−1FT P̂⊥ (20)

This concludes the derivation of the proposed estimator. Notice that following the results in [15], the LS

estimator in (19) is related to the WLS estimator obtained in the first step in [9]. In the next sections we

focus on the small error performance and the computational complexity of this LS estimator.

4. SMALL ERROR ANALYSIS

We examine the effect of noise on the position and the velocity estimates using small error analysis.

The idea is to express the estimate ˆ̄ps as ˆ̄ps
∼= p̄s + ˜̄ps where ˜̄ps is the first order error of ˆ̄ps (higher

order error terms of ˆ̄ps depend on products involving both ε and ξ and are therefore ignored). The

approximated bias of the estimate ˆ̄ps is then given by E[˜̄ps], and the approximated covariance of ˆ̄ps is

then given by E[(˜̄ps − E[˜̄ps])(˜̄ps − E[˜̄ps])
T ]. We start by obtaining an explicit expression for ˜̄ps and

then analyze its two first moments.

Considering the estimate in (19), we express the noisy matrix Q̂ and the noisy vector ˆ̄u using first

order approximations as Q̂ = Q + Q̃ and ˆ̄u = ū + ˜̄u, respectively (the explicit expressions for the first

order error terms, Q̃ and ˜̄u are given in Appendix A). We then get that

ˆ̄ps = Q̂(ū + ˜̄u)

= Q̂(Fp̄s + Hd̄1,s) + Q̂˜̄u

= p̄s + Q̂Hd̄1,s + Q̂˜̄u

∼= p̄s + (Q + Q̃)Hd̄1,s + Q˜̄u

= p̄s + Q̃Hd̄1,s + Q˜̄u (21)

where in the second passing we substitute ū by Fp̄s +Hd̄1,s, in the third passing we used the result that

Q̂F = I, in the forth passing we neglected the term Q̃˜̄u which involves products of errors, and finally
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in the fifth passing we used the result that QH = 0. The first order error of ˆ̄ps is thus

˜̄ps
Δ
= Q̃Hd1,s + Q˜̄u (22)

Substituting in (22) the expressions for Q̃ and ˜̄u (obtained in (32) and (35) in Appendix A) results in,

˜̄ps = QJδ (23)

where we define the 2(M − 1) × 2(M − 1) matrix J as

J
Δ
= −

⎡
⎣ diag(r) + d1,sIM−1 0M−10

T
M−1

diag(ṙ) + ḋ1,sIM−1 diag(r) + d1,sIM−1

⎤
⎦ (24)

Since E[δ] = 0, we conclude that the first order approximation of the bias of the estimate ˆ̄ps is zero,

that is, E[˜̄ps] = 02q×1. The first order approximation of the covariance matrix of ˆ̄ps is

E[˜̄ps ˜̄p
T
s ] = QJE[δδT ]JTQT (25)

This concludes the derivation of the bias and the covariance matrix.

5. COMPUTATIONAL COMPLEXITY

We evaluate the computational complexity of the proposed LS positioning technique and compare it

with the complexity of the two-step method. For simplicity we denote by RM(X) the number of real

multiplications (RMs) involved in calculating the parameter X .

A. Proposed estimator

The total number of RMs which are required to calculate ˆ̄ps with the proposed estimator (refer to

Appendix B) is

RM(ˆ̄ps) =

⎧⎨
⎩

32M2 + 2M + 40, q = 2 (two-dimensional space)

48M2 + 10M + 166, q = 3 (three-dimensional space)
(26)

For a large number of sensors, the complexity of the proposed estimator increases quadratically w.r.t. M .
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B. Two-step estimator

The two-step algorithm is detailed in [9, Section IV, p. 2458] and for exhibition simplicity is rewritten

in Table II in Appendix B where we use the same notation as used in [9]. In Appendix B we detail

the computational complexity of this method. According to this algorithm we need to refine the estimate

by performing a few steps (at least two) if the source is in the near-field region. These steps (and their

repetition) are neglected if the source is in the far-field region. However, in practice we cannot a-priori

know whether the source is in the near-field region or the far-field region. Therefore, we need to consider

the case of a source in the near-field only (worst case). Following the results in Appendix B, the total

RMs which are required to calculate ˆ̄ps with the two-step approach assuming a source in the near-field

region is,

RM(ˆ̄ps) =

⎧⎨
⎩

48M3 − 72M2 + 468M + 2328, q = 2 (two-dimensional space)

48M3 − 48M2 + 768M + 8010, q = 3 (three-dimensional space)
(27)

The main part of the calculation of this approach is calculating the weighting matrix required for

the first estimation step, which involves the inversion of a 2(M − 1) × 2(M − 1) matrix and requires

24(M − 1)3 RMs. Therefore, the complexity of the two-step approach increases cubically with respect

to the number of sensors in the array.

In Figure 1 we show the complexities of the proposed LS method and the two-step method for q = 2,

and q = 3, and assuming a source in the near-field region, versus the number of sensors M where

M = 5, 6, . . . , 20. As can be seen, the ratio between the two complexities increases as the number of

sensors in the array, M is increased.

6. NUMERICAL EXAMPLES

We present several simulation results that demonstrate the root mean square error (RMSE) of the

position and velocity estimates using independent Monte-Carlo trials (we used 5000 trials). We compare

the RMSE of the proposed LS estimator to those of the two-step method [9], and to the CRLB [9,

May 3, 2011 DRAFT



SUBMITTED TO IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS (CORRESPONDENCE) 10

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
10

2

10
3

10
4

10
5

10
6

M, NUMBER OF SENSORS

C
O

M
P

LE
X

IT
Y

 (
N

U
M

B
E

R
 O

F
 M

U
LT

IP
LI

C
A

T
IO

N
S

)

 

 
2D SPACE − NEAR FIELD (2−STEP)
2D SPACE − NEAR FIELD (PROPOSED)
3D SPACE − NEAR FIELD (2−STEP)
3D SPACE − NEAR FIELD (PROPOSED)

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
10

12

14

16

18

20

22

24

26

28

30

M, NUMBER OF SENSORS

C
O

M
P

LE
X

IT
Y

 (
T

W
O

−
S

T
E

P
)/

C
O

M
P

LE
X

IT
Y

 (
P

R
O

P
O

S
E

D
)

 

 
2D SPACE − NEAR FIELD
3D SPACE − NEAR FIELD

Fig. 1. The number of real multiplications (upper plot) and the ratio between the number of real multiplications (lower plot)

involved in the estimation of the two-step approach and the proposed approach for both a two-dimensional (2D) space and a

three-dimensional (3D) space, and for a source in the near-field region.

Appendix C]. We also compute the theoretical RMSE of the proposed estimator according to (25),

and the theoretical RMSE of the two-step estimator according to [9, Eq. (25)]. We assume that the

transmitted signal is a white process with variance σ2
s , independent of the noise processes which are

all white, independent processes with variance σ2
n. Also, the attenuations of the intercepted signal at all
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sensors are assumed identical. We assume the covariance matrix of the noise vector δ is [5, Section II]

Λδδ =

⎡
⎣ E[εεT ] 0

0 E[ξξT ]

⎤
⎦ =

⎡
⎣ E[εεT ] 0

0 βE[εεT ]

⎤
⎦ (28)

where β
Δ
= 12

T 2 and T is the observation time, and [5, Eq. (10), Eq. (14)]

E[εεT ]
Δ
= γ(IM−1 + 1M−11

T
M−1) (29)

γ
Δ
=

3πc2

TW 3

1 + MSNR

MSNR2 (30)

SNR
Δ
= σ2

s/σ2
n (31)

where W is the signal bandwidth. This covariance matrix assumes that the transmitted signal is a Gaussian

random process with a known power spectrum density. Other covariance matrices (obtained from a CRLB

analysis) can be used also such as the covariance matrix given in [13] where it is assumed that the

transmitted signal and the attenuations to the sensors are known, or the covariance matrix given in [14]

where the signal is assumed to be deterministic but unknown and also the attenuations to the sensors are

unknown.

In all the following plots we normalize the position RMSE by the distance between the source position

and the origin, and normalize the velocity RMSE by the Euclidean norm of the source velocity vector.

In the first simulation we evaluate the RMSE versus the parameter γ for a sensor array with a circular

configuration. We consider two cases for the source: far-field and near-field. In the far-field case the

position and the velocity vectors of the source are ps = [10000 cos(π/3), 10000 sin(π/3)]T [meter] and

ṗs = [30 sin(π/3), 30 cos(π/3)]T [mester/sec], respectively. While in the near-field the position of the

source is ps = [1000 cos(π/3), 1000 sin(π/3)]T [meter] with the same velocity vector. We consider

eight sensors where pm = 100 · [cos
(

2πm
8

)
, sin

(
2πm

8

)
]T [meter], m = 1, . . . , 8. We vary the parameter

10log10(γ) from −50[dB meter2] to −20[dB meter2] (in case the source is in the near-field region) and

from −80[dB meter2] to −50[dB meter2] (in case the source is in the far-field region). We assume that

May 3, 2011 DRAFT



SUBMITTED TO IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS (CORRESPONDENCE) 12

β = 0.1 [Hz2]. The normalized RMSE of the position and the velocity of the source using the proposed

LS estimator, and the two step-approach are shown in Figure 2, where the CRLB is also plotted. We also

add the RMSE of the subsequent orthogonal projection approach suggested in [7, Section V]. As can be

seen, the RMSE of the LS solution is close to that of the two-step approach and the CRLB, while the

RMSE of the subsequent orthogonal projection approach in [7, Section V] is inferior compared to the

LS estimator and the two-step method. As a result we will not consider this approach in the following

simulation results. We note that the theoretical performance of the two-step method is known to be

close to the CRLB, and thus in this plot and in the subsequent plots the line representing the theoretical

performance of the two-step method coincides with the CRLB.

In the second simulation we again evaluate the RMSE versus the parameter γ, but this time for a sensor

array with a random configuration. We consider a source located in the the far-field region. The position

and velocity vectors are ps = [10000, 10000]T [meter] and ṗs = [30,−20]T [meter/sec], respectively.

We consider eight sensors where pm = rm · [cos(φm), sin(φm)]T [meter], rm is uniformly distributed on

[0, 100] [meter], and φm is uniformly distributed on [−π, π]. We perform 50 realizations of the sensor

configuration, and then average the RMSEs. We vary 10log10(γ) as detailed in the previous simulation,

and also assume that β = 0.1 [Hz2]. The normalized RMSE of the position and the velocity of the source

using the proposed LS solution, and the two step-approach are shown in Figure 3, where the CRLB is

also plotted. In the left plot we show the result of one random configuration, while in the right plot we

show the RMSE and the CRLB results are averaged over all the configurations. As can be observed,

again the LS solution has a similar RMSE as that of the two-step approach for small values of γ (high

SNR), and the two-step method achieves the CRLB for any SNR.

In the third simulation we evaluate the RMSE versus the number of sensors in the array. We con-

sider a circular configuration as in the first example and a source in the far-field region. The position

and the velocity vectors of the source are ps = [10000 cos(π/3), 10000 sin(π/3)]T [meter] and ṗs =

[30 sin(π/3), 30 cos(π/3)]T [meter/sec], respectively. We vary the number of sensors in the configuration

from 8 to 32 with a step of 4. We consider a source in the far-field region, and set 10log10(γ) = −40[dB

May 3, 2011 DRAFT
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Fig. 2. Normalized theoretical and simulated RMSE of the estimated position and velocity of the source in the far-field and

near-field regions versus γ for an array with eight elements in a circular configuration, using the LS proposed method, the

two-step approach, and the subsequent projection method [7], all compared with the CRLB.

meter2], and β = 0.1 [Hz2]. The normalized RMSE of the position and the velocity of the source using

the proposed LS and the two step-approach is shown in Figure 4, where the CRLB is also plotted. Observe

that compared to the two-step approach, the decrease of the RMSE of the LS method w.r.t. the number of

sensors is smaller. In other words, the proposed approach provides increasingly worse accuracy (relative

to the two-step approach) as the number of sensors in the array increases. On the other hand, as the

number of sensors increases, the proposed approach becomes more computationally efficient.

In the fourth simulation we evaluate the RMSE versus the parameter β. We consider a circular

configuration as in the first example and a source in the far-field region with the same position and
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Fig. 3. Normalized theoretical and simulated RMSE of the estimated position and velocity of the source in the far-field region

versus γ for an array with eight elements in a random configuration, using the proposed LS method and the two-step approach,

both compared with the CRLB (left plot - RMSE for one random configuration. right plot - RMSE averaged over 50 random

configurations.)

velocity vectors as in the previous simulation. We vary the parameter β from 10−3 [Hz2] to 10 [Hz2].

We set 10log10(γ) = −40[dB meter2]. The normalized RMSE of the position and the velocity of the

source using the proposed LS solution, and the two-step approach is shown in Figure 5, where the CRLB

is also plotted. As can be seen, the LS and the two-step approach have similar velocity RMSE compared

to the CRLB, while the position RMSE of the LS solution is poor. We note that the reason for the drop

of some of the results of the two step method below the CRLB is due to the finite number of realizations

that we simulated.
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Fig. 4. Normalized theoretical and simulated RMSE of the estimated position and velocity of the source in the far-field region

versus the number of sensors in an array with a circular configuration, using the LS proposed method and the two-step approach,

both compared with the CRLB.

Finally, we compare the processing time (using MATLAB time commands), required for the proposed

approach and the two-step approach to reach the estimate of the parameters of interest, as a function of

the number of sensors in the array. We consider a circular array, with 10log10(γ) = −30[dB meter2],

β = 0.1 [Hz2], and a source in the near-field region. The position and the velocity vectors of the source

are ps = [1000 cos(60π/180), 1000 sin(60π/180)]T [meter] and ṗs = [30, 15]T [meter/sec], respectively.

We vary the number of sensors from 5 to 20 with a step of 1. For each value of M we calculate the

processing time of each method. In Figure 6 (upper subplot) we plot the absolute processing time of each

method, and in Figure 6 (lower subplot) we plot the ratio between the processing time of the two-step
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Fig. 5. Normalized theoretical and simulated RMSE of the estimated position and velocity of the source in the far-field region

versus β for an array with eight elements in a circular configuration, using the proposed LS method and the two-step approach,

both compared with the CRLB.

approach and the proposed approach. It can be seen that the complexity of the proposed approach is

much smaller than the two-step approach especially for a large number of sensors.

7. CONCLUSIONS

We proposed a least squares method to estimate the position and velocity of an emitter given time and

frequency differences of arrival measurements acquired by a sensor array. The idea is to obtain a linear

model with respect to the parameters of interest by eliminating non-linear unknown nuisance parameters

(range and range-rate differences between the reference sensor and the source) using an orthogonal
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Fig. 6. The total processing time of the proposed approach and the two-step approach (upper plot), and the ratio of the

processing times (lower plot) versus the number of sensors in a circular array and a source in the near-field region.

projection matrix. Although the estimator does not always perform as well as the two-step estimator, the

benefit is the reduction of the computational complexity by an order of the number of sensors.

APPENDIX A

EXPLICIT EXPRESSION OF ˜̄ps

We derive the explicit expression of ˜̄ps as given in (23). We start by considering the first order

approximation of ˆ̄u and then the first order approximation of Q̂.
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A. First order approximation of ˆ̄u

We approximate ˆ̄u using a first order approximation, that is, ˆ̄u = ū + ˜̄u. By substituting the noisy

measurements vector ˆ̄r given in (5) into (13), and neglecting terms that contain products of errors, we

get that the first order error term of ˆ̄u is given by,

˜̄u
Δ
= Rδ (32)

where we define the 2(M − 1) × 2(M − 1) matrix,

R
Δ
= −

⎡
⎣ diag(r) 0M−10

T
M−1

diag(ṙ) diag(r)

⎤
⎦ (33)

and where diag(x) is a diagonal matrix with the elements of the vector x on the main diagonal.

B. First order approximation of Q̂

We approximate Q̂ using a first order approximation, that is, Q̂ = Q+ Q̃. We first start by expressing

the noisy orthogonal projection matrix P̂⊥ using a first order approximation, that is, P̂⊥ = P⊥ + P̃⊥

(the explicit expression of the first order error term, P̃⊥, is given later). Substituting P̂⊥ in (20) yields

Q̂ = (FT (P⊥ + P̃⊥)F)−1FT (P⊥ + P̃⊥)

= [(FTP⊥F)(I + (FTP⊥F)−1(FT P̃⊥F))]−1FT (P⊥ + P̃⊥)

∼= [I − (FTP⊥F)−1(FT P̃⊥F)](FTP⊥F)−1FT (P⊥ + P̃⊥)

∼= Q + (FTP⊥F)−1FT P̃⊥ − (FTP⊥F)−1(FT P̃⊥F)(FTP⊥F)−1FTP⊥ (34)

where in the second passing we use the first order approximation (I+X)−1 ∼= I−X given that X � I,

and in the third passing we neglected terms that contain products of errors. Hence, the first order error

term Q̃ can be defined as

Q̃
Δ
= (FTP⊥F)−1FT P̃⊥ − (FTP⊥F)−1(FT P̃⊥F)(FTP⊥F)−1FTP⊥ (35)
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Notice that according to (22), in order to calculate ˜̄ps we need to multiply Q̃ by Hd1,s. Recall that

P⊥H = 0. We thus conclude that we can neglect the second term in (35). By substituting (35) and (32)

into (22) we get that

˜̄ps = (FTP⊥F)−1FT P̃⊥Hd1,s + QRδ

= (FTP⊥F)−1FT (P̃⊥Hd1,s + P⊥Rδ) (36)

We now need to express the first order error term of P⊥, denoted by P̃⊥. By recalling the definition

of P⊥ as given in (16), we start by expressing the matrix Ĥ using a first order approximation, that is,

Ĥ = H + H̃ (the explicit expression of H̃ is presented later). Substituting this approximation in (16)

(where we replace H by Ĥ) we get that

P̂⊥ = I − (H + H̃)((H + H̃)T (H + H̃))−1(H + H̃)T

= I − (H + H̃)((HTH)(I + (HTH)−1(H̃TH + HT H̃))−1(H + H̃)T

∼= I − [(H + H̃)(I − (HTH)−1(H̃TH + HT H̃))](HTH)−1(H + H̃)T

∼= P⊥ + H(HTH)−1(H̃TH + HT H̃)(HTH)−1HT

−H(HTH)−1H̃T − H̃(HTH)−1HT (37)

where in the second passing we use the first order approximation (I+X)−1 ∼= I−X given that X � I,

and in the third passing we neglect terms that contain product of errors. Thus, we define the first order

error term of P̃⊥ as

P̃⊥ Δ
= H(HTH)−1(H̃TH + HT H̃)(HTH)−1HT − H(HTH)−1H̃T − H̃(HTH)−1HT (38)

Note that according to (38) we get that the product P̃⊥Hd1,s which appears in (36) is given by

P̃⊥Hd1,s = H(HTH)−1HT H̃d1,s − H̃d1,s = −P⊥H̃d1,s (39)

Substituting (39) back into (36) results in

˜̄ps = (FTP⊥F)−1FTP⊥(Rδ − H̃d1,s) (40)
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Finally, we need to find an explicit expression for the first order error term H̃. By substituting the noisy

measurements vector ˆ̄r given in (5) into (15) we obtain that the first order error term H̃ is given by

H̃
Δ
=

⎡
⎣ ε 0M−1

ξ ε

⎤
⎦ (41)

Note that by using (41) we get that the product H̃d1,s is given by,

H̃d1,s =

⎡
⎣ d1,sI 0M−10

T
M−1

ḋ1,sI d1,sI

⎤
⎦ δ (42)

By substituting (42) into (40) we get the expression of ˜̄ps given in (23). This concludes the appendix.

APPENDIX B

COMPLEXITIES OF THE PROPOSED ESTIMATOR AND THE TWO-STEP ESTIMATOR

We derive the computational complexities of the proposed method and the two-step method.

A. Proposed estimator

Note that according to (19) we need to compute: ˆ̄u, Q̂ and their product, in order to estimate the

vector p̄s. We now discuss each component separately.

1) Complexity of computing ˆ̄u: According to (7) and (9) we see that we need M −1 RMs to calculate

û and the same amount of RMs to calculate ˆ̇u (note that the norm of the sensor position is assumed to

be known). Therefore, RM(ˆ̄u) = 2(M − 1).

2) Complexity of computing Q̂: The calculation of Q̂ involves several steps. We first need to calculate

P̂⊥ in (16). To compute ĤT Ĥ we need 4q(M − 1)2 RMs, and to further compute its inverse we need

8 RMs. The product Ĥ
(
ĤT Ĥ

)−1
involves 2q2(M − 1) RMs, and finally to multiply Ĥ

(
ĤT Ĥ

)−1
by

ĤT we need 4q(M − 1)2 RMs. Therefore, to summarize, RM(P̂⊥) = 8 + 2q2(M − 1) + 8q(M − 1)2.

Given P̂⊥ we calculate Q̂ according to (20). The product P̂⊥F involves 8q(M − 1)2 RMs. The product
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space dimensionality

Step q = 2 q = 3 Subsection

1. Compute ˆ̄u 2(M − 1) 2(M − 1) B-A1

2. Compute Q̂ 32M2
− 8M + 48 48M2

− 4M + 180 B-A2

3. Compute Q̂ˆ̄u 8(M − 1) 12(M − 1) B-A3

TABLE I

COMPLEXITY OF THE PROPOSED ALGORITHM.

of FT P̂⊥ by F requires 8q2(M − 1) RMs. Performing the inverse (FT P̂⊥F)−1 involves 8q3 RMs.

Multiplying this inverse with FT P̂⊥ involves 8q(M − 1) RMs. To summarize, RM(Q̂) = 8(1 + q3) +

(10q2 + 8q)(M − 1) + 16q(M − 1)2.

3) Complexity of estimating p̄s: Given ˆ̄u and Q̂, the computation of ˆ̄ps involves multiplying ˆ̄u and

Q̂ . The complexity of this step is RM(Q̂ˆ̄u) = 4q(M − 1).

The complexity of each component is summarized in Table I.

B. Two-step estimator

In Table II we detail the complexity of each step for a two-dimensional geometry (q = 2) and a

three-dimensional geometry (q = 3). For notation simplicity we define: C
(2)
θ1

= 24M2 + 108M + 84,

C
(3)
θ1

= 32M2 + 208M + 272, and Cw1
= 24(M − 1)3. The complexity of each term in this table is

detailed in the following subsections using the same vector and matrix notation used in [9].

1) Complexity of computing W1 [9, Eq. (11)] : Calculating W1 involves computing: i) B−1
1 , ii)

B−1
1 Q−1 ; iii) B−1

1 Q−1B−1
1 , where each requires 8(M −1)3 RMs. Summing i)-iii) involves 24(M −1)3

RMs.

2) Complexity of computing θ1 [9, Eq. (10)]: Calculating θ1 involves computing: i) GT
1 W1 (8(M −

1)2(q + 1) RMs) , ii) GT
1 W1G1 (8(M − 1)(q + 1)2 RMs); iii)

(
GT

1 W1G1

)−1
(8(q + 1)3 RMs); iv)

(
GT

1 W1G1

)−1
GT

1 W1 (8(M − 1)(q + 1)2 RMs); v) θ1 =
(
GT

1 W1G1

)−1
GT

1 W1h1 (4(M − 1)(q +
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Step Eq. in [9] space dimensionality Subsection

q = 2 q = 3

1. First step

1.1 initialize W1 = Q−1 (32) 0 0

1.1 calculate θ1 (10) C
(2)
θ1

C
(3)
θ1

B-B2

1.2 Near field (repeat twice)

1.2.1 calculate W1 (11) Cw1
× 2 Cw1

× 2 B-B1

1.2.2 calculate θ1 (10) C
(2)
θ1

× 2 C
(3)
θ1

× 2 B-B2

2. Second step

2.1 compute cov(θ1) (13) 0 0

2.2 form W2 (19) 648 1536 B-B3

2.3 calculate θ2 (18) 280 840 B-B4

2.4 calculate θ (21)-(22) 4 6

2.5 Near field (repeat twice)

2.5.1 calculate B2 (37) 0 0

2.5.2 calculate W2 (19) 648 × 2 1536 × 2 B-B3

2.5.3 calculate θ2 (18) 280 × 2 840 × 2 B-B4

2.5.4 calculate ps and ṗs (21)-(22) 4 × 2 6 × 2

TABLE II

COMPLEXITY OF THE TWO-STEP METHOD [9, SECTION IV, P. 2458].

1)RMs). Summing i)-v) involves 24M2 + 108M + 84 RMs (q = 2), and 32M2 + 208M + 272 RMs

(q = 3).

3) Complexity of computing W2 [9, Eq. (19)]: Calculating W2 involves computing: i) B−1
2 , ii)

B−1
2 cov(θ1)

−1; iii) B−1
2 cov(θ1)

−1B−1
2 , where each requires 8(q + 1)3 RMs. Summing i)-iii) involves

648 RMs (q = 2), and 1536 RMs (q = 3).

4) Complexity of computing θ2 [9, Eq. (18)]: Calculating θ2 involves computing: i) GT
2 W2 (which

does not require calculations and therefore this operation is represented by 0 RMs); ii) GT
2 W2G

(8q2(q + 1) RMs); iii)
(
GT

2 W2G2

)−1
(8q3 RMs); iv)

(
GT

2 W2G2

)−1
GT

2 W2 (8q2(q + 1) RMs); v)

θ2 =
(
GT

2 W2G2

)−1
GT

2 W2h2 (4q(q + 1) RMs). Summing i)-v) involves 280 RMs (q = 2), and 840
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RMs (q = 3).
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