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Power Spectrum Blind Sampling
Geert Leus and Dyonisius Dony Ariananda

Abstract—Power spectrum blind sampling (PSBS) consists of a
sampling procedure and a reconstructionmethod that is capable of
perfectly reconstructing the unknown power spectrum of a signal
from the obtained samples. In this letter, we propose a solution to
the PSBS problem based on a periodic sampling procedure and a
simple least squares (LS) reconstruction method. For this PSBS
technique, we derive the lowest possible average sampling rate,
which is much lower than the Nyquist rate of the signal. Note the
difference with spectrum blind sampling (SBS) where the goal is
to perfectly reconstruct the spectrum and not the power spectrum
of the signal, in which case sub-Nyquist rate sampling is only pos-
sible if the spectrum is sparse. In the current work, we can perform
sub-Nyquist rate sampling without making any constraints on the
power spectrum, because we try to reconstruct the power spec-
trum and not the spectrum. In many applications, such as spec-
trum sensing for cognitive radio, the power spectrum is of interest
and estimating the spectrum is basically overkill.

Index Terms—Cognitive radio, , compressive sampling, power
spectrum estimation.

I. INTRODUCTION

S PECTRUM estimation is a well-studied problem in the
field of signal processing. Recently, it has gained renewed

interest due to its importance in the field of cognitive radio
networks. In such networks, radios opportunistically look for
holes in the licensed spectrum, which can subsequently be ex-
ploited for setting up a communication link. In general, a wide
spectral range has to be sensed, requiring power-hungry high-
rate analog-to-digital converters (ADCs). That is why recent re-
search has focused on reducing the requirements of the ADCs
by exploiting specific properties of the licensed spectrum. Some
features that are often considered are the sparsity of the spec-
trum, or of its derivative, the edge spectrum [1]–[4]. This al-
lows one to reduce the sampling rate of the signal without sacri-
ficing perfect reconstruction in the noiseless case. Popular ways
to decrease the sampling rate are multi-coset sampling [5], [2],
[3] or the modulated wideband converter [4], both of which are
periodic sampling devices that can be casted into a compres-
sive sampling framework. Reconstruction can be carried out
using your favorite sparse reconstruction method, or even with
more traditional methods, such as multiple signal classifica-
tion (MUSIC), or the minimum variance distortionless response
(MVDR) method [6]. The approaches developed in [2]–[4] are
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labeled spectrum blind sampling (SBS), where the goal is to en-
able minimum-rate sampling of the signal and reconstruction of
the unknown spectrum from these samples, given the spectrum
is sparse. From these works, it turns out that for most signals,
the minimum average sampling rate is the same as if the sparse
support of the spectrum would be known (as studied in [5]),
and it is given by the Landau lower bound, which is equal to
the Nyquist rate multiplied with the spectral occupancy. How-
ever, if all cases have to be covered, the minimum average sam-
pling rate increases and it is given by the minimum of twice the
Landau lower bound and the Nyquist rate [3].
All the above works are basically concerned with spectral es-

timation, but for the spectrum sensing application at hand, only
the power spectral density, or power spectrum in short, is re-
quired. That is why we will focus on power spectrum blind sam-
pling (PSBS) in this work, with as goal to enable minimum-rate
sampling of the signal and reconstruction of the unknown power
spectrum from these samples, and this without any sparsity con-
straints on the power spectrum. We again make use of a peri-
odic sub-Nyquist rate sampler, like multi-coset sampling or the
modulated wideband converter. Both of these samplers can be
viewed as a bank of different branches, where each branch mod-
ulates the signal with a periodic waveform followed by a low-
rate ADC. The key ingredient of this work is that we will make
use of all the different cross spectral densities, or cross-spectra
in short, between the outputs of the different branches in order to
reconstruct the power spectrum of the original signal. We show
that if we adopt a modulated wideband converter, then we can
reduce the average sampling rate to a rate that is given by twice
the Nyquist rate divided by the number of branches in the peri-
odic sampler plus one. This can be a significant reduction even
for a limited number of branches.
Note that some earlier attempts have been recorded to esti-

mate the power spectrum of a signal with a reduced average
sampling rate [7], [8], but those works do not fully exploit the
complete knowledge of the different cross-spectra between the
outputs of the branches in the periodic sampler. As a result, these
methods again have to rely on the sparsity of the power spec-
trum in order to reduce the average sampling rate. Our method
on the other hand can allow for a substantial reduction of the av-
erage sampling rate over the Nyquist rate, without putting any
sparsity constraints on the power spectrum, which makes it very
flexible and low cost.

II. PERIODIC SAMPLING

Consider a spectrum sensing application, where the task is
to sense the power spectrum of a wide-sense stationary signal

. We will assume here that is real-valued, but it is
easy to generalize this approach to complex-valued signals (e.g.,
the complex envelope of the observed real-valued signal). Fur-
ther, assume is bandlimited with double-sided bandwidth
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Fig. 1. Considered sampling device, consisting of branches, where each
branch modulates the signal with a real-valued periodic waveform followed by
an integrate-and-dump process.

or Nyquist rate . As illustrated in Fig. 1, we then apply
a practical sampling device with branches, where the th
branch modulates the signal with a real-valued periodic
waveform of period followed by an integrate-and-
dump device with period (thus with rate equal to times
the Nyquist rate)1. As a result, the output of the th branch at
sampling index can be written as

(1)

where yields one period of , i.e., , for
and , elsewhere. If we now assume that

is a piecewise constant function with constant values in
every interval of length , i.e., for

with , then we can rewrite (1) as

(2)

where can be interpreted as the output of an integrate-and-
dump process with period (thus with rate equal to the Nyquist
rate) applied to , which is not explicitly carried out due to the
high complexity. The average sampling rate of the proposed pe-
riodic sampler is equal to the Nyquist rate multiplied by ,
and hence to save complexity wewill assume here that .

The considered sampler is similar to the modulated wideband
converter of [4], where the values are randomly selected,
e.g., from a distribution, although the latter sampler is a
bit more general allowing for a difference in period between
the real-valued periodic waveforms and the integrate-and-dump
processes (taking them equal is often advantageous though [4]).
Note that our sampling device can also be used to implement

1Also other types of filters than the integrate-and-dump device are possible
[4].

multi-coset sampling, simply by setting for every branch , one
different, yet random, entry of to one and the others to zero,
i.e., if and if , where

whenever .
An important observation that will turn out to be useful later

on, is that (2) can be viewed as a digital filtering operation of
by the filter of length followed by a downsampling

operation with factor , i.e., , where

with denoting the convolution operator.
The goal of the considered PSBS problem now is to use the

obtained samples to estimate the power spectrum of , which
is equivalent to estimating the related power spectrum of .
Note that the power spectrum or power spectral density of
is defined as

where is the autocorrelation function of , given by
. Hence, reconstructing the power

spectrum is equivalent to reconstructing the autocorre-
lation function . The original contribution of this work is
that we will exploit all the different cross-spectra
of with for . Note that the cross-spectrum or
cross spectral density of with is defined as

where is the cross-correlation function of with
, given by . Hence, having

prior knowledge about the different cross-spectra
for , is the same as knowing the

different cross-correlation functions for .

III. RECONSTRUCTION APPROACH

In this section, we will describe a method to reconstruct
given for . In the next section, we will then dis-
cuss what this method can tell us about the minimum required
average sampling rate for perfect reconstruction.
Since , we can write the cross-correlation

function of with as the -fold downsampled ver-
sion of the cross-correlation function of with :

(3)

It is well-known that can be written as

(4)

where is the “deterministic” cross-correlation function
between and :
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From (3) and (4), we can thus write

(5)

where we have

Stacking the different cross-correlation func-
tions , i.e., , for

with , we finally obtain

(6)

where is the matrix given by
, for with .

Assuming has a support limited to , the
support of should be limited to , which
means that the support of should be limited to
. As a result, all the information can be gathered into the vec-
tors

(7)

(8)

From (6), and the fact that the first column of as well as
the last entries of are zero, the relation between
and can finally be expressed as

(9)

where is the matrix
given by

. . .
. . .

Assuming that has full column rank, we can solve (9) using
LS.
However, the above computation can be simplified by ex-

ploiting the fact that is a block circulant matrix with blocks
of size , which can easily be turned into a block

diagonal matrix with again blocks of size .
More specifically, defining

(10)

(11)

(12)

we can rewrite (9) as a set of matrix equations:

(13)

Assuming has full column rank for
, we can solve (13) for

using LS.

IV. DISCUSSION

We can solve (9) or (13) if the related system matrices have
full column rank. For randommodulating waveforms, as used in
the modulated wideband converter, this occurs with high prob-
ability as soon as , which can happen for
much smaller than . For multi-coset sampling, on the other
hand, the situation is a bit different. Assuming that has
a one in the position and zeros elsewhere, then will
have a one in position and zeros elsewhere. As a
result, every row of has a single one and thus will have
full column rank if it has a one in every column. This condition
is actually related to the design condition of so-called minimal
sparse rulers and the results of such a multi-coset sampler con-
struction will be reported elsewhere due to space limitations.
Suffice it to say that the condition for multi-coset sampling is not
as beneficial as the one for the modulated wideband converter,
and thus from that point of view, we would like to advocate the
latter for PSBS.
From the condition for the modulated wideband converter,

we see that the compression ratio is lower bounded by
. So the minimal compression ratio is only deter-

mined by the number of branches that we can afford in our pe-
riodic sampler. The higher the number of branches, the more
we can reduce the average sampling rate. Note though that at
this optimal point where , there is a hard-
ware tradeoff between the number of branches , and the rate

of the ADCs. The higher the number of branches ,
the lower the rate of the ADCs, which are two ef-
fects that oppositely affect the hardware complexity. Hence,
assuming , there will be some optimal
compression ratio in terms of hardware complexity, satisfying

. Finally, note that in practice, the cross-cor-
relation functions have to be computed based on a finite-length
sensing period, so reducing the rate of the ADCs will
introduce an additional estimation error. This is an issue that has



446 IEEE SIGNAL PROCESSING LETTERS, VOL. 18, NO. 8, AUGUST 2011

Fig. 2. MSE between the PSBS-based power spectrum and the theoretical one.

not been touched upon in this work, and we will divert this to
future research.

V. NUMERICAL EXAMPLE

In this section, we illustrate our approachwith a numerical ex-
ample. To simplify the presentation, we directly generate a dis-
crete-time real-valued wide-sense stationary signal and we
assume that it is a bandpass signal with a frequency support be-
tween and . We set to and we assume that
is limited to (above , the correlations are very

small). In Fig. 2, we compute the normalizedmean squared error
(MSE) between the estimated power spectrum and the theoret-
ical one having a perfectly rectangular shape. The signal power
is set to 10 dB and no noise is considered. As a benchmark, we
also present the normalized MSE between the estimated power
spectrum produced by Nyquist-rate sampling and the theoretical
one. This Nyquist-rate based power spectrum is obtained from
our approach by setting and . It is
clear from the figure that the quality of the estimation tends to
increase with and it slowly converges towards that of the
Nyquist rate. We further notice that as the number of measure-
ment vectors, denoted by , increases, the MSE improves, and
this is to be expected as our estimated cross-spectra get closer to
the true ones. We also check what happens if we replace the true
Nyquist-rate samples by the Nyquist-rate samples reconstructed
from the measurements using M-FOCUSS [9] with ,
thereby exploiting the joint sparsity in the frequency domain of
snapshots of Nyquist-rate samples. We observe that

this approach does not work very well, even for a large , which
is most likely due to the fact that the snapshot length is not
very large.
In Fig. 3, the estimated power spectrum based on PSBS (with

a compression ratio of ) is depicted together with
the theoretical and the Nyquist-rate based power spectrum for
both the noiseless and noisy case (noise power is 0 dB). While
there is an obvious degradation due to the reduction of the sam-
pling rate, our PSBS method is clearly able to locate the pres-
ence of the occupied band making it a promising candidate for
power spectrum sensing in a cognitive radio environment.

Fig. 3. Power spectrum estimated based on PSBS with is plotted
together with the theoretical and Nyquist-rate based power spectrum; top: noise-
free; bottom: noisy.

VI. CONCLUSION

In this letter, we have introduced the concept of power spec-
trum blind sampling (PSBS), a novel approach to estimate the
power spectrum of a signal based on samples obtained from a
periodic sampler that samples below the Nyquist rate. The pre-
sented solution consists of a set of simple LS problems that can
easily be solved provided that some rank conditions are sat-
isfied. If the considered periodic sampler is constructed using
random periodic modulating waveforms, we have finally shown
that the minimum average sampling rate for perfect reconstruc-
tion is given by twice the Nyquist rate divided by the number of
branches in the periodic sampler plus one.
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