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Abstract-Compressive sampling (CS) is famous for its ability 
to perfectly reconstruct a sparse signal based on a limited number 
of measurements. In some applications, such as in spectrum 
sensing for cognitive radio, perfect signal reconstruction is not 
really needed. Instead, only statistical measures such as the 
power spectrum or equivalently the auto-correlation sequence 
are required. In this paper, we introduce a new approach for 
reconstructing the power spectrum based on samples produced 
by sub-Nyquist rate sampling. Depending on the compression 
rate, the entire problem can be presented as either under­
determined or over-determined. In this paper, we mainly focus 
on the over-determined case, which allows us to employ a simple 
least-squares (LS) reconstruction method. We show under which 
conditions this LS reconstruction method yields a unique solution, 
without including any sparsity constraints. 

I. INTRODUCTION 

In the last few years, new wireless applications have placed 
great demands on premium radio resources such as bandwidth 
and radio spectrum. In addition, current trends in wireless 
technologies have put an additional burden on the receiver 
hardware, especially the analog to digital converter (ADC) 
due to the wideband nature of the signals produced by specific 
applications, such as ultra wideband (UWB) communications. 
According to the Whittaker-Kotelnikov-Shannon-Nyquist the­
orem, a signal with a frequency support between � f 0 and fo 
can be perfectly recovered from its samples if the sampling 
rate is more than or equal to the Nyquist rate of 2f o. Sampling 
a very large bandwidth signal at the Nyquist rate will yield a 
high power consumption for the ADC [1]. 

Apart from its significance in perfect signal reconstruction, 
Nyquist rate sampling is an important topic in the field of 
cognitive radio networks, where licensed frequency bands can 
be used by rental users when the primary users who own the 
licensed bands are inactive. To facilitate such networks, the 
rental users are required to perform spectrum sensing, which 
plays a key role to gauge the wireless environment over a 
broad frequency band and to identify both the occupied and 
unoccupied bands. The output of spectrum sensing is used 
by the rental users to decide whether to enter or leave the 
observed spectrum (spectrum allocation). 

In order to mitigate the high sampling rate problems, several 
researchers have been looking into sub-Nyquist rate sampling. 
In [2], sub-Nyquist sampling based on non-uniform (also 
known as multi-coset) sampling is investigated for the case 
of multi band signals having a frequency support on a union 

978-1-4244-9332-6/11/$26.00 © 2011 IEEE 101 

of finite intervals. This multi-coset approach has been shown 
to reach the Landau's lower bound in [3] suggesting that 
the minimal required sampling rate to perfectly reconstruct 
the multiband signal is equal to the frequency occupancy, 
and thus smaller than the Nyquist rate. Appropriate sampling 
patterns for the multi-coset approach have been investigated in 
[2]. Similarly, [4] discusses sub-Nyquist sampling for sparse 
multi band analog signals by means of a so-called modulated 
wideband converter (MWC), which consists of multiple chan­
nels where each channel employs a different mixing function 
followed by low-pass filtering and low-rate uniform sampling. 
The conditions for perfect reconstruction of an analog signal 
from the output of the MWC can be found in [4]. 

In recent years, compressive sampling based on [5] has been 
a new emerging field. Also compressive sampling provides 
the possibility to reconstruct the original signal from a limited 
number of measurements with no or little information loss as 
long as the signal has a sparse representation in a particular 
basis. The signal is randomly projected onto a second basis 
by the so-called measurement matrix or compressive sampling 
matrix thereby reducing the number of samples compared to 
the Nyquist rate. Several works have exploited this concept for 
different applications. In [6], wideband spectrum sensing based 
on compressive sampling has been proposed by exploiting 
the inherent sparsity feature of the edge spectrum. However, 
the approach in [6] actually still samples the received wide­
band signal at the Nyquist rate since compressive sampling 
is applied to the auto-correlation sequence of the Nyquist 
rate samples. Therefore, [7] proposes to directly conduct 
compressive sampling on the received signal and tries to 
exploit the relationship between the auto-correlation sequence 
of the measurements and that of the Nyquist rate samples. 
Unfortunately, [7] assumes that the measurements are still 
wide-sense stationary, which is not true for most compressive 
sampling matrices. 

Although [6] and [7] focus on the auto-correlation sequence, 
most of the approaches listed in the previous paragraphs intend 
to obtain perfect reconstruction of the original signal itself, 
which puts high demands on the type of signals that can 
be reconstructed. On the other hand, several applications, 
such as spectrum sensing, only need perfect reconstruction 
of some statistical measures of the signal. In this paper, we 
propose a new approach based on sub-Nyquist sampling for 
reconstructing the power spectrum of the original signal. This 



approach exploits the cyclo-stationarity of the measurements 
(or stationarity of the measurement vector) and might not 
even need the sparsity assumption that is generally required 
for signal reconstruction. This article is organized as follows. 
The original problem formulation is given in Section II, which 
discusses the relationship between the correlation matrix of the 
measurement vector and the auto-correlation sequence of the 
Nyquist rate samples as well as how this relationship can be 
exploited. In Section III, we try to reformulate the problem by 
viewing the elements of the measurement vector as the outputs 
of parallel filters whose coefficients are given by the rows of 
the sampling matrix. Section IV discusses the reconstruction 
of the auto-correlation sequence or equivalently the power 
spectrum, for under- and over-determined systems even though 
we put more focus on the latter case due to its simplicity. In 
Section V, the compressive sampling matrix choices for the 
over-determined case are discussed. We consider two possible 
matrices, namely a random matrix and a multi-coset matrix. 
Section VI elaborates on some simulation studies and finally, 
Section VII provides conclusions. 

x(t) Analog to y[k] Ry 
Information Autocorrelation 

Converter (AIC) 

Rx = E {x[k]xH[kJ}, where the elements of Rx are given 
by: 

(3) 

Based on (2), the M x M auto-correlation matrix of y[k] in 
(2) can be expressed as: 

(4) 

Observe that the elements of the measurement vectors y[k] are 
generally not wide-sense stationary due to the nature of the 
compressive sampling matrix «I>. As a result, the elements of 
Ry can generally not be expressed in a similar form as (3). 

While all columns of Rx basically contain the same in­
formation, every column of Ry has a different content. As a 
result, it is theoretically possible to exploit all columns of Ry 
to estimate one of the columns of Rx. First of all, we stack 
all columns of Ry into the M2 x 1 vector vec(Ry), where 
vec(.) is the operator that stacks all columns of a matrix in a 
large column vector. From (4), it is then clear that vec(Ry) 
can be expressed as: 

vec(Ry) = (<<I>* @ «I»vec(Rx) (5) 

where @ denotes the Kronecker product operation. As men­
tioned before, all columns of Rx contain the same information, 
which can be collected into the 2N -1 vector rx defined as: 

Figure 1. Representation of the proposed compressive sampling based [ (0) (1) (N 1) (1 N) ( )]T 
spectrum sensing approach 

r x = r x , r x , ... , r x - , r x - , ... , r x -1 

II. PROBLEM FORMULATION 

We consider compressive sampling of the received wide­
sense stationary signal x( t), which is sampled using an analog 
to information converter (AIC) leading to a sequence of 
measurement vectors y[k], as shown in Fig. 1. As argued in 
[6] and [7], the AIC can theoretically be perceived as a block 
containing a basic ADC operating at Nyquist rate followed by 
a multiplexing operation collecting N consecutive Nyquist rate 
samples, and concluded by a multiplication with a compressive 
sampling matrix reducing the number of samples from N to 
M. Note that this AIC block can also model the multi-coset 
sampler introduced in [2]. Based on the above description, 
we denote the output of the ADC operating at Nyquist rate 
by x[n] and the output of the multiplexing operation by the 
N x 1 vector sequence x[k] defined as: 

The relationship between vec(Rx) and rx can then be written 
as: 

(6) 

where T is a special N2 x (2N - 1) repetition matrix. As a 
result, from (5) and (6), we obtain: 

vec(Ry) = (<<I>* @ «I»Trx (7) 

In order to simplify the analysis, we introduce the M2 x (2N -
1) matrix 8 = (<<I>* @ «I»T and rewrite (7) as: 

(8) 

Given (8), our intention is to reconstruct the auto-correlation 
sequence rx from vec(Ry) and to use it to compute the 
(2N -1) x 1 power spectrum vector Px based on the following 
relationship: 

Px = Frx (9) 

x[k] = [x[kN], x[kN + 1], ... , x[kN + N - l]f (1) where F is the (2N -1) x (2N -1) discrete Fourier transform 

Every N x 1 vector x[k] is then compressed from N samples 
to M samples by the M x N compressive sampling matrix «I> 
leading to the M x 1 vector sequence y[k]: 

y[k] = «I>x[k] (2) 

We describe the auto-correlation sequence of the Nyquist 
rate samples x[n] as rx[l] = E {x[n]x*[n -In, where (.)* 
denotes the complex conjugate operation. We can then con­
struct the N x N auto-correlation matrix of x[k] in (1) as 
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matrix. 

III. PROBLEM REFOR MULATION 

We can also view every row of «I> in (7) as a unique discrete 
waveform or filter and rewrite «I> in terms of its row vectors: 

«I> = ['Po, 'Pl, 'P2'···' 'PM_dT (10) 

with 'Pi = [cpd0],cpd-1],··.,cpd1 - NW. If we define the 
vector sequence y[k] in (2) as a collection of M parallel scalar 
sequences ydk], i.e., y[k] = [YO[k],Yl[k], ... ,YM_l[kllT, we 



can view ydk] as the N-fold downsampled version of the 
sequence obtained by filtering x[n] with cpdn]: 

o 

ydk] = L cpdn]x[kN � n] (11) 
n=I-N 

In that case, the auto- and cross-correlations between the 
elements of the measurement vector y[k] in vec(Ry) can be 
described in terms of the auto- and cross-correlation sequences 
between the different sequences ydk] but at lag zero. Denoting 
the correlation sequence between ydk] and Yj [k] at lag l 
as r Yi ,Yj [l] and taking the deterministic nature of the filter 
coefficients into account, we can write: 

rYi,Yj[l] =E{ydk]yj[k� l]} 
o 0 

L cpdn] L cpj[p]rx[lN + p � n] 
n=I-N p=I-N 

By using variable substitution, we can rewrite (12) as: 

N-I 

(12) 

ryi,Yj [l] = L r'Pi,<{)j [s]rx[lN � s] (13) 
s=I-N 

where r 'Pi,'Pj [l] = I:�=I-N cpdn]cpj [n � l] is the deterministic 
correlation sequence between cpdn] and cpj[n]. By taking (13) 
into account, vec(Ry) in (8) can be written as: 

T 
vec(Ry) = [r�O[o],r�l[O], ... ,r�M_l[O]] (14) 

where ry,[O] [ryO'Y'[O], ry1,y,[0], ... , ryM_",y,[O]f. 
From (13) as well as from some elementary mathematical 
calculations on (7) and (8), we can now see that 8 
in (8) is composed of the auto- and cross-correlations 
between the rows of CPo If we specify r'Pi,'Pj as r'Pi,'Pj = 

T [r 'Pi,'Pj [0], ... ,r 'Pi,'Pj [1 � N], r 'Pi,'Pj [N � 1], ... ,r 'Pi,'Pj [1]] 
we can express 8 as: 

8 = [r'Po,'Po,'" ,r'PM-l,'PO"" ,r'PO,'PM-l"" ,r'PM_l,'PM_l]T 
(15) 

From (14) and (15), we can observe that vec(Ry) is obtained 
by simply multiplying the auto-correlation sequence rx with 
e, whose elements are given by the deterministic auto- and 
cross-correlations between the rows of CP. 

IV. RECONSTRUCTION 

In this section, we attempt to reconstruct the power spectrum 
by first recovering the auto-correlation sequence rx from (8) 
for 8 given by (15). In general, the reconstruction problem 
can be divided into two different cases, the under-determined 
and over-determined cases (we view the determined case as 
part of the over-determined case). In the under-determined 
case, additional constraints (such as sparsity considerations, 
as discussed in [5]) are clearly needed. However, this is not 
the case for the over-determined case which will therefore 
be an interesting case to study. It is quite important to point 
out that even with compression (i.e., M « N), our approach 
might result in an over-determined system, while common 
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compressive sampling problems generally boil down to an 
under-determined system. The reason for this is the fact that 
we focus on reconstructing statistical measures (namely auto­
and cross-corelation sequences) which allows us to gather 
much more system equations. 

A. Case J: Under-Determined System 

When M2 < 2N � 1, our reconstruction problem becomes 
under-determined. Then, we can exploit the fact that the signal 
is sparse in some basis and apply one of the many recently 
proposed CS-based reconstruction methods. One approach 
is to assume that the power spectrum is sparse, which is 
reasonable in a cognitive radio scenario. In this case, we 
simply exploit the relationship between the (2N �1) x 1 power 
spectrum vector Px and the (2N � 1) x 1 auto-correlation vector 
rx given in (9) and thus we can formulate the reconstruction 
of the power spectrum as an h -norm minimization problem: 

(16) 

When the power spectrum is not sparse, we can make use of 
the wavelet based edge detection introduced in [6], [7], which 
relates the (2N � 1) x 1 auto-correlation vector rx in (8) with 
the (2N � 1) x 1 sparse edge spectrum vector zp according 
to: 

zp = rFWrx (17) 

where W is a (2N � 1) x (2N � 1) smoothing matrix and r is 
the (2N � 1) x (2N � 1) first-order difference matrix (for more 
details see [6], [7]). The reconstruction of the edge spectrum 
can then be formulated as the following h -norm minimization 
problem: 

zp = argmin IIzplll S.t. vec(Ry) = 8(rFW)-lzp (18) 
z" 

Based on the estimated edge spectrum zp, we can easily 
recover rx from (17) and Px by performing a cumulative sum 
on zp as shown in [7]. 

B. Case 2: Over-Determined System 

When M2 2: 2N � 1 and 8 has full column rank, it is 
possible to compute the auto-correlation vector r x as the least­
squares solution of (8): 

rx = (8H 8)-18H vec(Ry) (19) 

The power spectrum estimate Px can then be computed from 
(9). The most interesting aspect about this case is that we 
can recover the statistics of the signal without requiring any 
sparsity assumptions. This is in contrast with the general 
compressive sampling framework where sparsity of the signal 
is needed to guarantee perfect reconstruction. In the next 
section, we focus our attention on this case as the under­
determined case is similar to the approaches that have been 
intensively explored in [5], [6], [7]. 

V. SA MPLING MATRIX DESIGN 

In this section, we discuss the design of the sampling matrix 
in order to ensure that the least-squares solution is unique (8 
has full column rank). 



A. Random Sampling Matrix 

When each element of <I> is randomly generated, there is a 
very high probability that 8 will have full column rank once 
M2 ;:::: (2N - 1). Note that this can occur for M « N. We 
thus propose the use of a random matrix such as a complex 
Gaussian matrix as one possible realization of the sampling 
matrix <I> to guarantee the full column rank property of 8. 

B. Multi-Coset Sampling Matrix 

It is also possible to adopt multi-coset sampling. As indi­
cated in (10), we can construct a multi-coset sampling matrix 
by selecting M different rows from the identity matrix IN 
leading to an M x N multi-coset sampling matrix <1>. Different 
from Section V-A, we cannot simply select the rows of IN in 
a random way for a given M since some requirements have to 
be satisfied in order to ensure the full column rank property of 
8 in (15). When a multi-coset sampling matrix is employed, 
every row of 8 will only contain a single one and will have 
zeros elsewhere. Hence, to achieve a full column rank 8, 
we have to select an appropriate combination of rows of IN 
that result in 8 having at least a single one in each column. 
Furthermore, it is desirable that the number of rows we select 
is minimal since we want to minimize the compression rate 
MIN. 

Assuming that 'Pj[n] = c5[-n - nj] for j = 0,1,2, ... , N -
1, it is clear from (13) that the correlation '<Pi,<Pj [l] is given 
by: 

(20) 

Our task is now to construct <I> by selecting M out of N 
possible rows of IN subject to the constraints on 8 mentioned 
before. Introducing 5 as a set of M indexes selected from 
{O, 1, ... ,N -I} representing the rows from IN that we are 
going to select and D as a set given by: 

(21) 

our multi-coset sampling matrix construction problem can be 
stated as: 

min 151 S.t. D = {O, 1, ... , N -I} (22) 
s 

where 151 denotes the cardinality of the set 5. This problem 
actually corresponds to a so-called minimal length-(N - 1) 
sparse ruler problem. A sparse ruler with length N - 1 can 
be regarded as a ruler that has k < N distance marks 
o = no < n1 < ... < nk-1 = N - 1 but is still able 
to measure all integer distances from 0 to N - 1. Note that 
D in (22) represents the set of integer distances that can be 
measured by the length-(N - 1) sparse ruler with all marks 
ni E 5. The length-(N - 1) sparse ruler with k distance 
marks is called minimal if there is no length-(N - 1) sparse 
ruler with k - 1 marks. If we solve this minimal sparse 
ruler problem, we basically minimize the compression rate 
MIN while maintaining uniqueness of the solution of the 
least-squares reconstruction problem. The minimal sparse ruler 
problem and how to solve it is discussed in [8]. 
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VI. SIMULATION STUDY 

In this section, we illustrate our approach with numerical 
results from a simulation study for both random complex 
Gaussian and multi-coset sampling matrices. We consider a 
complex baseband representation of an OFDM signal with 
16 QAM data symbols, 8192 frequency tones that span a 
frequency band from -1': to 1':, and a cyclic prefix length of 
1024. We only activate 3072 frequency tones in the bands 
[-1':, -0.751':], [0,0.2 51':] and [0.51':,0.751':]. The transmitted 
signal x(t) has lOdB power. We set N to N = 128 and vary 
the compression rate MIN from 0.1 563 to 0.5 while ensuring 
that 8 has full column rank. 

The complex Gaussian sampling matrix is randomly gener­
ated with zero mean and variance 1 1M and it is kept fixed over 
the different runs. In Fig. 2, the mean squared error (MSE) 
between the estimated power spectrum and the theoretical 
one is computed for the random complex Gaussian sampling 
matrix case. No noise is considered in this figure. The MSE 
is calculated according to: 

(23) 

where Px represents the theoretical power spectrum vector. 
The MSE is computed for different numbers of collected 
measurement vectors (MVs) y[k] in (2) as an attempt to rep­
resent different sensing times. It is clear from the figures that 
the quality of the estimation improves with MIN, although 
the performance seems to saturate at a particular point. We 
can also notice that the MSE improves as the sensing time 
increases, which is to be expected as our estimated auto­
correlation value 'Yi,Yj [0] in (14) approaches the actual value. 
In Fig. 3, the estimated power spectrum is depicted together 
with the theoretical one for MIN = 0.5 and different values 
of sensing times. Again a random complex Gaussian sampling 
matrix is assumed here. Obviously, the presence of the active 
bands can be better located for longer sensing times. 

For multi-coset sampling, it turns out that the minimum 
number of distance marks for a length-1 2 7  sparse ruler is 20. 
Hence, we select the corresponding 20 rows from the 128 
rows of the identity matrix 1128 to form a 20 x 128 matrix <1>. 
The larger MIN cases are then realized by randomly adding 
additional rows of 1128 into the already selected 20 rows. In 
general, the trends seem to be similar as before. However, 
multi-coset sampling seems to offer a better performance than 
complex Gaussian sampling. This is clear from Figs. 4 and 5, 
which show the same results as Figs. 2 and 3, respectively, 
but now for multi-coset sampling. 

VII. CONCLUSION 

In this paper, we have introduced a new approach for 
estimating the power spectrum based on samples obtained 
from a sub-Nyquist rate sampling device. We exploit the 
cyclo-stationarity of the measurements to gain more linear 
equations for our reconstruction problem. We have focused 
on the over-determined case and investigated the full column 
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Figure 2. The MSE between the estimated power spectrum (random complex 
Gaussian sampling) and the theoretical one for a noiseless signal. 
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Figure 3. Estimated power spectrum for MIN = 0.5 (random complex 
Gaussian sampling) and the theoretical one; top: noise-free; bottom: noisy. 

rank property of the reconstruction matrix e such that a 
simple least-squares algorithm can be used to reconstruct the 
power spectrum. When this full column rank property can be 
guaranteed, our approach can be used to estimate the power 
spectrum of wide-sense stationary signals even without any 
sparsity assumption. Two possible realizations of the sampling 
matrix are discussed, namely a random complex Gaussian 
and a multi-coset sampling matrix. The simulation study for 
both sampling matrix realizations has clearly shown that our 
approach performs satisfactory and is able to locate the active 
bands, thereby making it a promising candidate for power 
spectrum sensing in a cognitive radio environment. 
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