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ABSTRACT

In this paper, we propose a Kalman filter (KF) based tracking

approach to track a target node with the assistance of anchors

in an asynchronous network with clock offsets. We employ

the asymmetric trip ranging (ATR) protocol to obtain TOA

measurements and facilitate clock offset cancellation, and fur-

ther derive a linear measurement model from the TOA mea-

surements. Thus, the KF based on this linear measurement

model does not have the modeling errors inherently contained

in the Extended Kalman filter (EKF). Furthermore, low com-

putational complexity makes the proposed KF a promising

solution for practical use. We compare the proposed KF with

the EKF. The simulation results corroborate its efficiency.

Index Terms— Tracking, synchronization, sensor net-

work, time-of-arrival(TOA), clock offset, Kalman filter

1. INTRODUCTION

Tracking a mobile target node is an important issue in many

wireless sensor network (WSN) applications [1, 2, 3]. In

general, tracking systems follow two steps. In the first step,

metrics bearing location information are measured, such as

time-of-arrival (TOA) or time-difference-of-arrival (TDOA),

angle-of-arrival (AOA), and received signal strength (RSS)

[4]. High accuracy and potentially low cost implementation

make TOA or TDOA based on ultra-wideband impulse radios

(UWB-IRs) a promising ranging method [4]. Consequently,

clock synchronization has to be taken into account for a local-

ization or a tracking system using TOA or TDOA measure-

ments [2, 3, 5]. In the second step, the ranging measurements

are used to track the target position. Due to the nonlinear re-

lations between these ranging measurements and the coordi-

nates of the mobile target node, the conventional Kalman filter

(KF) can not be used. The extended Kalman filter (EKF) [6]

is most widely used to linearize the non-linear model. How-

ever, the performance of the EKF is decided by how well the

linear approximation is. Furthermore, the unscented Kalman

filter (UKF) [7] is proposed to overcome the drawbacks of
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the EKF. The UKF follows the principle that it is easier to ap-

proximate a probability distribution than a random nonlinear

model, and it calculates the stochastic properties of a random

variable undergoing a nonlinear transformation. Moreover,

the particle filter [8] is also a powerful tool to deal with non-

linear models and non-Gaussian noise for tracking. However,

both the UKF and the particle filter are computationally in-

tensive. An EKF and a UKF are proposed in [2] to track a

target node with fixed anchors (nodes with known positions)

in asynchronous networks with clock skews and clock offsets.

The target node periodically transmits a pulse. The TDOAs

of these pulses received by the same anchor are calculated

in order to cancel the anchor clock offset. Then the impact

of the clock skews on the TDOAs is approximated as a zero

mean Gaussian noise term. However, in practice the varia-

tion of the clock skew is observed by hours [9], and should

thus be viewed as a random variable with an unknown mean

rather than a zero mean random variable. A sequential Monte

Carlo (SMC) method is proposed in [3] to jointly estimate

the clock offsets and the target trajectory for asynchronous

WSNs, which is also computationally intensive.

In this paper, a KF based tracking method is developed

to track the target node position with the help of anchors in

asynchronous networks with clock offsets. Our work is in-

spired by [10], where pseudomeasurements linear to the state

are constructed based on conventional ranging measurements,

and a KF is proposed based on the linear model. But [10]

only discusses a scenario, which is composed of three anchor

nodes and one target. We consider asynchronous networks

with clock offsets among the anchors, and no synchroniza-

tion requirement for the target node. The asymmetric trip

ranging (ATR) protocol proposed in [5] is employed here to

obtain TOA measurements and facilitate clock offset cancel-

lation. Since all the TOA measurements are obtained at the

anchors, our KF tracker can avoid any influence of the asyn-

chronous target clock. Consequently, a linear measurement

model is derived from the TOA measurements via projec-

tion and element-wise multiplication. This exact linearization

is different from the first order approximation of the EKF.

Thus, the KF based on this linear measurement model does

not have the modeling errors inherently contained in the EKF.

Furthermore, low computational complexity makes the pro-

posed KF a promising solution for practical use. We com-
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Fig. 1. An example of the ATR protocol for static asyn-

chronous networks

pare the proposed KF with the EKF by simulations. In future

work, we would like to propose low complexity trackers for

asynchronous WSNs not only with clock offsets but also with

clock skews.

2. LINEARIZATION OF THE MEASUREMENT

MODEL

For simplicity, we consider M anchors and one target node.

We assume that all nodes are distributed in an l-dimensional

space, e.g., l = 2 or l = 3. The coordinates of the anchor

nodes are known and fixed, which are defined as Xa =
[x1, . . . , xM ]l×M , where the vector xi = [x1i, . . . , xli]

T

indicates the coordinates of the ith anchor node. A vector

x(k) of length l denotes the unknown coordinates of the tar-

get node at time k. In an asynchronous network with clock

offsets, the target node clock runs freely, and the clock skews

of all the anchors are equal to 1 or treated as 1. There are only

clock offsets among all the anchors. Thus, the model for the

anchor clock [11] is given by Ci(t) = t + θi, i = 1, . . . , M ,

where θi denotes the unknown clock offset of the ith anchor

clock Ci(t) relative to the absolute clock.

To make full use of the broadcast property of wireless sig-

nals, we employ the ATR protocol proposed in [5] to make

all the other anchors listen to the ranging packets and record

their timestamps locally, when one anchor and the target node

exchange their ranging packets. This way, anchors obtain

more information than for the two-way ranging (TWR) proto-

col proposed in the IEEE 802.15.4a standard [12] without in-

creasing the communication load. The same packet structure

as used in the standard is employed here, which is composed

of a synchronization header (SHR) preamble, a physical layer

header (PHR) and a data field. The first pulse of the PHR is

called the ranging marker (RMARKER). The moment when

the RMARKER leaves or arrives at the antenna of a node is

critical to ranging. Without loss of generality, we assume that

the M th anchor initiates the ATR protocol as illustrated in

Fig. 1. The ith anchor records the timestamps TiR(k) and

TiS(k) upon the arrival of the RMARKERs of the ranging re-

quest from the M th anchor and of the ranging response from

the target node, respectively, where k is a label to indicate that

the timestamp measurements correspond to x(k). Note that

TMR(k) can be interpreted as the time upon which the M th

anchor receives its own ranging request without any delay,

and it is recorded when the M th anchor transmits a ranging

packet. Because we do not use any timestamps from the tar-

get node, the clock parameters of the target node do not have

any influence on our scheme. This is an important advantage

of the ATR protocol compared to the TWR protocol. For the

ith anchor, the difference between TiR(k) and TiS(k) relates

to the distance as

c(TiS(k) − TiR(k))=di(k) + dM (k′) + ∆(k) − diM

+niS(k)−niR(k), i=1, . . . , M,(1)

where k′ = k − ∆(k)/c, c is the signal propagation speed,

∆(k) is the unknown distance corresponding to the pro-

cessing time of the target node, di(k) = ‖xi − x(k)‖ =√
‖xi‖2 − 2xT

i x(k) + ‖x(k)‖2 is unknown, and dij =
‖xi − xj‖ is known. Since the target node is moving contin-

uously, the position where it receives the RMARKER from

the M th anchor is different from the position where it sends

out its RMARKER, and the time interval is the processing

time ∆(k)/c. Thus, the distance between the target node and

the M th anchor is dM (k′), when the target node receives the

RMARKER from the M th anchor. As a result, there are two

unknown target positions x(k) and x(k′) in (1). Furthermore,

niS(k) and niR(k) are the distance error terms translated

from the measurement errors in TiS(k) and TiR(k), which

can be modeled as zero mean random variables with vari-

ance σ2
iS(k) and σ2

iR(k), respectively. By making differences

of the timestamps from the same anchor, the clock offsets

are canceled out. Moreover, the internal delays of all the

anchors except the M th anchor are also eliminated, since

both TiR(k) and TiS(k) are recorded upon the arrival of the

RMARKERS at the same node. The internal delay of the

M th anchor can be compensated beforehand [13]. Conse-

quently, defining q = c[T1S(k) − T1R(k), . . . , TMS(k) −
TMT (k)]T , d(k) = [d1(k), . . . , dM−1(k), dM (k)]T , da =
[d1M , . . . , d(M−1)M , 0]T , ns = [n1S(k), . . . , nMS(k)]T ,

and nr = [n1R(k), . . . , nMR(k)]T , we can now write (1) in

vector form as

q(k) = d(k) + (dM (k′) + ∆(k))1M − da + ns(k) − nr(k). (2)

As (2) is a nonlinear model with respect to (w.r.t.) x(k)
and x(k′), it is impossible to derive the conventional KF for

(2). Inspired by [10], we would like to linearize (2) with-

out any approximation by projection and element-wise mul-

tiplication. We employ an orthogonal projection P onto the

orthogonal complement of 1M similarly as in [5], which is

defined as P= IM − 1
M

1M1T
M . Since P1M =0M , P can be

used to eliminate the term (dM (k′) + ∆(k))1M in (2). As a

result, premultiplying both sides of (2) with P, we obtain

Pq(k) = d(k) − d̄(k)1M + Pda + Pns(k) − Pnr(k), (3)

where Pd(k) = d(k)− d̄(k)1M with d̄(k) = 1
M

∑M

i=1 di(k)
being the unknown average of the distances between the target

162



node and the anchors. Note that (3) is now only related to

x(k) with the penalty of losing some information due to the

projection. Keeping d(k) on one side, moving the other terms

to the other side, and making an element-wise multiplication,

we can write

ψa − 2XT
a x(k) + ‖x(k)‖21M

= (P(q(k) + da)) ⊙ (P(q(k) + da))

+d̄2(k)1M + 2d̄(k)P(q(k) + da) + n(k), (4)

whereψa =[‖x1‖2, . . . , ‖xM‖2]T , and n(k)=−(P(ns(k)−
nr(k)))⊙ (P(ns(k)−nr(k)))−2d(k)⊙P(ns(k)−nr(k))
with ⊙ denoting element-wise product. Since the uncon-

strained least squares (LS) estimation method is equivalent to

the subspace minimization (SM) method [14], we employ the

latter one in order to estimate x(k) alone. We first apply P

again to eliminate ‖x(k)‖21M and d̄2(k)1M , leading to

Pψa − P((P(q(k) + da)) ⊙ (P(q(k) + da)))

= 2PXT
a x(k) + 2d̄(k)P(q(k) + da) + Pn(k). (5)

We then apply an orthogonal projection Pd(k) onto the or-

thogonal complement of P(q(k) + da) to both sides of (5),

which is given by

Pd(k) = IM −
P(q(k) + da)(q(k) + da)TP

(q(k) + da)TP(q(k) + da)
. (6)

As a result, we arrive at

b(k) = F(k)x(k) + Pd(k)Pn(k), (7)

where b(k) = Pd(k)Pψa − Pd(k)P((P(q(k) + da)) ⊙
(P(q(k)+da))) and F(k)=2Pd(k)PXT

a . Note that Pd(k),
b(k) and F(k) all depend on time-varying measurements. We

remark that in order to facilitate all the linearizations, the con-

dition M ≥ l + 3 has to be fulfilled, which indicates that we

need at least five anchors on a plane or six anchors in space to

accomplish the linearization.

Let us now explore the statistical properties of the noise.

Defining Pnr(k) = nr(k) − n̄r(k)1M and Pns(k) =

ns(k) − n̄s(k)1M , where n̄r(k) = 1
M

∑M

i=1 niR(k) and

n̄s(k)= 1
M

∑M

i=1 niS(k), we can write the entries of n(k) as

(8) on the top of the next page. Recall that E[niS(k)] = 0,

E[n2
iS(k)] = σ2

iS(k) and E[niS(k)njS(k)] = 0, i 6= j, which

leads to E[n̄s(k)] = 0, E[n̄2
s(k)] = 1

M2

∑M

i=1 σ2
iS(k) and

E[n̄s(k)niS(k)] = 1
M

σ2
iS(k). The statistical properties of

niR(k) can be obtained in a similar way. Moreover, niS(k)
and niR(k), i = 1, . . . , M are uncorrelated. As a result, the

statistical properties of n(k) are given by (9) and (10) on

the top of the next page, where we ignore the higher order

noise terms to obtain (10) and assume E[[n(k)]i] ≈ 0 under

the condition of sufficiently small measurement errors. Thus,

we still treat n(k) as a zero mean Gaussian random vector.

We remark that the noise covariance matrix depends on the

unknown d(k). To solve this problem, we can plug in the

predicted d̂(k|k − 1), which makes use of the prediction

x̂(k|k − 1) (these notations will be defined later on). Note

that n(k) is not a stationary process but it is independent,

leading to

Pd(k)PE[n(k)n(j)
T
]PPd(j) =

{
Λ(k) k = j
0 k 6= j

, (11)

where Λ(k) is rank-deficient due to the projections.

3. DYNAMIC STATE MODEL AND KALMAN

FILTER

Let us define the state at time k as s(k) = [x(k)T , ẋ(k)T , ẍ(k)T ]T ,

where x(k), ẋ(k) and ẍ(k) are the coordinate, the velocity

and the acceleration vectors of the target node at time k, re-

spectively. We assume a general linear state model, which is

given by (see also [6])

s(k + 1) = A(k)s(k) + B(k)u(k) + w(k), (12)

where A(k) is a 3l×3l state transition matrix, B(k) is a 3l×l
input matrix, u(k) is an acceleration input vector of length l,
and w(k) is a driving noise vector of length l with zero mean

and a covariance matrix R(k), which is given by

E[w(k)w(j)
T
] =

{
R(k) k = j
0 k 6= j

. (13)

We assume that A(k), B(k) and u(k) are all known exactly.

Moreover, the driving noise and the measurement noise are

assumed independent. In practice, u(k) has to be estimated

first. In [15] for instance, u(k) is modeled as a semi-Markov

process with a finite number of possible acceleration inputs,

which are selected based on the transition probabilities of a

Markov process. As a result, u(k) can be estimated by a min-

imum mean square error (MMSE) estimator. On the other

hand, [16] does not require a statistical model for u(k), and

derives a LS estimator of u(k).
Let us now rewrite the measurement model (7) using s(k)

as
b(k) = C(k)s(k) + Pd(k)Pn(k), (14)

where C(k) = [F(k), 0M×2l]. Based on (12) and (14), we

can easily develop the corresponding KF tracker. The predic-

tion equations are given by

ŝ(k|k−1)=A(k−1)ŝ(k−1|k−1)+B(k−1)u(k−1),(15)

Ps(k|k−1)=A(k−1)Ps(k−1|k−1)A(k−1)T +R(k−1).

(16)

The update equations are given by

K(k)=Ps(k|k − 1)C(k)
T
(C(k)Ps(k|k − 1)C(k)

T
+ Λ(k))†,

(17)

ŝ(k|k)= ŝ(k|k − 1) + K(k) (b(k) − C(k)ŝ(k|k − 1)) , (18)

Ps(k|k)= (IM − K(k)C(k))Ps(k|k − 1). (19)

Note that since C(k)Ps(k|k−1)C(k)
T

+Λ(k) may be rank-

deficient, we use the pseudo-inverse instead of the inverse,

which is denoted here by (·)†.
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[n(k)]i = 2di(niR(k) − n̄r(k) − niS(k) + n̄s(k)) − (niR(k) − n̄r(k) − niS(k) + n̄s(k))2, i=1, 2, . . . , M. (8)

E[[n(k)]i] =
2 − M

M
(σ2

iR(k) + σ2
iS(k)) −

1

M2

M∑

p=1

(σ2
pR(k) + σ2

pS(k)) ≈ 0, (9)

E[[n(k)]i[n(k)]j ] ≈





4di(k)2
(

M−2
M

(σ2
iR(k) + σ2

iS(k)) + 1
M2

∑M

p=1(σ
2
pR(k) + σ2

pS(k))
)

, i=j

4di(k)dj(k)
(

1
M2

∑M

p=1(σ
2
pS(k) + σ2

pR(k)) − 1
M

(σ2
iS(k) + σ2

jS(k) + σ2
iR(k) + σ2

jR(k))
)

, i 6=j
,(10)

4. EXTENDED KALMAN FILTER

In this section, we derive the EKF as a benchmark for our KF

tracker. In order to apply the EKF, we first have to use a Tay-

lor expansion to linearize the nonlinear measurement model.

Recall the data model (3) here, which is the result of apply-

ing the projection P to (2) in order to get rid of the dominant

term (dM (k′) + ∆(k))1M , where ∆(k) is the unknown dis-

tance corresponding to the processing time, and dM (k′) is the

distance between x(k′) and the M th anchor. As a result of the

projection, (3) is only related to x(k):

Pq(k) = d(k) − d̄(k)1M − Pda + P(ns(k) − nr(k)), (20)

where we recall that d̄(k) = 1
M

∑M

i=1 di(k). Let us define the

function f(x(k)) as f(x(k)) = d(k) − d̄(k)1M − Pda(k),
where we recall that di(k) = ‖x(k) − xi(k)‖. The Jacobian

H(k) of f(x(k)) w.r.t. s(k) can be expressed as

[H(k)]i,j =
∂[f(x(k))]i

∂[s(k)]j

∣∣∣∣
s(k)=ŝ(k|k−1)

, with

∂[f(x(k))]i
∂x(k)

∣∣∣∣
x(k)=x̂(k|k−1)

=

(
(x(k) − xi(k))T

‖x(k) − xi(k)‖

−
1

M

M∑

j=1

(x(k) − xj(k))T

‖x(k) − xj(k)‖





∣∣∣∣∣∣
x(k)=x̂(k|k−1)

, (21)

∂[f(x(k))]i
∂ẋ(k)

∣∣∣∣
ẋ(k)=ˆ̇

x(k|k−1)

=
∂[f(x(k))]i

∂ẍ(k)

∣∣∣∣
ẍ(k)=ˆ̈

x(k|k−1)

= 0T
l . (22)

Recall that ns(k) and nr(k) are zero mean independent

Gaussian random variables with variance σ2
iS(k) and σ2

iR(k),

respectively. Defining Λ̃(k) as the noise covariance matrix of

the noise term P(ns(k)−nr(k)), which is a zero mean Gaus-

sian random vector, we can write Λ̃(k) = Pdiag([σ2
1S(k)+

σ2
1R(k), . . . , σ2

MS(k)+σ2
MR(k)])P.

Consequently, the EKF is developed as follows. The pre-

diction equations are the same as (15) and (16). The update

equations are

K̃(k)= P̃s(k|k−1)H(k)
T
(H(k)P̃s(k|k−1)H(k)

T
+Λ̃(k))†,

(23)

ˆ̃s(k|k)= ˆ̃s(k|k−1)+K̃(k)(Pq(k)−f(x̂(k|k−1))), (24)

P̃s(k|k)= (IM − K̃(k)H(k))P̃s(k|k − 1). (25)

5. SIMULATION RESULTS

Let us now evaluate the performance of the proposed KF

tracker by Monte Carlo simulations, and compare it with the

EKF. We consider a simulation setup, where the first anchor

is located at the origin, and the other four anchors are located

at the corners of a 100 m×100 m rectangular centered around

the origin. Due to the broadcast nature of the ATR protocol,

we assume that σ2
iS(k) and σ2

iR(k) are related to the distances

according to the path loss law. Thus we define the average

noise power as σ̄2 = 1/M
∑M

i=1 σ2
iS(k), where σ2

iR(k) and

σ2
iS(k) are chosen to fulfill the condition that all σ2

iR(k)/d2
iM

and σ2
iS(k)/d2

i (k) are equal. Note that since dMM = 0, we

simply assume σ2
MR(k) = 0 and nMR = 0. The processing

time of the target node is 5 ms, and the signal propagation

speed c is the speed of the light. As a result the corresponding

distance ∆(k) is 3 × 108 × 5 × 10−3 = 1.5 × 106 m, which

is much larger than the scale of the considered set-up. We

employ a random walk state model as in [17], where (12) is

reduced to

s(k + 1)=




Il TsIl 0l×l

0l×l Il 0l×l

0l×l 0l×l 0l×l


 s(k) +




0l

wẋ(k)
0l


 , (26)

where wẋ(k) is a zero mean white random process with co-

variance matrix σ2
wIl, and Ts is the sampling interval. For

a true initial state s(−1) = [x(−1)T , v(−1)T , 0T
l ]T , the

initial state estimate ŝ(−1| − 1) is randomly generated in

each Monte Carlo run according to N (s(−1),Ps(−1| − 1)),
with Ps(−1| − 1) = 100diag([1T

l , 1T
l , 0T

l ]T ). The same

initial state estimate is also used for the EKF. In each run,

we generate a trajectory of 100 points based on the state

model. The performance criterion is the root mean square

error (RMSE) of x̂ (or ˆ̇x) vs. the time index k, which can

be expressed as

√
1/Nexp

∑Nexp

j=1 ‖x̂(j) − x‖2, where x̂(j) is

the estimate obtained in the jth trial. Each simulation result

is averaged over Nexp = 500 Monte Carlo trials. The rest of

the parameters are given by x(−1) = [13 m, 4 m]T ,v(−1) =
[0.05 m/s, −0.05 m/s]T , Ts = 1 s , σ2

x
= σ2

ẋ
= σ2

w = 0.01,

1/σ̄2 = 20 dBm.

Fig. 2 shows an example of the trajectories estimated

by the proposed KF (the line with “+” markers) and the

EKF (the line with “×” markers), respectively. The true

trajectory is the line with “◦” markers. Fig. 3(a) illus-
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Fig. 2. An example of the trajectories estimated by the pro-

posed KF and the EKF
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(a) RMSE of the target node location x vs. time index k
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(b) RMSE of the target node velocity ẋ vs. time index k

Fig. 3. RMSE of the proposed KF and the EKF

trates the performance of the position estimate x̂ by the

proposed KF and the EKF, respectively. The proposed KF

achieves better accuracy than the EKF. Both RMSEs in-

crease with time, since the covariance matrix of the state

also increases with time. Furthermore, the true RMSE

(the solid line) of the proposed KF closely follows its es-

timated RMSE (the dashed line), which is calculated by√
1/Nexp

∑Nexp

j=1 ([P(j)(k|k)]1,1 + [P(j)(k|k)]2,2) with P(j)(k|k)

the covariance estimate obtained in the jth trial. On the other

hand, the true RMSE (the solid line with “◦” markers) of the

EKF is below its estimated RMSE (the solid line with “+”

markers), which shows that the estimated RMSE of the EKF

is pessimistic. We observe the same tendency in Fig. 3(b),

which illustrates the performance of the velocity estimate ˆ̇x
by the proposed KF and the EKF, respectively.
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